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Abstract  

 

This thesis addresses the synthesis problem of state deadbeat regulator using state space 

techniques. Deadbeat control is a linear control strategy in discrete time systems and 

consists of driving the system from any arbitrary initial state to a desired final state in 

finite number of time steps.  

Having described the framework for development of the thesis which is in the form of a 

lower linear-fractional transformation (LFT), the conditions for internal stability based 

on the notion of coprime factorization over the set of proper and stable transfer matrices, 

namely ∞, is discussed. This leads to the derivation of the class of all stabilizing linear 

controllers, which are parameterized affinely in terms of a stable but otherwise free 

parameter , usually known as the -parameterization. In this work, the classical -

parameterization is generalized to deliver a parameterization for the family of deadbeat 

regulators.  

Time response characteristics of the deadbeat system are investigated. In particular, the 

deadbeat regulator design problem in which the system must satisfy time domain 

specifications and minimize a quadratic (LQG-type) performance criterion is examined. 

It is shown that the attained parameterization for deadbeat controllers leads to the 

formulation of the synthesis problem in a quadratic programming framework with  

regarded as the design variable. The equivalent formulation of this objective as a 

quadratic integral in the frequency domain provides the means for shaping the frequency-

response characteristics of the system. Using the LMI characterization of the standard ∞ 

problem, a new scheme for shaping the system frequency response characteristics by 

minimizing the infinity norm of an appropriate closed-loop transfer function is 

introduced. As shown, the derived parameterization of deadbeat compensators simplifies 

considerably the formulation and solution of this problem. 

The last part of the work described in this thesis is devoted to addressing the synthesis 

problem of deadbeat regulators in a robust way, when the plant is subject to structured 

norm-bounded parametric uncertainties. A novel approach which is expressed as an LMI 

feasibility condition has been proposed and analysed. 
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Notation 
 ∞           Set of proper and stable rational matrices  

               Transpose of the matrix  ℱ . , .          Lower LFT ℱ . , .         Upper LFT 

                 Composition of two LFTs 

×            Set of ×  matrices whose elements all belong to  

                Nominal (central) controller in the set of admissible controllers 

×           Set of ×  real matrices �                 Controllability matrix 

                 -th controllable subspace 

                  Controllability (reachability) index  

                 Set of real numbers  ℂ                  Set of complex numbers ℤ                  Set of integers  ℕ                  Set of natural numbers  ƒ                    Field  ƒℤ, ƒ �           Formal Laurent series in one indeterminate � over ƒ �               Order of the sequence   ƒ [[�]]            Formal power series in one indeterminate � over ƒ      ƒ [�]               Formal polynomials in one indeterminate � over the field ƒ 

              Degree of a polynomial  
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ƒ �                Rational fractions or rational sequences in one indeterminate � over ƒ  

                      (Formal rational series in one indeterminate � over ƒ) ƒ х                Rational functions in ƒ  
                   Indeterminate, delay operator { }             Set of recurrent sequences with one indeterminate  over  

             Set of rational sequences with one indeterminate  over  

           Set of causal sequences with one indeterminate  over  

+            Set of stable sequences with one indeterminate  over  [ ]              Set of polynomial sequences with one indeterminate  over  

+ }        Corresponding functions over  

+ }       Corresponding sequential matrices 

�                   Closed unit disc in the complex plane 

                    The advance shift operator = − ) 

�            Number of finite poles of the rational matrix  

�∞            Number of infinite poles of the rational matrix  

           McMillan degree of the rational matrix  

                 Right composite matrix of  

                  Left composite matrix of  ℳ ℛ            Set of matrices with elements from ℛ [ℛ]             Set of ℛ-unimodular matrices with elements from ℛ �            Characteristic polynomial of  �              Family of all causal deadbeat controllers (in the algebraic approach) 
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                    -th reachable (Krylov) subspace  

              Unit step response of a discrete time system �                  Domain of the optimization problem 

              Set of all optimal points 

                 Shift matrix 

                  Identity matrix of size  

                   -th column in the identity matrix 

                 Measurement noise   

                  Disturbance signal (process noise)  

                    Intensity matrix of  

                   Intensity matrix of  

                     Expectation operator  

                Delta function  

                      Mean value  �                     Variance ‖. ‖                  Frobenius norm ‖. ‖                   norm,  norm, Euclidean norm (depending on context) ∆                      Perturbation, Uncertainty Ω                      Compact bounding set of perturbation matrices 

                      Parameter box �                      Generalized stability region 

�                 Characteristic function of � 

∗                      Conjugate transpose of  ,              A disk of radius  centred at  
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−∞,+∞      Time domain Lebesgue space 

               Square integrable functions on the imaginary axis ‖. ‖∞                 The ∞ norm �̅                       Largest singular value 

~                    The parahermitian transpose of the transfer matrix  (shorthand for   

                          −   in continuous time and −  in discrete time) 

⊥                     The orthogonal complement of the transfer matrix , such that [ ⊥] 
                          or  [ ⊥] is all-pass                           

                        Hankel operator 

+               Stable invariant subspace of  

−               Antistable invariant subspace of  

             The stabilizing solution of an algebraic Riccati equation �                       Spectral radius 
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Symbols 

 ∈            Belongs to ∗       Convolution of  and  ∶=          Equal by definition ∞           Infinity 

            Union 

            Intersection ⊂            Proper subset ⊆            Subset     ~            Associate  ∑            Summation ⨂           Kronecker product (tensor product or direct product) 
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Abbreviations 
 

MFD        Matrix fractional description  

LFT          Linear fractional transformation  

BIBO       Bounded Input Bounded Output 

SISO        Single Input Single Output 

MIMO      Multi Input Multi Output 

GCD         Greatest common divisor 

det            Determinant 

r.c.f           Right coprime factorization  

l.c.f           Left coprime factorization 

YJBK       Youla-Jabr-Bongiorna-Kucera  

PMD         Polynomial matrix descriptions  

PMFD       Polynomial matrix fractional description  

FST           Finite settling time 

TFST         Total finite settling time  

CAD          Computer Aided Design 

FIR            Finite impulse response Im              Image or range of a matrix rank           Rank of a matrix Ker             Kernel 

LTI             Linear time invariant 

LP               Linear programming  

LQ              Linear quadratic 
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LQG           Linear quadratic Gaussian max            Maximum min             Minimum lim               Limit dom             Domain of a function inf                Infimum vec               Vectorization operator 

LQR            Linear Quadratic Regulator tr                 Trace of a matrix 

RMS            Root mean square 

LMI             Linear matrix inequality diag             Diagonal 

LPV             Linear parameter varying Re                Real part of a complex number 

LHP             Left half plane 

SVD             Singular value decomposition dist              Distance Ric               Riccati  
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Chapter 1 

Introduction 
 

 

 

From the very early applications of discrete time system theory, a distinctive property of 

linear discrete time systems, namely their ability to achieve a desired operating regime in 

finite time in response to an arbitrary set of initial conditions, had received considerable 

attention. Since 1954, when the problem was first introduced by Bergen and Ragazzini 

[26], it has intrigued control engineers for many years. The first major contribution to the 

deadbeat control problem was made by Kalman [27], who tackled the problem in the state 

space framework and provided the solution which was in the form of linear state feedback. 

Since then, his elegant solution has motivated a large body of research in this area. 

 

In this thesis the synthesis problem of deadbeat controller in a state space framework has 

been investigated. Formally, a state deadbeat controller drives a discrete time system from 

any arbitrary initial state to a desired final state in finite number of time steps. Without 

loss of generality, it can be assumed that the final state is the origin of the complex plane. 

Accordingly, the ability to find a control sequence of finite length for any set of initial 

conditions, which steers the actual states to the desired state in finite number of control 

iterations is known as the deadbeat controllability property.  

 

It should be noted that the deadbeat nature of the response is an exclusive attribute of 

discrete time systems and has no correlate in continuous time. This stems from the 

difference between the form of the solutions to the differential and difference state 

equations describing continuous and discrete time systems, respectively. For an 

asymptotically stable system, due to the exponential characteristic of the state equation 

solution in the continuous time case, the error decays exponentially and finally vanishes 

only in the limit as time tends to infinity.  

 

Sometimes in the literature, the term “deadbeat” is taken as synonymous to time-

optimality, i.e. requiring the states to settle to the final value in the minimum number of 
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time steps. In this work in order to avoid confusion and emphasize the time optimality 

characteristic, the controller is referred to as “minimum-time” or “time-optimal 

deadbeat”. So, what is meant by “deadbeat” is the property of achieving the final state in 

just finite number of time steps. 

 

Probably one of the major drawbacks to the implementation of the deadbeat regulator is 

its poor robustness and excessive overshoot of control signals. This is natural to expect, 

since all the states are intended to be driven to the origin in the shortest possible time. 

However, study of deadbeat compensators offers insight into the properties of linear 

systems (Glad [143]). Hence, even if we do not aim to implement time optimal control, 

this may still be used to gain a good understanding of the performance limitations of a 

given system. On the other hand, Zhao et al. have shown in [30] that a trade-off between 

the settling time and control signal magnitude can be found.  

 

In the literature, there are many versions of deadbeat control which differ with regards to 

the type of the problem considered, e.g. tracking, disturbance rejection, etc., and the 

approach adopted. Generally, approaches that are used to achieve deadbeat regulation fall 

into two broad areas, namely the state space approach [27, 29, 32-35, 37, 38, 14, 150-

152, 155-157, 40-44, 52], and the algebraic or transfer function approach [26, 144-148, 

14, 16, 28, 52, 57, 153, 154, 161-164]. It is further possible to classify the state space 

method into two subdivisions, i.e. the dynamic and spectral approach. The dynamic 

method first introduced by Kalman, is developed based on the notions of controllability 

and controllable subspaces. According to the main property of the compensator obtained 

in this way, i.e. the nilpotency of the closed-loop system matrix, the synthesis problem of 

deadbeat regulator may be recast as that of assigning a prescribed set of eigenvalues to 

the origin by means of a linear state feedback. This leads to the spectral treatment of the 

design problem. The second scheme, the so-called algebraic approach, is of a quite 

different nature compared to the first one and arises by treating input-output signals as 

sequences, and accordingly, the system as a mapping between the input and output vector-

sequences. The main attribute of this method is the isomorphism between certain classes 

of formal series in one indeterminate over , and series expansion of functions over .  
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Objectives:  

 

The main objectives of this thesis are: 

 

1. To introduce the theoretical framework on which this thesis has been developed. 

The considered setting is in the form of a Linear Fractional Transformation (LFT). 

As it is well-known many synthesis and analysis problems may be recast in this 

framework. On the other hand, the equivalent reconstruction of the setting as the 

-parameterization delivers considerable simplifications in formulating the 

constrained deadbeat control design problem. 

 

2. To parameterize the family of all controllers which internally stabilize the closed-

loop system and drive the state-vector to zero in a finite number of steps, the so-

called deadbeat control scheme, in terms of a free design parameter . 

 
3. To formulate and solve deadbeat synthesis problems in order to satisfy pre-

specified time domain performance specifications, thus shaping the system’s 

transient response characteristics.  

 
4. To formulate and solve the deadbeat control design problem involving quadratic 

performance criteria (similar to those arising in LQG control) subject to additional 

magnitude constraints on selected state and output variables. 

