402 research outputs found

    Modified Gravity and Cosmology

    Get PDF
    In this review we present a thoroughly comprehensive survey of recent work on modified theories of gravity and their cosmological consequences. Amongst other things, we cover General Relativity, Scalar-Tensor, Einstein-Aether, and Bimetric theories, as well as TeVeS, f(R), general higher-order theories, Horava-Lifschitz gravity, Galileons, Ghost Condensates, and models of extra dimensions including Kaluza-Klein, Randall-Sundrum, DGP, and higher co-dimension braneworlds. We also review attempts to construct a Parameterised Post-Friedmannian formalism, that can be used to constrain deviations from General Relativity in cosmology, and that is suitable for comparison with data on the largest scales. These subjects have been intensively studied over the past decade, largely motivated by rapid progress in the field of observational cosmology that now allows, for the first time, precision tests of fundamental physics on the scale of the observable Universe. The purpose of this review is to provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a self-contained, comprehensive and up-to-date introduction to the subject as a whole.Comment: 312 pages, 15 figure

    Robust stability of differential-algebraic equations

    Get PDF
    This paper presents a survey of recent results on the robust stability analysis and the distance to instability for linear time-invariant and time-varying differential-algebraic equations (DAEs). Different stability concepts such as exponential and asymptotic stability are studied and their robustness is analyzed under general as well as restricted sets of real or complex perturbations. Formulas for the distances are presented whenever these are available and the continuity of the distances in terms of the data is discussed. Some open problems and challenges are indicated

    Author index for volumes 101–200

    Get PDF

    Nonlinear robust H∞ control.

    Get PDF
    A new theory is proposed for the full-information finite and infinite horizontime robust H∞ control that is equivalently effective for the regulation and/or tracking problems of the general class of time-varying nonlinear systems under the presence of exogenous disturbance inputs. The theory employs the sequence of linear-quadratic and time-varying approximations, that were recently introduced in the optimal control framework, to transform the nonlinear H∞ control problem into a sequence of linearquadratic robust H∞ control problems by using well-known results from the existing Riccati-based theory of the maturing classical linear robust control. The proposed method, as in the optimal control case, requires solving an approximating sequence of Riccati equations (ASRE), to find linear time-varying feedback controllers for such disturbed nonlinear systems while employing classical methods. Under very mild conditions of local Lipschitz continuity, these iterative sequences of solutions are known to converge to the unique viscosity solution of the Hamilton-lacobi-Bellman partial differential equation of the original nonlinear optimal control problem in the weak form (Cimen, 2003); and should hold for the robust control problems herein. The theory is analytically illustrated by directly applying it to some sophisticated nonlinear dynamical models of practical real-world applications. Under a r -iteration sense, such a theory gives the control engineer and designer more transparent control requirements to be incorporated a priori to fine-tune between robustness and optimality needs. It is believed, however, that the automatic state-regulation robust ASRE feedback control systems and techniques provided in this thesis yield very effective control actions in theory, in view of its computational simplicity and its validation by means of classical numerical techniques, and can straightforwardly be implemented in practice as the feedback controller is constrained to be linear with respect to its inputs

    Born-Infeld inspired modifications of gravity

    Full text link
    General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordinary ability to regularise the gravitational dynamics, leading to non-singular cosmologies and regular black hole spacetimes in a very robust manner and without resorting to quantum gravity effects. This has boosted the interest in these theories in applications to stellar structure, compact objects, inflationary scenarios, cosmological singularities, and black hole and wormhole physics, among others. We review the motivations, various formulations, and main results achieved within these theories, including their observational viability, and provide an overview of current open problems and future research opportunities.Comment: 212 pages, Review under press at Physics Report
    • …
    corecore