4,489 research outputs found

    Stable marriage with ties and bounded length preference lists

    Get PDF
    We consider variants of the classical stable marriage problem in which preference lists may contain ties, and may be of bounded length. Such restrictions arise naturally in practical applications, such as centralised matching schemes that assign graduating medical students to their first hospital posts. In such a setting, weak stability is the most common solution concept, and it is known that weakly stable matchings can have different sizes. This motivates the problem of finding a maximum cardinality weakly stable matching, which is known to be NP-hard in general. We show that this problem is solvable in polynomial time if each man's list is of length at most 2 (even for women's lists that are of unbounded length). However if each man's list is of length at most 3, we show that the problem becomes NP-hard (even if each women's list is of length at most 3) and not approximable within some δ>1 (even if each woman's list is of length at most 4)

    Finding large stable matchings

    Get PDF
    When ties and incomplete preference lists are permitted in the stable marriage and hospitals/residents problems, stable matchings can have different sizes. The problem of finding a maximum cardinality stable matching in this context is known to be NP-hard, even under very severe restrictions on the number, size, and position of ties. In this article, we present two new heuristics for finding large stable matchings in variants of these problems in which ties are on one side only. We describe an empirical study involving these heuristics and the best existing approximation algorithm for this problem. Our results indicate that all three of these algorithms perform significantly better than naive tie-breaking algorithms when applied to real-world and randomly-generated data sets and that one of the new heuristics fares slightly better than the other algorithms, in most cases. This study, and these particular problem variants, are motivated by important applications in large-scale centralized matching schemes

    Moment Approach for Determining the Orbital Elements of an Astrometric Binary with Low Signal-to-noise Ratio

    Full text link
    A moment approach for orbit determinations of an astrometric binary with low signal-to-noise ratio from astrometric observations alone is proposed, especially aiming at a close binary system with a short orbital period such as Cyg-X1 and also at a star wobbled by planets. As an exact solution to the nonlinearly coupled equation system, the orbital elements are written in terms of the second and third moments of projected positions that are measured by astrometry. This may give a possible estimation of the true orbit.Comment: 18 pages, 5 figures, 1 table; accepted by PAS

    Interacting open p-branes

    Full text link
    The Kalb-Ramond action, derived for interacting strings through an action-at-a-distance force, is generalized to the case of interacting p-dimensional objects (p-branes) in D-dimensional space-time. The open p-brane version of the theory is especially taken up. On account of the existence of their boundary surface, the fields mediating interactions between open p-branes are obtained as massive gauge fields, quite in contrast to massless gauge ones for closed p-branes.Comment: 10 pages, LaTe
    corecore