 

5. To minimize the robust worst case performance of deadbeat feedback systems by 

formulating and solving ∞ optimal control problems via LMI-based efficient and 

tractable numerical algorithms. 

 
6. To extend robust stability analysis and synthesis methods to systems described by 

structured norm-bounded parametric uncertainties within the deadbeat design 

framework.  

 

In the remaining part of the introduction, an outline of the thesis will be presented. 
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Chapter 2 introduces the formal framework based on which this thesis is developed. The 

framework in which synthesis problem of the deadbeat controller is treated is in the form 

of a lower LFT (Linear Fractional Transformation). It is well-known that many control 

design problems may be reconfigured in such a setting [1]. Conditions which guarantee 

the internal stability of system interconnection are investigated; this is perhaps the most 

fundamental and useful property of control systems. The conditions are first formulated 

in terms of the state space description of the closed-loop system. However, we also look 

into the issue of internal stability in a different framework, which is based on the Matrix 

Fractional Description (MFD) of the constituent systems of the feedback interconnection. 

The central idea is to consider the set of transfer matrices with a prescribed property as a 

ring, and then model a given system as the ratio of two transfer matrices in that ring [165, 

166, 11, 12, 13, 15, 17, 20]. In this way, the main synthesis problem transforms into 

designing a feedback system which lies in a desired ring of operators when both the plant 

and compensator are modelled as a quotient of operators from that ring [11]. What makes 

this approach appealing is that the design problem results in a complete characterization 

of all compensators which place the feedback system in the desired ring. 

For the purpose of studying internal stability, we will only be concerned with those 

aspects of the fractional representation theory pertaining to feedback stabilization. To 

accomplish this, the notions of right and left fractional representation of matrices will be 

introduced. By imposing the additional requirement of coprimeness, the concepts of the 

right and left Bezout identity, also known as the Diophantine equation [167, 168, 28, 52], 

are introduced and connections between the two are established. The relation is referred 

to as doubly coprime factorization, or generalized Bezout identity. 

 

The ring concerning the internal stability problem is the set of proper and stable rational 

transfer matrices, namely ∞ [165, 166]. As is shown in [6] and [13], the doubly 

coprime factorization leads to a parametric characterization of all controllers which 

internally stabilize a given plant. All admissible compensators can be parameterized as a 

coprime factorization over ∞, including the elements of the doubly coprime 

factorization of the system to be stabilized over ∞, and a proper stable but otherwise 

arbitrary parameter . Formulating the plant and controller as an irreducible quotient of 

two transfer matrices in ∞ does not only catch the usual notion of instability due to 
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unstable closed-loop poles, but also excludes the possibility of unstable pole-zero 

cancellations between the plant and controller. 

 

Parameterizing the controller in the above fashion will convert the linear fractional 

description of the closed-loop map = ℱ , = + − − , to 

an affine parameterization in terms of the design parameter , = ℱ , = +
, known as the -parameterization or Youla-Jabr-Bongiorno-Kucera (YJBK) 

parameterization, first developed in [25]. This affine dependence on the parameter  is 

exploited to simplify the design procedure by reducing the problem of search or 

optimization over the set of admissible controllers to a search or unconstrained 

optimization over . It is also shown that all the stabilizing controllers are in the form of 

a stable observer combined with a stabilizing state feedback.  

 

Chapter 3 considers presenting the state space and algebraic approaches to the design of 

the deadbeat regulator. The state space method is developed based on the fundamental 

concept of system controllability. It is shown that the minimum number of time steps 

needed to transfer any initial state to the origin of the complex plane is equal to the 

controllability index, defined as the smallest possible integer for which the controllability 

matrix is full rank. The maximum number of steps though, is equal to the order of the 

system. The first step in defining a deadbeat controller in this scheme is the selection of 

 linearly independent columns of the controllability matrix [29, 32, 33, 34, 37]. Various 

ways to accomplish this have been discussed in [34], [39] and [37]. The non-uniqueness 

of the selection procedure leads also to the non-uniqueness of the resulting compensator. 

It is further shown in [27, 34] that the minimum-time deadbeat controller is in the form 

of a state feedback; this does not follow from an a priori assumption but is forced on us 

by the requirement that every state is driven to the origin in the minimum time steps. The 

properties of the resulting closed-loop map are also investigated. As it is noticed the 

closed-loop system matrix is nilpotent with the index of nilpotency equal to the system 

controllability index. This, correspondingly, reduces the synthesis problem of deadbeat 

regulator to that of assigning the eigenvalues to the origin via linear state feedback [45], 

usually known as the spectral approach. The derived controller through this method is 

also non-unique [35, 41, 42], owing to the freedom in selecting the Jordan structure of the 

closed-loop system, and assigned eigenvectors and generalized eigenvectors. As it is 
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argued in [43] and [44], the freedom may be employed to shape the transient response 

characteristics of the closed-loop map. Hence, the synthesis problem may be regarded as 

an eigenstructure assignment, rather than just an eigenvalue assignment, as treated in 

[155, 156, 157]. 

 

O’Reilly in [34] surveys two decades of research in the deadbeat synthesis problem in the 

state space framework up to 1981. After that date, significant contributions in this area 

includes the work of Zhao et al. [149, 150] who used the Youla parameterization to design 

robust one degree of freedom deadbeat controllers. The same authors in [151] and [152] 

applied the method to the design of two-degrees of freedom compensators. In this chapter 

we also look into the second major design procedure of the controller, i.e. the algebraic 

approach. It was first Bergen and Ragazzini [26] who applied the method to attain the 

solution to the problem of deadbeat tracking. The approach has been promoted ever since 

mainly by Kucera [144, 145, 14, 16, 146, 147, 148], followed by a number of other 

researchers like Eichsteadt [153] and Wolovich [154]. Essentially, this approach is based 

on the fact that in a discrete time framework, the input and output signals may be 

interpreted as sequences, and accordingly systems are inferred as a uniquely defined 

mapping between the input and output vector-sequences. To explicate this scheme, a 

quick review of the basic tools of the algebraic approach within the context of the discrete 

time systems is given. As it will be apparent, the fundamental attribute of this approach 

is the isomorphism between certain classes of formal series in one indeterminate over an 

infinite field, and series expansion of functions over the same field, which in the case of 

discrete time systems and in general linear dynamical systems is the set of real numbers 

.  

 

The notion of sequences when extended to the case of matrices is explained and their 

categorization while expressed as matrix fractions with elements from corresponding sets 

of sequences (which are either fields or rings), is also defined. The ability to express 

sequential matrices as the quotient of two matrices from desired fields or rings, leads to 

the formulation of the deadbeat controller as the solution to a polynomial Diophantine 

equation. The solution to the general problem considered in the work, i.e. the deadbeat 

problem, is first derived. Then the conditions to attain time-optimal deadbeat response 

are discussed. Milonidis et al. in [52] have extensively elaborated on the approach while 

additional performance requirements and constraints on the structure of the controller are 
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imposed. In their work, instead of deadbeat they use the term Finite Settling Time (FST) 

first coined by Karcanias et al. in [28]. For further references related to the deadbeat 

regulator design problem in the algebraic approach, the reader is referred to [28, 57, 161, 

162, 163, 164]. 

 

In the final part of chapter 3 we present a numerical method for constructing a static state 

feedback which assigns all controllable modes to the origin. This was developed by Van 

Dooren in [58] and is based on the recursive construction of a unitary transformation, 

yielding a coordinate system in which the state feedback is computed by merely solving 

a set of linear equations. The coordinate system is related to the Krylov sequence. An 

important feature of this numerical method is that the backward stability of the algorithm 

is guaranteed through application of unitary transformations. Before constructing the state 

feedback gain, the system is first reduced into block Hessenberg form [61], also known 

as the staircase model, so that the controllable and uncontrollable subsystems are 

separated. It is apparent that the problem is feasible if all the uncontrollable modes are 

already at zero, or equivalently the uncontrollable subsystem is nilpotent. We have 

programmed the algorithm in MATLAB, and a few examples have been considered. In 

all of the examples in the following chapters, we will use this algorithm to compute the 

observer and state feedback gains.  

 

Having discussed the framework to study the deadbeat controller design problem, and the 

existing approaches to tackle the problem, in chapter 4 we address the synthesis problem 

of deadbeat regulator subject to time domain constraints. First the input-output 

mathematical description of a system having deadbeat response is demonstrated. The 

impulse response of such systems is of finite duration, in other words it is a polynomial 

in the unit delay operator − , hence all the poles are located at the origin of the complex 

plane. Such systems are frequently known as FIR.   

 

It is well known that the time response of any system includes two parts, the transient and 

steady state. The transient part generates in response to the poles of the closed-loop 

system, whereas the steady state response is a result of the poles of the input or forcing 

function. Clearly, it is desirable that the transient response be sufficiently fast and 

represent satisfactory damping. Frequently transient response characteristics of a system 

are analysed in terms of the system response to standard inputs such as unit step, or ramp. 
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This is in view of the fact that the system response to any arbitrary input may be estimated 

from its response to such standard inputs. In this chapter, a partial list of typical time 

domain performance specifications of control systems, including transient response 

characteristics, is presented. It is shown that when the closed-loop system is described in 

terms of the parameter , these design specifications may be expressed in a multilinear 

form. This demonstrates the benefits of  parametrization in the present context; as 

discussed by Boyd et al. [4] this task is much more complex if the design parameter is 

chosen as the controller .  

 

The achieved simplification enables us to recast the synthesis problem of the deadbeat 

compensator satisfying desired time domain constraints as a Linear Program (LP). 

However, designing such a controller demands to confine the closed-loop system to be 

FIR. This can be accomplished by assigning the whole set of the closed-loop poles, which 

in fact is the union of the poles of the state feedback and the observer as the constituting 

elements of the controller, to the origin. This in turn leads to all the sub-systems , , 
and  in = ℱ , = +  be FIR. By restricting , , and  to 

be FIR, having a deadbeat response will now just necessitate to restrict the design 

parameter  to be FIR too. In this way, a complete characterization of the family of 

deadbeat controllers is obtained. It should be noted that restricting  to be FIR does not 

involve considerable restriction of the set of stabilising controllers considered, provided 

the maximum degree of  is chosen sufficiently large. The problem of parameterizing the 

family of the state deadbeat regulators was first introduced by Sebakhy et al. [158] for the 

special case of time-optimal controllers, through minimizing a quadratic performance 

index. However, their achieved description of the family was overparameterized. It was 

then Schlegel [159] who gave the description of the family in terms of the minimum 

number of parameters. Fahmy et al. [35] considered the problem for the more general 

case of non-time-optimal deadbeat regulators, under the assumption of the invertibility of 

the transition matrix. In [160], Amin and Elabdalla treated the problem by relaxing the 

aforementioned assumption. 

 

The second part of this chapter is dedicated to the design problem of deadbeat controller 

subject to quadratic performance specifications in the form of the standard Linear 

Quadratic Gaussian (LQG) problem. First, a brief introduction to the LQG problem and 
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its solution is given. Then, an alternative interpretation is discussed by considering a 

broader class of problems corresponding to the so-called  optimization framework. 

