22 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    The Roles of the Dystrophin-Associated Glycoprotein Complex at the Synapse

    Full text link

    Dysbiotic drift: mental health, environmental grey space, and microbiota

    Get PDF

    New factors contributing to dynamic calcium regulation in the skeletal muscle triad-a crowded place

    No full text
    Skeletal muscle is a highly organized tissue that has to be optimized for fast signalling events conveying electrical excitation to contractile response. The site of electro-chemico-mechanical coupling is the skeletal muscle triad where two membrane systems, the extracellular t-tubules and the intracellular sarcoplasmic reticulum, come into very close contact. Structure fits function here and the signalling proteins DHPR and RyR1 were the first to be discovered to bridge this gap in a conformational coupling arrangement. Since then, however, new proteins and more signalling cascades have been identified just in the last decade, adding more diversity and fine tuning to the regulation of excitation-contraction coupling (ECC) and control over Ca2+ store content. The concept of Ca2+ entry into working skeletal muscle has become attractive again with the experimental evidence summarized in this review. Store-operated Ca2+ entry (SOCE), excitation-coupled Ca2+ entry (ECCE), action-potential-activated Ca2+ current (APACC), and retrograde EC-coupling (ECC) are new concepts additional to the conventional orthograde ECC; they have provided fascinating new insights into muscle physiology. In this review, we discuss the discovery of these pathways, their potential roles, and the signalling proteins involved that show that the triad may become a crowded place in time

    Calcium Misregulation and the Pathogenesis of Muscular Dystrophy

    No full text
    corecore