This interpretation eliminates the need to incorporate the stochastic ingredient of the 

LQG, and consequently offers a great deal of flexibility, especially when it is difficult to 

determine the precise stochastic properties of the signals involved. The relation between 

LQG and  optimization is observed by recognizing the fact that the LQG performance 

index is expressible as the system  norm when it is excited by white noise input signals, 

a notion which is elaborated on. The established relation between the LQG and  

optimization problems will be exploited to show that any constraint in the form of LQG 

imposed on the regulated signals, may be transferred into a quadratic programming with 

 as the design parameter. The efficiency of the proposed approaches has been illustrated 

by means of an example. 

 

Up to this point, the work is based on the assumption that there is no uncertainty present 

in the plant model. However, real systems always involve some amount of uncertainty. 

This motivates us to consider the design problem of robust deadbeat controller in chapter 

5. As mentioned earlier, achieving deadbeat response necessitates to locate all the closed-

loop system poles at the origin of the complex plane. However, due to the existence of 

uncertainty in the description of the plant it is virtually impossible to assign all poles 

exactly at the origin for every combination of the uncertain parameters. Consequently, 

the performance of the system will be adversely affected and hence the deadbeat 

characteristic of the system response will be lost. As a result, it is desirable to find the 

smallest possible region around the origin at which all the poles can be placed. The most 

natural form of such a region, is a circle centred at the origin. So, in this chapter the main 

purpose is to obtain the circle of minimum radius centred at the origin of the complex 

plane within which the closed loop poles can be robustly placed. This has been 

accomplished through a generalization of the Lyapunov stability method, also known as 

the quadratic stability approach. Before introducing this and its association with the work 

here, two major classes of perturbations arising in system models are defined, namely the 

parametric uncertainty and the norm-based uncertainty models. In this chapter, we are 

mainly interested in the parametric uncertainty model arising when the parameters in the 

system description are only known approximately or are in error.  
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Having discussed the inclusion of the uncertainty in the construction of our framework, 

we will then concisely examine the sensitivity of the eigenvalues to parametric 

uncertainty. As Wilkinson shows in [93], sensitivity of the poles depends upon the 

magnitude of their condition number. He also provides an upper bound on the sensitivities 

of the eigenvalues in terms of the condition number of the eigenvector matrix.  

 

We next turn our attention to the concept of quadratic stability which forms the foundation 

of deadbeat regulator design problems. It is well-known that quadratic stability analyses 

the stability of systems in terms of the existence of a positive definite symmetric matrix 

corresponding to solution of a Lyapunov algebraic equation or inequality [49]. Amato in 

[100] extends the criterion for stability to the case of linear parameter-varying (LPV) 

systems when the perturbation, in the form of structured norm-bounded uncertainties, 

enters just the state matrix, or both the state and input matrices, respectively known as 

model parameter uncertainty and input connection parameter uncertainty. What is 

significant about the achieved conditions is that they are formulated as LMI feasibility 

problems and so they can be investigated via efficient tractable numerical algorithms, e.g. 

the interior-point method, discussed in [9, 103, 104, 105, 106]. 

As argued in [95], [116], and [100], the controller which renders the closed-loop system 

quadratically stable is a linear time-invariant state feedback compensator. Besides 

stability, requiring desirable system dynamical behaviour compels us to assign the closed-

loop poles to specific sub-regions of the complex plane, the so-called generalized stability 

regions, designated by �. [87] This leads to the notion of the �-stability. Due to the 

presence of uncertainty, �-stability may be developed in a natural way to that of the 

quadratic �-stability. Hence, quadratic �-stability extends �-stability to uncertain 

systems in a similar fashion that quadratic stability extends stability to uncertain systems. 

The conditions for quadratic �-stability of systems are obtained in [97, 98, 100]. As 

shown these are based on the concept of the LMI regions, defined in [98]. Again, the 

conditions are expressed in the form of the LMI feasibility problems.  

 

The above stability conditions have been stated based on continuous time system 

descriptions.  However, they can be readily translated to the discrete time case as well, 

using the fact that quadratic stability of a discrete time system is equivalent to quadratic �-stability of its continuous time counterpart when � is the unit disk centred at the origin 
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of the complex plane. In view of this, the LMI feasibility problem equivalent to the 

quadratic stability of a discrete time system subject to both model parameter and input 

connection parameter uncertainties is established. This is then followed by stating the 

corresponding conditions for quadratic �-stability of a discrete time system when the � 

region is considered to be a circle [120, 118]. Kim et al. in [120] use the result to show 

that the problem of finding the smallest radius is equivalent to an optimization problem 

subject to the achieved LMI modified accordingly.  

 

As mentioned earlier, in the synthesis problem of a robust deadbeat controller the main 

aim is quantitatively defining the circular region of minimal radius which contains all 

eigenvalues of the closed-loop system, and subsequently finding the observer and the 

state feedback gains which accomplishes this. By invoking Parrott’s theorem [137] it is 

argued that the robust design of a deadbeat controller when the plant is subject to the 

parametric uncertainties is equivalent to finding the minimum radius for each of the disks 

encompassing the poles of the state feedback and the observer, and then selecting the 

maximum as the solution to the problem. This chapter is concluded by an example 

illustrating the design procedure.  

 

In chapter 6, the final chapter of this work, we will investigate the design problem of the 

deadbeat controller subject to the ∞ norm constraints. The ∞ norm is defined as the  

gain of the system. A problem in which the objective is to minimize the ∞ norm of a 

system is known as the ∞ optimization problem. This typically arises from the 

requirement to reduce the sensitivity of a feedback system against disturbances. It first 

appeared in the seminal work of Zames [125] and Doyle and Stein in [126]. Other most 

celebrated examples of control objectives expressible as ∞ norm constraints are 

disturbance attenuation, robust control, and the mixed sensitivity problem, as examined 

in [124, 83, 19, 122]. This chapter first gives an introduction to the ∞ norm and its 

interpretation in both the time and frequency domains. The ∞ norm is an indicator of 

the worst-case energy of the output for energy bounded inputs and accordingly can be 

naturally used as a measure of worst case performance. 

 

Based on the general framework described earlier, the ∞ optimization problem is 

mathematically formulated and the three main approaches through which the problem can 
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be tackled are briefly discussed. These can be classified as model-matching, Riccati 

equation-based, and the LMI approaches. In the first scheme, i.e. model-matching 

approach [127], using the characterization of the closed-loop system, = +
, the ∞ problem is to match  to the cascade , considering  as the 

design parameter. It has been shown in [128] that the problem can be formulated in the 

form of the so-called Nehari extension problem. Treatment of the ∞ optimization 

problem in this scheme is both theoretically and computationally very involved. That is 

why Glover et al. in [136] proposed a new approach which relies on the solution to two 

algebraic Riccati equations with the same order as that of the system, a method which 

will also be briefly reviewed.  

 

In our work, deadbeat controllers which satisfy ∞ norm constraints are synthesized via 

the LMI approach. This method is chosen mainly due to the existence of efficient and 

tractable numerical algorithms on which it is based. In this scheme, the ∞ norm 

minimization problem is formulated as a standard linear matrix inequality (LMI) 

feasibility problem [142, 106]. The LMI characterization of the ∞ problem is the so-

called “bounded real lemma”. The main aim of this chapter is to show that the Markov 

parameters of the design parameter  appear affinely only in the  and  matrices of the 

state space realization of the closed-loop system  which results in an overall linear 

function of the matrix variables. So, the main problem reduces to finding appropriate  

and  matrices such that the LMI condition is satisfied. As an example, the control design 

procedure is applied to the model of a DC motor.  

 

Achievements: 
 

The main contributions of the thesis are as follows: 

 

 The thesis has provided an affine parameterization of the family of deadbeat 

regulators in terms of a free parameter . According to the mathematical 

characterization of the closed-loop map as = ℱ , = + , a 

deadbeat response necessitates the assignment of all closed-loop poles to the 

origin of the complex plane (hence, making , , and  all FIR)  and also 

confining the free parameter  to a FIR matrix function. The case of minimum-

time deadbeat controller is achieved by setting  to zero. 
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 The problem of designing deadbeat regulators subject to the LQG performance 

specifications has been recast as a quadratic programme. Moreover, it is 

demonstrated that the problem of shaping the transient response of the closed-loop 

system and generally satisfying time domain constraints can be reformulated as a 

linear programming with  being the design parameter. Both objectives can be 

addressed in a quadratic programming optimization setting. 

 
 The thesis has proposed a new method for shaping the frequency response of the 

closed-loop system in terms of its worst case performance, which is quantified by 

the system ∞ norm. The problem is stated as an LMI feasibility condition in the 

form of the bounded real lemma. It is shown that the Markov parameters of the 

design matrix  appear affinely in the output part of the closed-loop state-space 

model (  and  matrices only) without affecting the input part of the model 

(matrices  and ). This attribute results in simple LMI conditions and an overall 

efficient algorithm. 

 

 The thesis has proposed a new method for designing robust deadbeat controllers 

in the presence of structured norm-bounded parametric uncertainties. The radius 

of the smallest circular region centered at the origin of the complex plane 

containing all closed-loop eigenvalues for all possible combinations of the 

uncertain parameters has been computed. Moreover, the controller which assigns 

the closed-loop eigenvalues within this region is synthesized via linear state 

feedback. The design procedure is based on LMI characterization of quadratic 

stability.  
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Chapter 2 

The general framework and preliminaries 
 

 

 

2.1 Introduction: 

 

In this chapter, the general framework based on which this thesis is developed is 

introduced. The internal and external descriptions of the feedback configuration have 

been derived. As for any interconnection in the control theory, the most fundamental 

requirement of internal stability has been discussed. Internal stability is first described 

based on the state space realization of the system. Through description of the notions of 

Matrix Fractional Description (MFD) and coprimeness over the set of proper and stable 

rational matrices, namely the ring ∞, an external characterization of internal stability 

is established. This in turn, leads to the complete parameterization of the set of all 

stabilizing compensators. The parameterization is linear fractional in character, and 

results in an affine characterization of the closed-loop system in a stable but arbitrary 

design parameter. The state space realizations for the coprime factors of both plant and 

controller are given. Finally, it is shown that every controller which stabilizes the plant 

can be realized as an observer-based controller. 

 

 

2.2 Linear fractional transformation (LFT): 

 

As in any control problem, the first step is to construct a formal framework based on 

which the problem is treated. It is well-known that many control problems can be 

formulated in a linear fractional transformation (LFT) framework [1]. 

Given a complex matrix G block partitioned as: 

 = [ ] ∈ ℂ + × +  
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and two other complex matrices ∈ ℂ ×  and ∈ ℂ × , we can formally 

establish two mappings, namely lower and upper LFT. The lower LFT with respect to  

is defined as the map: 

 ℱ ,• ∶ ℂ × → ℂ ×  

 

where 

 ℱ , = +   −   −                  (2.2.1) 

 

In a similar fashion, an upper LFT with respect to ∆  is defined as: 

 ℱ ,• ∶ ℂ × → ℂ ×  

 

where 

         ℱ , = +   −   −                (2.2.2) 

 

Obviously, these two mappings are well-defined provided that the inverses exist.  

The following representations of ℱ ,  and ℱ ,  clearly justifies the 

terminologies of lower and upper LFTs. 

 

                

                                 (a)                                                                (b)  

 

Figure 2.2.1 (a) The lower and (b) the upper LFT  

 

 

∆  

  

  

 

  

 

∆  
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By taking  as a proper transfer matrix, the lower and upper LFTs defined above are 

simply the closed-loop transfer matrices from  to  and from  to  respectively, 

i.e. [2]: 

 ℱ , =  and  ℱ , =                 (2.2.3) 

 

Every synthesis problem can be cast as a lower LFT when  is interpreted as a generalized 

plant and  as a controller to be designed. On the other hand, every analysis problem can 

be formulated as an upper LFT when  is an interconnection matrix with some structured 

 representing parametric or unstructured uncertainty [2].  

The present work which involves the design problem of deadbeat controller under various 

constraints is developed based on the lower LFT configuration.  

 

 

2.3 The general framework: 

 

In view of the arguments presented in the previous section, any control problem can be 

reconfigured as an LFT model. With this motivation, we consider the configuration in 

figure 2.3.1 as the fundamental framework in this thesis. 

 

 

 

 

Figure 2.3.1 The general framework 

 

In the illustrated block diagram,  is the generalised plant which admits the following 

state space description: 
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= + +  = + +                  (2.3.1) = + +  

 

Intuitively, the generalised-plant transfer function is partitioned as: 

 

=











21212

12111

21

DDC

DDC

BBA  = [ ]                   (2.3.2) 

 

The controller  is described by the state space realization: 

 = +                    (2.3.3) = +  

 

We make the standard assumption that the realisations of the plant and the controller are 

both stabilizable and detectable.  

 

With regards to the (vector) signals, the input signal , referred to as the exogenous input, 

captures the effect of the environment on the plant. It contains disturbance and 

actuator’s/sensors’ noise-signals.  may also contain fictitious inputs injected at any 

point in the plant. The input signal  denotes the inputs manipulated by the controller. 

The output vector signal , known as the measured or sensor outputs, represents the 

signals accessible to the controller. The regulated variable, denoted by , as the name 

suggests, include all the outputs we wish to regulate or control. Basically, it represents 

every signal about which we express a specification or constraint. As such, it may include 

internal states or variables, or even components of  and . [3, 4, 5] 

 

In order to get the closed-loop transfer function, the output feedback control law: 

 =                 (2.3.4) 
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is applied and the equalities =  and =  are imposed. Solving the set of equations 

in (2.3.1) for  in terms of , yields the corresponding input-output characterization of 

the closed-loop interconnection as: 

 = + − − : =               (2.3.5) 

 

, the closed-loop map from the exogenous inputs  to the regulated variables , 

contains every closed-loop transfer function of interest. Having compared the above 

description with (2.2.1), it can be easily inferred that the closed-loop map is in the form 

of a lower LFT. 

 

Derivation of  necessitates −  to be invertible and proper. This, which is 

known as the “well-posedness” condition ensures that all closed-loop maps are well-

defined and proper. In other words, this condition ensures that the feedback system makes 

sense or is physically realizable. The invertibility of −  is a necessary and 

sufficient condition for well-posedness, and is equivalent to the invertibility of −∞ ∞  [1, 5]. In most practical systems the feed-through matrix  is zero which 

automatically guarantees the existence of the inverse [6]. Therefore for systems with zero 

feed-through matrix or simply strictly proper systems, the well-posedness is guaranteed.  

 

 

2.4 Internal stability of the LFT: 

 

One of the most fundamental issues arising in any control system problem is internal 

stability of the closed-loop system. The fact that the response of any LTI system is the 

combination of responses to external inputs and initial conditions, motivates two different 

but closely related notions of stability, namely BIBO (Bounded Input Bounded Output) 

stability and internal stability. The concepts of BIBO and internal stability respectively 

signify the stability of the system in response to external inputs assuming zero initial 

states, and stability of the system response due to initial conditions while external inputs 

are considered to be zero.  
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Internal stability refers to the autonomous system dynamics in the absence of external 

inputs and so it coincides with the standard notion of asymptotic stability of dynamical 

systems. Internal stability is a basic requirement for every practical feedback system. This 

is because all interconnected systems may be unavoidably subject to some nonzero initial 

conditions and some (possibly small) errors, which in practice cannot be tolerated. Such 

errors at some points of the closed-loop system may lead to unbounded signals at other 

points in the interconnection. Through internal stability of the closed-loop system it is 

ensured that all signals in a system are bounded provided that the injected signals at any 

locations are bounded. 

 

To analyse the internal stability of the LFT configuration of Figure 2.3.1 in terms of the 

state space description, consider the following corresponding setup for internal stability:  

 

 

 

Figure 2.4.1 Setup for internal stability definition 

 

Definition 2.4.1 [8] The LFT interconnection is internally stable if the nine mappings 

from w, v  , and v  to z, y, and u are all stable. 

 

In order to limit the number of tedious calculations when deriving the state space 

realization of the closed-loop transfer matrix, a further assumption is to omit the direct 

feed-through term . As discussed in the preceding section, this will also ensure the 

well-posedness of the system. We may restore ≠  by a loop shifting argument that 

absorbs  into , in the case that ≠ . The procedure to do this is fully discussed 

in [6] and is known as loop shifting.  

Having imposed the assumption, the closed-loop system dynamical equations reduce to: 
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[ ] = [ + ] [ ] + [ + ] [ ]    

        

[ ] = [ + ] [ ] + [ + ] [ ] 
 

                                                                                                                       (2.4.1) 

 

Lemma 2.4.2 [6] The LFT ℱ ,  is internally stable if and only if the system matrix  [ + ] is asymptotically stable (Hurwitz). 

 

It should be noted that not every linear fractional transformation is stabilizable. The 

simplest example which illustrates this is when  is unstable and = . 

 

Lemma 2.4.3 [5]  is stabilizable if and only if ,  ,  is stabilizable and detectable. 

 

Thus, from the assumed stabilizability and detactability of , the stabilizability and 

detectability of  is assured. 

 

The ensuing lemma states that  and  have identical internal stabilizability properties. 

This, in turn, leads to the simplification of Figure 2.4.1 to the equivalent configuration of 

Figure 2.4.2. 

 

 

 

Figure 2.4.2 Equivalent diagram to analyse internal stability 
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Lemma 2.4.4 [6]  is an internally stabilizing controller for  if and only if it internally 

stabilizes . 

 

A proper controller  which internally stabilizes the plant  is said to be admissible. 

Moreover, such a plant for which there exists at least one stabilizing controller is called a 

generalized plant. [9] 

 

 

2.5 Coprime factorization and internal stability: 

 

In the previous section the internal stability of the LFT configuration was discussed 

through the system state space description. In this and the successive section however, 

stability is analysed in a different framework, involving the coprime factorization of the 

constituent systems of the feedback interconnection over the set of proper and stable 

transfer matrices. Studying the stability problem in this framework is a special case of a 

more general approach in which the analysis and synthesis problems are formulated based 

on the fractional representation of the systems, principally developed in [11, 12, 13, 20]. 

This approach, which has its roots in abstract algebra, considers in the SISO case the 

transfer functions with the prescribed properties as a ring , and then models a given 

system as the ratio of two transfer functions in . This casts the synthesis problem as 

designing a feedback system which lies in a desired ring of operators when both the plant 

and compensator are modelled as a quotient of operators from that ring [11]. What makes 

the procedure highly interesting is that the synthesis problem yields a complete 

characterization of all compensators which place the feedback system in the ring . This 

approach could be readily extended to the MIMO systems when the transfer matrix has 

all its entries in . The operations of matrix addition and multiplication induced on the 

set of matrices over  by the associated addition and multiplication operations with , 

correspond to parallel and cascade interconnection of such systems [15, 17]. 

 

For the purpose of this section, we are only concerned with those aspects of the fractional 

representation theory pertaining to feedback stabilization. The central idea is that of 

expressing each constituent elements of the feedback interconnection as the irreducible 

quotient of two proper and stable elements. [15, 13] This is accomplished by considering 
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the notion of coprime factorization and its characteristics relevant to internal stability 

theory, which forms the foundation for developing a parameterization of stabilizing 

controllers in the next section. 

 

Let  be a ring and ×  be the set of ×  matrices whose elements all belong to . 

Every element � of × , the set of ×  transfer matrices,  can be factored as an 

element of  the field of fractions associated with the ring  and expressed as the ratio of 

two matrices  and , as � = −  where , ∈ ×  and det ≠ . The pair ,  

is referred to as a right fractional representation of  �. In a similar way, the left fractional 

representation of every � ∈ ×  is defined as � = ̃− ̃ where again ̃, ̃ ∈ ×  and det ̃ ≠  [11, 13, 20, 165, 166].  

 

Definition 2.5.1 [13] Two matrices , ∈ ×  are called right coprime if there exists 

matrices  , ∈ ×  such that: 

 − =                  (2.5.1) 

 

which can be stated equivalently as: 

 

Definition 2.5.2 [19] Two matrices  , ∈ ×  are right coprime if they have equal 

number of columns and there exists matrices , ∈ ×  such that: 

 [ ] [− ] =                  (2.5.2) 

 

This is equivalent to the matrix [  − ]  being left-invertible in × . 

 

The equality (2.5.1) is known as the right Bezout identity or right Diophantine identity. 

It extends the notion of relatively prime (or coprime) integers, i.e. the Euclid’s algorithm, 

to matrices. If  and  are two integers, i.e. , ∈ ℤ, there exists , ∈ ℤ  such that += GCD , , with GCD denoting the greatest common divisor of  and .  and  are 

called relatively prime (coprime) if their GCD is 1 [6]. 
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Definition 2.5.3 [13] In definition 2.5.2, if   is non-singular, � = −  is referred to 

right coprime factorization (r.c.f) of  �. 

  

The notions of left coprime and left coprime factorization can be defined analogously. 

 

Definition 2.5.4 [19] For  � ∈ ×  , ̃, ̃ ∈ ×  with equal number of rows, and ̃ 

non-singular, � = ̃− ̃ is called the left coprime factorization (l.c.f) of � if there exists 

matrices ̃, ̃ ∈ ×  such that:  

 [̃ ̃] [−̃ ̃] =                   (2.5.3) 

 

This is equivalent to the matrix [̃ ̃] being right-invertible in × .  

The Bezout identity corresponding to (2.5.3): 

 ̃ ̃ − ̃ ̃ =                  (2.5.4) 

 

is referred to left Bezout identity or left Diophantine identity. 

 

The ring concerning the internal stability problem being considered here, is the set of 

proper and stable rational transfer matrices, namely the ring ∞ [19, 165, 166]. The 

setting in which = ∞, not only catches the usual notion of instability as the result of 

existing unstable closed-loop poles, but also excludes the possibility of unstable pole-zero 

cancellations between the plant and controller. These will become clear as we proceed. 

From coprime fractional representation over ∞, some significant properties imposed 

by coprimeness can be inferred, which reveals the benefits of studying stabilization 

problem in a ring theoretic setting.  

 

In view of Lemma 2.4.4 which establishes the equivalence between the stabilization of 

the plant  and that of  (figure 2.3.1), all the subsequent discussion is made about . 

Suppose that  has a r.c.f over ∞ as = − , where , ∈ ∞. Rewriting 

the right Bezout identity of (2.5.1) (in accordance to the r.c.f of ) as − = , 

in which , ∈ ∞, and using the identity − = − , it can be inferred that −  does not have unstable poles other than the unstable poles of . Therefore: 
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Remark 2.5.5 [15] Instabilities of  are completely characterized by the denominator 

of a r.c.f of , i.e. the unstable poles of  are precisely the unstable zeros of . 

 

Theorem 2.5.6 [20] The pairs , ∈ ∞ and , ∈ ∞ define right coprime 

factorizations of    as = − = − , if and only if: 

 [ ] = [ ]  

 

where , − ∈ ∞. In other words,  is ∞-unimodular. 

 

Definition 2.5.7 [46] Let  ℛ  be a ring and  ℛ ×  denote the ×   matrices with elements 

from ℛ. A matrix ∈ ℛ ×  is unimodular, if and only if det  is a unit in ℛ, i.e. it is  a 

matrix in ℛ ×  whose inverse belongs to ℛ ×  too. Such matrices are termed                  ℛ-unimodular and designated as [ℛ]. 
 

Theorem 2.5.6 may be stated in the equivalent form of the following remark.  

 

Remark 2.5.8 [22] A right coprime factorization is unique up to a unimodular common 

right divisor. 

 

This remark, in turn, leads to the following important observation: 

 

Remark 2.5.9 [17] Cancellation of instabilities, between the numerator and denominator 

of a r.c.f is not allowed. In this sense, a r.c.f is irreducible. 

 

This makes clear the notion of irreducible quotient of stable elements mentioned earlier. 

A similar theorem and remarks hold analogously for a l.c.f of = − . 

 

It is worth mentioning that for rational transfer matrices existence of right and left 

coprime factorizations is assured. However, this is not the case in the general ring 

theoretic formulation [24, 23, 6].  
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The following theorem establishes the connection between the right and left coprime 

factorizations. 

 

Theorem 2.5.10 [23] Assume that  admits both right and left coprime factorization as = − = − , with , , , ∈ ∞, for which there exists , ∈ ∞ 

such that − = . Then, there exist , ∈ ∞ such that: 

 [ −− ] [ ] = [ ]                  (2.5.5) 

 

This is referred to as the doubly coprime factorization or generalized Bezout identity, and 

is the cornerstone in the parameterization of all stabilizing controllers, as will be shown 

in the next section. 

 

The notion of coprimeness readily extends to continuous-time as well as discrete-time 

systems, lumped and distributed systems, and one- and multi-dimensional systems. 

Therefore, all these situations can be captured within the single framework of stable 

factorization approach [15, 13]. 

 

 

2.6 Parameterization of all stabilizing controllers: 

 

In the preceding section, the notion of coprime factorization over ∞ was defined. The 

main intention was to express a system as an irreducible quotient of two rational proper 

and stable elements in ∞. In the current section, the relation between coprime 

factorization over ∞ and internal stability of the LFT feedback interconnection of 

figure 2.3.1 will be discussed. Moreover, parametric characterization of all compensators 

which stabilize a given plant will be developed. As stated in Lemma 2.4.4, internal 

stability of  in the basic configuration of figure 2.4.1 is equivalent to that of . This 

accordingly suggested considering  as the system to be stabilized in the associated 

configuration of figure 2.4.2. To motivate what follows, take the case where  is a scalar 

function with coprime factorization = − ,  and let , ∈ ∞ being scalar 

functions satisfying the Diophantine equation − = . We claim that = −  is 
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a stabilizing controller for . To see this, note that in figure 2.4.2 the mapping from [   ]  to [   ]  is: 

 

− [ ] = − [ ] = [ ] 
 

Since all , , , and  elements are in ∞, it is easily inferred that the closed-loop 

system is internally stable.  

 

Noticing that for any ∈ ∞ the following Diophantine equation is satisfied: 

 − − − =   

 

 it follows analogously that: 

 = −−  

 

is an admissible controller for any ∈ ∞. Hence, coprime factorization of  

generates a family of stabilizing controllers over the proper and stable (but otherwise 

arbitrary) parameter . The idea can be extended to the general matrix case in the form of 

following theorem. 

 

Theorem 2.6.1 [6, 13] Suppose  is stabilizable. Let = − = −   be right 

and left coprime factorizations of , and let its corresponding doubly coprime 

factorization as: 

 [ −− ] [ ] = [ ]                  (2.6.1) 

 

Then the following statements are equivalent:  

 

1.  internally stabilizes the feedback loop of figure 2.4.1. 
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2. = , where 

 

               [ ] = [ ] [− ],      ∈ ∞                 (2.6.2) 

 

3. = − , where 

 

               [ − ] = [ ] [ −− ],       ∈ ∞               (2.6.3) 

 

4. = ℱ ,                 (2.6.4) 

 

 in which 

 = [ − − −− − ] = [ − − −− − ]                 (2.6.5) 

 

The theorem clearly exhibits the relationship between coprime factorization and 

stabilizing compensators. In other words, coprime factorization and stabilization are 

intimately connected. The doubly coprime factorization, defined by generalized Bezout 

equations, leads to a parametric characterization of all controllers which internally 

stabilizes a given plant. All stabilizing controllers are expressed as a coprime 

factorization, including the elements of a doubly coprime factorization of the system to 

be stabilized and a proper stable but arbitrary parameter. In fact, the doubly coprime 

factorization is equivalent to the choice of a single stabilizing controller, and the theorem 

renders the whole set of stabilizing controllers constructed from that single choice, termed 

. This is sometimes known as the nominal or central controller and the set of stabilizing 

controllers is obtained through augmenting . 

 

As mentioned in the last part of theorem 2.6.1, stabilizing compensators have the structure 

of a linear fractional transformation. In regards to the LFT construction of the closed-loop 

map  in (2.3.5) and the composition of two LFTs formulated in [6] and designated by 

,  may be written as: 
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= ℱ , = ℱ ( , ℱ , ) = ℱ , ,                  (2.6.6) 

 

Denoting the composition ,  by , gives the closed-loop map as: 

 = ℱ ,                  (2.6.7) 

 

Accordingly, the closed-loop map description is given by: 

 = ℱ ( [ ] , ) = ℱ ( [ ] , ) = +                  (2.6.8) 

 

which is clearly an affine parameterization in the design parameter . This is known as 

the -parameterization or Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization, 

which was first developed in [25]. Thus, the given parameterization of all stabilizing 

compensators replaces the linear fractional parameterization ℱ ,  of the closed-loop 

maps of interest with the affine parameterization + . In many synthesis 

problems, these closed-loop maps form the design objectives of optimization problems 

with stability as a constraint. The -parameterization reduces the problem of search or 

optimization over the set of stabilizing controllers to a search or unconstrained 

optimization over the parameter ∈ ∞. 

 

By substituting the parameterized set of stabilizing controllers of (2.6.2) and (2.6.3) in 

(2.6.1), the equality (2.6.1) can be expressed as: 

 [ −− ] [ ] = [ ]                 (2.6.9) 

 

It is evident that, by construction,  , , , ∈ ∞, i.e. all are proper and stable. From 

the Bezout equations ensuing from (2.6.9) as: 

 − =                  (2.6.10) − =  

 

the following lemma can be deduced: 
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Lemma 2.6.2 [17] Suppose  admits a r.c.f as = − . Then the following 

statements are equivalent: 

 

1. ,  is internally stable. 

2.  admits a l.c.f  = − , with − = . 

 

The analogous lemma when  admits a l.c.f is inferred by utilizing symmetry and 

interchanging the role of  and  . The possibility of interchanging the role of the plant 

and compensator enables one to also parameterize all plants which are internally 

stabilizable by a given controller [17]. 

 

According to the Diophantine identities in (2.6.10) and definition of coprimeness over ∞, it is easily concluded that there is not any unstable pole-zero cancellations between 

the plant and controller as required by internal stability.  

 

Based on the parameterization of the stabilizing controllers, the general framework of 

figure 2.3.1 may be accordingly rearranged as depicted in the following configurations. 

 

 

                                   (a)                                                             (b) 

 

Figure 2.6.1 (a) -parameterization as modification to nominal controller (b) Closed-

loop configuration for the class of all stabilizing controllers 

 

In the next section, we will derive the state space model of the coprime factors of the plant 

and the solutions to the associated Bezout equations. 
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2.7 State space realization of coprime factors and solutions to the 

      Bezout identities: 

 

This section presents a state-space technique for computing the coprime factors over ∞ 

of , as the system to be stabilized. The solutions to the associated Diophantine 

equations are also derived, leading to a state space realization of the coprime factors of 

the stabilizing controller. The section is mainly based on the results delivered in [21] and 

[83]. 

The approach discussed in [21] and [83], is in fact based on the polynomial matrix 

descriptions (PMD) of LTI systems, which naturally arises when the dynamical behaviour 

of a system is described by differential (or difference) equations of order higher than one. 

The polynomial matrix description of a system is characterized by the matrix quadruple { , , , } whose entries are real polynomials in the differential (difference) operator. 

Expressing a transfer matrix as a fraction of two polynomial matrices, called polynomial 

matrix fractional description (PMFD), can be viewed as representation of internal 

realizations of the transfer matrix. This is in view of the well-known fact that, right PMFD 

of a transfer matrix  as = − , corresponds to the controllable PMD of . 

Specifically,  and  are polynomial matrices in the differential (or difference) operator, 

originating from an internal description that is controllable, and signify the transfer matrix 

numerator and denominator, respectively. Analogously, left PMFD of  as = −   

corresponds to the observable PMD of . The elements  and , respectively, denoting 

the transfer matrix numerator and denominator,  are again polynomial matrices in the 

differential (difference) operator which originate from an observable internal description. 

These concepts are extensively discussed in [10], chapter 7. In there, system state space 

description which involves only first order differential (difference) equations is 

considered as a special case of PMDs. In other words, PMDs are generalizations of state 

space descriptions. This has been utilized in [21, 83] to recast the achieved results in terms 

of state space realizations. First, a relation between the coprime proper and stable 

factorization of a transfer matrix and coprime polynomial matrix factorization of the same 

transfer matrix has been developed. This is accomplished via the correspondence of 

PMFDs to the internal description of the system, although, this advantage appears to be 

lost in the case of factorizations over ∞. The relation has been expressed in the form 
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of a theorem and leads to the main results as follows. Note that for the sake of generality, 

the results are given for the case ≠  in the realization of . 

 

Theorem 2.7.1 [21, 83] All proper stable right coprime factorizations of = −  

are achieved by applying stabilizing linear state feedback to a stabilizable and detectable 

realization of . 

 

The linear state feedback considered is = +  in which  is the state feedback gain 

matrix such that +  is Hurwitz, and  is an external input vector known as 

command or reference input. This renders the state space realizations of  and  as: 

 = [ ++ ]       ,     = [ + ]                 (2.7.1) 

 

Theorem 2.7.2 [21, 83] All proper stable left coprime factorizations of = −  are 

achieved through implementing full-order observers in a stabilizable and detectable 

realization of . 

 

Consequently, the state space model of  and  are obtained as: 

 = [ + + ]       ,     = [ + ]                 (2.7.2) 

 

in which  is the observer gain, selected so that +  is Hurwitz. Obviously, the 

theorem and the results are duals to the theorem 2.7.1 and can be obtained by applying 

the stabilizing feedback  to any controllable and detectable realization of  , although 

in [21] they have been established through direct constructive proofs. 

 

The following theorem gives the solutions of the Bezout identities corresponding to right 

and left coprime factorizations of  as in (2.6.10). 

 

Theorem 2.7.3 [21, 83] All solutions of (2.6.10) can be determined from the coprime 

factors of a combined state feedback/observer structure. 
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In view of the doubly coprime factorization of (2.6.9), and lemma 2.6.2 and theorem 

2.7.3, it can be readily inferred that the family of all stabilizing compensators is realizable 

as an observer-based state feedback.  

 

The state space characterization of the solutions to the Diophantine equations, and 

correspondingly, those of the coprime factors of the stabilizing controllers are obtained 

as: 

 = [ + − + ]      ,     = [ + − ]                 (2.7.3) 

 = [ + −+ ]      ,    = [ + − ]                 (2.7.4)   

 

By substituting (2.7.1), (2.7.3) and (2.7.4) in (2.6.5), the state space description of the 

“generator” of all stabilizing controllers can be obtained as: 
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An interpretation of the structure of stabilizing controllers (2.7.5) can be obtained via 

Figure 2.6.1(a): In this diagram  can be interpreted as the output prediction error  ̂ −= ̂ + −   of an observer, and  is just an auxiliary input added before the 

observer tap to the output of the nominal controller  [4]. The controller constructed in 

this manner is sometimes referred to as observer-based controller. Thus, every controller 

which stabilizes  can be realized as an observer-based controller. 

 

Referring to the state space realization of the generalized plant in (2.3.2) and relation 

(2.6.6) which expresses  as the composition of the pair , , the state space 

characterization of   can be obtained as: 
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Note that since the state feedback gain matrix , and the observer gain matrix  are 

chosen such that +  and +  are Hurwitz,  is stable. 

 

 

 

Figure 2.7.1 Interpretation of -parameterization for estimated state feedback   

 

It can be shown that in (2.6.8),  is simply  achieved with the central controller , 

 is the map from  to , and  is the map from  to . The key to the -

parameterization is that the closed-loop map from  to  is zero. In other words,  “sees” 

no feedback. 

 

 

2.8 Conclusion: 

 

This chapter presented the general framework on which this thesis is based. The internal 

and external description of the framework, which is in the form of Linear Fractional 

Transformation (LFT), were derived. The well-posedness and internal stability conditions 

observer 
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of the interconnection were investigated. It was shown that the controller is stabilizing if 

and only if it stabilizes the subsystem interconnecting measured outputs and control input. 

An alternate external characterization of the internal stability was also delivered. This was 

based on the matrix fractional representation of the plant and controller. It was argued 

that in the general case, to design a system which lies in a prescribed ring of operators 

representing desired properties, the plant and controller should be initially modelled as a 

quotient of operators from that ring. By choosing a model for the plant which is matched 

to the design criteria, a similar model may be specified for the feedback system 

constructed from the given plant. This in turn, is used to verify if the feedback system lies 

in the prescribed ring or equivalently has the desired properties. This approach provides 

the means for deriving a complete characterization of the family of all compensators 

which place the feedback system in the prescribed ring. The ring concerning the internal 

stability property is ∞, i.e. the set of proper and stable rational matrices.  

The notions of right and left coprimeness, and the relationship between coprime 

factorization and stabilizing controllers were reviewed. It was shown that the doubly 

coprime factorization, defined by generalized Bezout equations, leads to a parametric 

characterization of all controllers which internally stabilizes a given plant. The 

parameterization is linear fractional in character. All admissible compensators were 

formulated as a coprime factorization over ∞, including the elements of the doubly 

coprime factorization of the system to be stabilized over ∞ and a proper stable but 

otherwise arbitrary parameter . This setting not only captures the usual notion of 

instability in terms of unstable closed-loop poles, but also excludes the possibility of 

unstable pole-zero cancellations between the plant and controller. 

The state space realizations of the coprime factors of the plant and controller were given. 

Moreover, it was shown that the admissible controllers have the form of a stable observer 

combined with a stabilizing state feedback, which in fact can be generated by augmenting 

a nominal (central) controller. 

Recasting the internal stability problem in this framework and the resulting 

characterization of the stabilizing controllers, reduced the linear fractional description of 

the closed-loop system to an affine parameterization in terms of the design parameter . 

This in turn, reduces a search or optimization over the set of stabilizing compensators to 

the search or optimization over the free parameter . 
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In the ensuing chapter, the achieved parameterization for admissible controllers will be 

naturally extended to parameterize the whole family of state deadbeat regulators which 

affinely depend on a free FIR parameter . In later chapters, the characterization will be 

exploited to recast the deadbeat controller synthesis problem subject to time and 

frequency domain constraints as optimization problems. 
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Chapter 3 

Deadbeat controller design; state space and 

polynomial approaches 
 

 

 

3.1 Introduction: 

 

This chapter is dedicated to the revision of the state deadbeat regulator control problem 

and the two main synthesis approaches, out of the several ones which tackle the problem, 

namely the state space and the algebraic (transfer function) approach.  

 

Deadbeat control is widely used in the literature. Some authors refer to deadbeat problem 

as the time-optimal or minimum-time controller, which is steering the states to the origin 

in minimum number of time steps. So, deadbeat on its own could inherently mean time-

optimal. However, deadbeat control may also be inferred as achieving the final state in 

just finite number of time steps, rather than minimum number of steps. Usually in order 

to avoid confusion, the regulator is specified as minimum-time or time-optimal deadbeat 

control where the time-minimality is required. The deadbeat problem without the 

additional constraint of time optimality is also known as the finite settling time (FST) 

problem, and was first introduced by Karcanias [28].  

In this chapter, both the time-optimal and non-optimal (or FST) deadbeat controllers are 

considered in parallel. The type of the controller will specifically be determined, unless 

when it is clear from the context.  

 

It should be noted that deadbeat is an attribute just exclusive to discrete time systems and 

has no correlate in continuous time systems. This stems from the solution to the 

differential and difference state equations of the continuous and discrete time systems, 

respectively. Due to the exponential nature of the state equation solution in the continuous 

time case, the exponentially decaying error vanishes only in the limit as time goes to 

infinity.  
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In this chapter we first introduce the concept of controllability which was the early 

fundamental contribution to the solution of state deadbeat regulator problem. Within the 

state space framework, two classes of deadbeat controllers are developed. The first which 

is based on the concepts of reachability and -th controllable subspace, as was proposed 

by Kalman, is known as the dynamic approach. One of the major properties of the 

controller achieved in this way is the nilpotency of the closed-loop transfer matrix. This 

feature inspired the second approach, referred to as the spectral approach, in which state 

deadbeat problem is treated as an eigenvalue assignment problem. The two design classes 

are discussed in this chapter. The other synthesis procedure based on polynomial algebra 

and known as the algebraic or transfer function approach, is also presented. This chapter 

concludes by giving a numerical algorithm for computation of the state deadbeat gain. 

 

 

3.2 State deadbeat controller- Definition: 

 

In this section, the two problems of the minimum-time and non-minimum-time, 

equivalently known as the FST or just deadbeat regulation will be formally introduced. 

 

Definition 3.2.1 [29] A linear state feedback controller, generating an input sequence , , … , , which forces a linear discrete time system from any arbitrary initial 

state  to a desired final state  in the minimum number of control iterations , is 

called a minimum-time deadbeat regulator compensator. Without loss of generality, it can 

be assumed that  equals the zero state. 

 

Accordingly, deadbeat controllability is the possibility of finding a control sequence of 

finite length for any set of initial conditions, which renders the actual state to be equal to 

the desired state. 

 

Definition 3.2.2 [28] A linear discrete time system exhibits an internal (external) finite 

settling time response if for a step change in any of its inputs and for any initial condition, 

all the internal (external) signals settle to a new steady state value in a finite number of 

time steps. The values of the finite settling time and that of the steady state are left free. 
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In the case that both the internal and external signals settle to the new steady state value, 

the problem is referred to as Total Finite Settling Time (TFST).  

 

It is clear from the definitions that FST (or deadbeat) is a generalization of the minimum-

time deadbeat problem. The degree of freedom which could be attained through relaxing 

the time-minimality constraint in deadbeat control, i.e. demanding only that every state 

be transferred to the origin in at most  steps, may be exploited to apply additional 

performance criteria, for instance, decreasing control input magnitude.  

 

One of the major hindrances to minimum-time deadbeat controller is that they are usually 

achieved at the cost of producing large magnitude control signals, which in turn may lead 

to poor robustness. This is a natural attribute to expect, since all states (if possible) are 

intended to be driven to the origin in the shortest possible time. As is well known, there 

is typically a trade-off between excessive control signals and settling time specifications. 

The magnitude of control signal can be decreased by increasing the settling time. Despite 

its bad reputation for poor robustness however, investigating deadbeat controllability in 

a system could reveal intrinsic properties and performance limitations of the system. 

Therefore, it can be used as a starting point in the synthesis of a better controller [30]. 

 

 

3.3 State deadbeat controller- Dynamic approach: 

 

As stated earlier, there are two major deadbeat controller synthesis schemes in the state 

space framework; dynamic and spectral approaches. In this section, we first study the 

dynamic approach which is based on the fundamental system concepts of controllability 

and reachability. Consider a multi-input LTI discrete time system described by the 

difference equation of the form: 

 + = + ,    = , , , …                  (3.3.1) 

 

where ∈ ×  and ∈ × . It is assumed that the system matrix  and the input 

matrix  are of full rank. The assumption that  is full rank corresponds to the fact the 
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system has no redundant inputs. Any linearly dependent columns corresponding to 

redundant inputs can always be eliminated.  

It is well-known that the system matrix of any discrete time system obtained by sampling 

a continuous time system is non-singular. However, this is not necessarily true for more 

general forms of discrete time systems. Here, as we are only interested in studying the 

basis of the deadbeat synthesis problem, for the sake of simplicity it is assumed that the 

 matrix is invertible. In the general case, it is important to be able to design a 

compensator without this restriction. The following definitions and results are standard. 

 

Definition 3.3.1 [31, 33] The system (3.3.1) is completely -step controllable 

(controllable to the origin) if there exists a control sequence = { , +,… , + − } which steers the states of the system from  to the origin in  

time steps.  

 

Definition 3.3.2 [31] The system (3.3.1) is completely -step reachable (controllable 

from the origin) if there exists a control sequence = { − + , − +,… , }  which steers the states of the system from the origin to   in  time steps.  

 

Lemma 3.3.3 [31, 18] The system (3.3.1) is completely -step reachable if and only if its 

controllability matrix is full rank, i.e.: 

 rank � = rank [ , , … , − ] =  for some                  (3.3.2) 

 

If  is invertible, criterion (3.3.2) will also be a necessary and sufficient condition for -

step controllability. Otherwise, it is just a sufficient (and not necessary) condition for 

controllability [18, 31]. 

 

Lemma 3.3.4 [31] If  is invertible, the system (3.3.1) is -step controllable if and only 

if: 

 rank [ − , − , … , − ] =  for some                  (3.3.3) 
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Depending on the context,  is referred to as the reachability or controllability index (or 

both) of the system. It is the smallest possible integer for which the controllability matrix 

is full rank, i.e. = min  {  |  rank � =  } [32, 33].  

 

Corresponding to the concept of -step controllability, the -th controllable subspace  

which defines the set of -step controllable states of the system (3.3.1), is defined as: [18, 

36] 

 = {  | ∈ − + + } = Im [ − +  − + +  − ]                 (3.3.4)                  

                                                                                                                               

Now the deadbeat control problem can be stated as follows: 

 

Definition 3.3.5 [34] Minimum-time deadbeat control problem is that of finding a control 

sequence = { , + ,… , + − } such that the states of the system 

(3.3.1) at any instant  are driven to the origin in at most  time steps under the 

action of  . 

 

The definition is in view of the following lemma: 

 

Lemma 3.3.6 [33] The minimum number of time steps needed to transfer any initial state   to the origin is equal to the controllability index . 

 

In general, if  is the number of iterations taken to transfer the states to the origin, the 

maximum achievable value for  is equal to the order of the system , while the minimum 

value is the controllability index  [35]. 

 

Regarding the definition of the -th controllable subspace  and with respect to lemma 

3.3.6, it can be easily seen that  is the maximal space of initial states of the system that 

can be transferred to the origin in minimum number of steps. If ∈ , then every  ∈  can be steered to the origin in at most  time steps. 

 

The following geometric properties of  are known [173, 37, 38]: 
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{ } = ⊂ ⊂ = + =                  (3.3.5) 

 + = −   + Im                   (3.3.6) 

 

From the expression (3.3.5) it is inferred that the transferred initial states to the origin 

remain in the origin for .  

 

The first step in development of a state deadbeat controller is the selection of  linearly 

independent column vectors from the full rank matrix  [27, 37, 34, 52]. There are 

several ways to accomplish this. In [39], Luenberger has established two methods which 

are based on two different rearrangements for selection of the columns of . In the first 

method, the selection procedure is contrived such that the  linearly independent vectors 

are of the form: 

 [ − , … , − , − , … , − , … , − ]                 (3.3.7) 

 

The requisite here is that, no vector of the form  is selected unless all lower powers 

of  times  are also included. 

 

In the second method, the vectors are checked over for dependency in the following 

rearrangement [32, 39]: 

 [ − , − , … , − , − , − , … , − ]                 (3.3.8) 

 

In either of (3.3.7) and (3.3.8), any columns of the input matrix  can be considered as 

the starting point (Here, without loss of generality, we have assumed that  is selected). 

This in turn, results in non-uniqueness of the derived set of linearly independent column 

vectors. In [39], among various ways of selecting  linearly independent columns of , 

these two  specific selection methods are of special interest as they lead to canonical forms 

composed of fundamental companion matrices located in blocks alongside the diagonal. 

This feature offers certain design advantages [39]. 
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An alternative selection procedure for choosing  linearly independent columns of  is 

through the ordered selection, expressed in the form of following definition: 

 

Definition 3.3.7 [37] Let { } be a sequence of ×  matrices and =rank [ , … , ]  − rank [ , … , − ]. An ordered selection for { } is a sequence of 

matrices { } with  of dimension ×  for which: 

 Im [ , … , ]  = Im [ , … , ] for each .  

 

The matrix [ , … , ] is full rank. { } can be simply chosen by eliminating any 

column of [ , … , ] which is linearly dependent on the set of columns which precedes 

it.  

Owing to the many different ways of choosing the sequence { }, the ordered selection 

is nonunique.  

 

Kalman [27] showed that for a single input system, a time-optimal state deadbeat 

regulator is in the form of a state feedback: 

 = ,    = , , … , −                  (3.3.9) 

  

The result was then generalized to the multi input systems in [34]. Note that the state 

feedback nature of the control law is not an a priori assumption but is forced on us by the 

requirement that every state be driven to the origin in minimum time steps. However, in 

the general case of the deadbeat regulator, the requirement that the control law is in the 

form of linear state feedback is imposed as an assumption [27, 34]. 

As mentioned earlier, the feedback gain matrix is obtained in terms of the  linearly 

independent columns of   [29, 32, 33, 34, 37]. Since the selection procedure can be 

accomplished in many different ways, this leads to the non-uniqueness of the resulting 

compensator. 

 

Regarding the state space description of the discrete time system in (3.3.1) and the 

deadbeat control law in (3.3.9), the controlled closed-loop system is expressible in the 

following homogenous form: 
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+ = +                   (3.3.10) 

 

Also, the trajectory from  to the origin is expressed as: 

 = + =                    (3.3.11) 

 

In the sequel, some of the features of the closed-loop state transition matrix  are 

adduced. These properties facilitate the development of the second class of deadbeat 

regulators based on the eigenvalue assignment.  

 

Property 1: [33, 40] In the optimal-time deadbeat control, the closed-loop system matrix +  is a nilpotent matrix with index of nilpotency equal to the system controllability 

(reachability) index , i.e. + = . In the general case of the deadbeat control, 

the index of nilpotency will be greater than , but with the maximum value equal to the 

order of the system .  

 

Property 2: [33, 34, 40]  has all of its eigenvalues at zero, and the eigenvectors span 

its null space. 

 

Property 3: [35] In the minimum-time deadbeat control, if  and  are respectively the 

geometric and algebraic multiplicity of the zero eigenvalue,  will be similar to a Jordan 

matrix consisting of   (the number of inputs) Jordan blocks  of orders , =, , … , . 

 

 = [  
   ⋱ ⋱ ]  

                     (3.3.12) 

 

where: 
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{ + + + ==                  (3.3.13) 

   

Each Jordan block is a nilpotent matrix of order , with ones on the first superdiagonal 

and zeros elsewhere. ’s are referred to as the reachability indices of the system (3.3.1). 

It is evident that in the non-minimum-time deadbeat control, < . In this case = . It is apparent from these properties that the deadbeat synthesis problem 

corresponds to placement of all the eigenvalues at the origin under the action of a constant 

state feedback and therefore it is equivalent to a generalized eigenvalue problem. This 

forms the basis of our discussion in the succeeding section.  

 

 

3.4 State deadbeat controller- Spectral approach: 

 

As was indicated at the beginning of this chapter, in the state space framework deadbeat 

synthesis problem can be handled through two different approaches, namely dynamic and 

spectral approach. As we saw, the design in the dynamic scheme is based on the selection 

of  linearly independent columns of the controllable subspace. These independent 

columns provide the means for computation of the control law which is in the form of a 

static state feedback [34]. 

The three major attributes of the closed-loop system derived in this way were studied. We 

observed that the deadbeat system has all its eigenvalues at the origin of the complex 

plane. In other words, the state transition matrix of the closed-loop system  is a 

nilpotent matrix. This feature of the state matrix enables us to treat the deadbeat synthesis 

problem as that of assigning a prescribed set of eigenvalues via linear state feedback. 

Hence, the problem can be restated as follows: 

 

Definition 3.4.1 Assuming a linear state variable feedback control law, determine an ×
 real constant feedback gain matrix  such that the closed-loop system matrix =+  is a nilpotent matrix. 
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From reformulation of the problem, it is readily inferred that the design problem is 

equivalent to a special eigenvalue assignment problem in which to attain the minimality 

criteria, we aim to assign the closed-loop system matrix a Jordan form of (3.3.12) with 

given specifications of (3.3.13). This in turn, implies the assignment of any allowable 

minimum polynomial and any admissible Jordan form of the closed-loop matrix . 

Specifically, the Jordan form of  corresponding to a zero eigenvalue of algebraic 

multiplicity  and geometric multiplicity , will have  Jordan blocks  of orders , =, , … ,  where  is equivalent to the controllability index of the system . Evidently, 

the number of Jordan blocks can not exceed that of the control inputs  [35]. In this case, 

 is a nilpotent matrix of degree = , i.e. = , and the closed-loop characteristic 

and minimum polynomials take the respective forms of   and  . The general case of < , results in a deadbeat or FST controller with which the system settles to the 

desired value in a finite but not optimum number of time steps. This type of compensator 

is sometimes referred to as -step deadbeat controller. 

 

As stated by Wonham [45], controllability in the sense of lemma 3.3.4 is equivalent to 

arbitrary eigenvalue assignment under the action of linear state feedback law (3.3.9). So, 

the definition 3.4.1 is legitimate under the controllability assumption of the system 

(3.3.1). It should be clear from the Jordan structure of (3.3.12) that the closed-loop 

eigenvalues do not uniquely define a closed-loop system. This is owing to the freedom in 

eigenvalue assignment. For instance, for a fourth-order system with three inputs and the 

controllability index = , the four possible admissible Jordan structures are: 
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0000

0000

0010

1J ,   
















0000

1000

0000

0010

2J ,   
















0000

0000

0100

0010

3J ,   
















0000

1000

0100

0010

4J  

 

The forms  and  are achieved through implementation of a minimum-time deadbeat 

controller, while  and   by 3-step and 4-sted deadbeat controllers, respectively.  

 

Beyond the freedom in selecting the Jordan structure, non-uniqueness of the solution to 

the deadbeat problem is also attributable to the freedom in selecting the associated set of 
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assignable eigenvectors and generalized eigenvectors [34, 35, 41, 42]. Freedom in 

selection of different sets is exploited to shape the transient response characteristics of 

the system. This is in regard with the fact that, while the overall speed of the closed-loop 

system response is determined by its eigenvalues, different choices of eigenvector sets 

corresponding to the specified (zero value) eigenvalues determine different transient 

responses [43, 44].  

 

Property 3 of the deadbeat compensator which indicates the similarity of the closed-loop 

state transition matrix  to the Jordan structure of (3.3.12), suggests that deadbeat 

controller may be more readily achieved through transforming the system into 

Luenberger’s canonical form [39]. The solution is developed in [34].  

 

 

3.5 State deadbeat controller- Algebraic or transfer function approach: 

 

As was mentioned at the beginning of this chapter, a second major procedure to synthesize 

deadbeat controllers is the algebraic or transfer function approach. This approach rests 

upon the sequence characterization of discrete time systems, which in turn arises from the 

fact that in such systems the signals are defined in discrete time instances, i.e. as 

sequences. In other words, a discrete time system is a system which is stimulated with 

sequences as its inputs and generates sequences as its outputs. Kalman [47] and Kucera 

[46] were the pioneers in studying discrete time systems in terms of sequences. This was 

in view of the dual nature of sequences as formal power series over a field on one hand, 

and as power series expansions of functions over the same field on the other hand. These 

two notions coincide, or are isomorphic if and only if the field is an infinite field.  

 

The most general representation of a sequence is as formal Laurent series over a field. 

Sequences can be classified into sets of rational, recurrent, causal, and stable sequences. 

Each of these sets forms either a field, or a ring. The notion of sequences can be 

generalized to the matrices. Matrices whose elements are sequences, are called sequential 

matrices. These matrices can be expressed in terms of matrix fractions with elements from 

the aforementioned sets of sequences. The algebraic approach is established based on an 

isomorphism between series expansions of functions and certain classes of formal series 
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in one indeterminate, both over an infinite field ƒ. More specifically, in the case of MIMO 

lumped LTI discrete time systems the isomorphism is established between rational 

function matrices over the field of real numbers , which characterizes the input-output 

behaviour of such systems, and recurrent or rational sequential matrices in one 

indeterminate over . 

 

One of the main advantages of recasting the deadbeat synthesis problem, and even more 

general performance problems of linear systems in the algebraic framework is that the 

problem can be reduced to the solution of certain polynomial, or polynomial matrix 

equations. This in turn, provides the means for the complete parameterization of solutions 

and allows for the formulation of a CAD-based methodology in design problems. In what 

follows, we outline some of the basic tools of the algebraic approach within the context 

of the discrete time systems.   

 

 

3.5.1 Sequences, polynomials, and classifications: 

 

Given any field ƒ, the set of integers ℤ, and the set of natural numbers ℕ, the set of all 

infinite sequences denoted by ƒℤ, can be expressed as [52]:  

 = { −  ,  − +  , … , −  ;  , … ,  , … } ,    ∈  ƒ   and   ∈ ℕ                 (3.5.1.1) 

 

By convention, the elements of negative and non-negative indices are separated by a 

semicolon.  

An  ∈ ƒℤ can alternatively be represented as [52]: 

 = {  ,  +  , … ,  , … } ,   ∈ ƒ   and   ∈ ℤ                 (3.5.1.2) 

 

By defining the operations of pointwise addition and convolutory multiplication between 

the elements of  ƒℤ, respectively as [46, 52]: 

 ℎℎ = + ∶= +  ,   , ∈ ƒℤ 
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ℎ = ∗ ∶= ∑ + =                  (3.5.1.3) 

 ƒℤ  forms a field. The zero element of ƒℤ is the sequence { ; , , … } and the identity 

element is the sequence { ; , , , … } [48]. 

 

Definition 3.5.1.1 [46] We call the sequence { ; , , , ,  } an indeterminate and we 

will denote it by �.  

 

Through the definition of convolutory multiplication in (3.5.1.3) and the definition 

3.5.1.1, it can be shown that � ∶= � ∗ � ∗ … ∗ � , ∈ ℤ is a sequence of zeros except for 

the element 1 at the -th position. Therefore, any sequence ∈ ƒℤ can be written in the 

form of a formal Laurent series: 

 = � + + � + + + � + +  ,    ∈ ℤ  fixed                 (3.5.1.4) 

 

It should be emphasized that � is simply an indeterminate over the field ƒ. It represents 

in no sense an element of ƒ, and in fact it is an element of ƒℤ and serves as the position-

maker in the sequence.  

As the name implies, the series (3.5.1.4) is formal; it is just an alternative and convenient 

way of representing the sequence (3.5.1.1). Hence, it should not be interpreted as a 

function of � and there is no question of convergence whatsoever.  

 

The series expression of (3.5.1.4) will be adopted to represent the elements of  ƒℤ, denoted 

by � .  ƒℤ itself, called the field of formal Laurent series over ƒ, will be designated by ƒ � . An important notion in connection with ƒ �  is that of order given below. 

 

Definition 3.5.1.2 [46] Given = ∑ � , a nonzero element of   ƒ � , the smallest 

integer  such that �  appears in the sequence is called the order of  and is denoted by � . 

 

Using the notion of order, an important subring of  ƒ � , namely the ring of formal power 

series can be introduced. 
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Definition 3.5.1.3 [48] The subset of  ƒ �  comprising all sequences in one indeterminate � with nonnegative orders is called the set of formal power series over ƒ and is designated 

by ƒ [[�]]. Thus, a sequence ∈ ƒ [[�]] is represented by (3.5.1.4) when ∈ ℕ. 

 

Under the operations of pointwise addition and convolutory multiplication, ƒ [[�]] forms 

a ring. A simple relation between the ring ƒ [[�]] and the field of formal Laurent series is 

established and stated in the form of following theorem.  

 

Theorem 3.5.1.4 [48]  ƒ �  is the field of quotients, or the field of fractions of the domain  ƒ [[�]]. 
 

A simplification which follows from formal series representation of the sequences is that 

the convolutory multiplication turns to the usual multiplication.  

 

By restricting the number of elements in formal power series representation, an important 

subring of the domain ƒ [[�]] is achieved and defined next. 

 

Definition 3.5.1.5 All formal power series of finite length form the set of formal 

polynomials in one indeterminate � over the field ƒ and is denoted by ƒ [�]. 
Mathematically, the set is represented as: 

 ƒ[�] = { = + � + + �   |  ∈ ƒ }                 (3.5.1.5) 

 

The above definition implies that polynomials are sequences with nonnegative orders 

with all but a finite number of elements zero. Consequently, polynomials are regarded as 

algebraic objects with the indeterminate � over the field ƒ, rather than functions of �.  

 

A notion similar to that of the order of a sequence is the degree of a polynomial. If  in 

(3.5.1.5) is nonzero, then  is called the degree of . It is designated by   and is a 

function from ƒ [�] to ℕ {−∞}. By convention, the degree of the zero polynomial is 

defined as −∞. The set of polynomials ƒ [�] forms a subdomain of  ƒ [[�]] and the units 

of the set are polynomials of degree zero [46, 50]. The key fact in development of the 
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algebraic approach in synthesis of discrete time systems, is the isomorphism between the 

formal polynomials and the polynomial functions. 

 

Taking the field ƒ,  ƒƒ designates the set of all functions from ƒ  to ƒ. Let  = + � ++ � ∈ ƒ[�]. We can associate with  a function � ∶  ƒ → ƒ such that [50]: 

 � = + + +  ,    ∈ ƒ 
 

 is known as the value of  at . The function � is in fact, a map from ƒ[�] to ƒƒ and 

the Im� is called ring of polynomial functions on ƒ, whereas Ker� comprises all 

elements of ƒ[�] which vanish identically on ƒ.  
 

Theorem 3.5.1.6 [50] The map � ∶  ƒ[�]  →  ƒƒ is injective, if and only if ƒ is an infinite 

field. 

 

In view of the preceding theorem, formal polynomials and polynomial functions are 

isomorphic when they are defined over an infinite field. As a result,  

 = + � + + � ,    ∈ ƒ                 (3.5.1.6) 

 

may be regarded either as a finite sequence with � as an indeterminate, or as a polynomial 

function where � will be a variable in ƒ. In the latter case, we use х in lieu of the italic �, 

to emphasize its role as a variable.  

 

An important property of formal polynomials and polynomial functions is that they both 

are integral domains. Therefore, their fields of fractions can be constructed. The field of 

fractions of formal polynomials is referred to as rational fractions or rational sequences 

in one indeterminate � over ƒ, and is denoted by ƒ � . Accordingly, ƒ х  the field of 

rational functions in ƒ , is the field of fractions of the polynomial functions. These two 

fields are isomorphic if and only if ƒ is an infinite field. This is also in view of the 

following theorem. 
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Theorem 3.5.1.7 [53] Let ℛ and ℛ´ be two isomorphic integral domains and let � and �´ be their respective fields of fractions. If   is an isomorphism of ℛ onto ℛ´, then  

can be extended in a unique manner to an isomorphism  of � onto �´. 
 

With regards to the theorem 3.5.1.4, and the fact that ƒ [�] is a subdomain of  ƒ [[�]], it is 

readily inferred that rational fractions are isomorphic to a subfield of formal Laurent 

series ƒ � , called field of rational formal Laurent series. Consequently, rational fractions 

are sequences that can be formulated in the form of formal Laurent series of (3.5.1.4). 

 

To summarize, any rational Laurent series ƒ �  over a field ƒ of the form: 

 � = � + + � + + + � + +  ,    ∈ ℤ  fixed                 (3.5.1.4) 

 

is treated either as a rational sequence with � as an indeterminate over the field  ƒ, or as 

a rational function in ƒ. Obviously, in the case of ƒ being an infinite field there is no 

distinction between the two notions.  

 

In the case of discrete time systems and in general linear dynamical systems, the infinite 

field ƒ is the set of real numbers . For the study of discrete time systems the 

indeterminate is designated by  and accordingly, the field of formal Laurent series over 

 is termed  . An element of  can mathematically be described as: 

 = + + + + + + +  ,    ∈ ℤ  fixed                 (3.5.1.7) 

 

According to the infinite nature of , (3.5.1.7) is inferred either as a sequence over , or 

a function in . In the case of (3.5.1.7) being a rational sequence, it can be considered as 

the impulse response of a linear, lumped discrete time system. Subsequently, the 

indeterminate  being a sequence of the form { ; , , , … } will serve as a position maker 

the powers of which represent the discrete instances [46]. Alternatively, if the Laurent 

series (3.5.1.7) is regarded as a rational function in  with  being a variable, it 

mathematically describes the transfer function of a linear, lumped discrete time system. 

Having replaced  with − , the series is no more than the -transform of the impulse 

response = { , + , … , , … } [51]. It should be pointed out that in the latter case, 
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series (3.5.1.7) can be considered as a function with real coefficients from ℂ to ℂ, where ℂ is the set of complex numbers and the algebraic closure of .  

 

In what follows, we concisely describe some of the classifications of the sequences in 

, which are related to system properties.  

 

Definition 3.5.1.8 [46] A sequence ∈  is called recurrent if there exists 

nonnegative integers ,  and reals , … ,  such that: 

 + + + − + + = ,    = + , + + ,…                  (3.5.1.8) 

 

The set of recurrent sequences forms a field and will be designated by { }. This field is 

isomorphic to the field  of rational sequences. For this reason, we can refer to both 

fields of recurrent and rational sequences with the same notation .  

A main feature of the recurrent expression (3.5.1.8) is that it has the form of a linear 

difference equation. The significance of recurrent sequences is attributed to the possibility 

of expressing them as polynomial fractions. 

 

Definition 3.5.1.9 [46] A recurrent sequence  is said to be causal if it has a nonnegative 

order. Set of causal sequences is denoted by . A ∈  may be represented as: 

 = + + +                  (3.5.1.9) 

 

 is a subdomain of  [[ ]] and its units are sequences of order 0, i.e. of the form: 

 = + + + ,    ≠                  (3.5.1.10) 

 

Definition 3.5.1.10 [46] Let = { , , … , , … } ∈ .  is called stable or Hurwitz 

if and only if  is absolutely summable, i.e. : 

 ∑ | | < ∞∞=   
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The set of stable sequences designated by + , is a subdomain of , and is an 

integral domain. Moreover, it can be easily seen that the set of polynomials [ ] is a 

subdomain of + . These inclusion properties can be expressed as: 

 [ ] ⊂ + ⊂ ⊂                   (3.5.1.11) 

 

where ⊂ denotes the subring property. 

The notions of causality and stability can also be extended to polynomials. Through 

defining causal and stable polynomials, we will be able to give a fractional 

characterization of all recurrent sequences. 

 

Definition 3.5.1.11 [46] Let = + + + ∈ [ ]. Then  is causal if it is a 

unit of . According to (3.5.1.10),  is causal if and only if ≠ . 

 

Definition 3.5.1.12 [46, 52] Let ∈ [ ].  is called stable if it is a unit of + . This 

holds true if and only if the roots of  lie outside the closed unit disc �. 

 

The succeeding theorem, states the fractional description of causal and stable sequences 

in terms of polynomials. 

 

Theorem 3.5.1.13 [53] Let = / ∈  be a coprime polynomial fraction. Then, the 

ring of stable sequences is quotient ring of [ ] with  being a stable polynomial. 

Accordingly, the ring of causal sequences is a quotient ring of [ ] with  being a causal 

polynomial.   

 

In the above theorem and the two definitions prior to that, the polynomials are considered 

as formal polynomials, i.e. algebraic objects with  as an indeterminate over , rather 

than functions of . However, due to the isomorphism between formal polynomials and 

polynomial functions, and the isomorphism between rational sequences and rational 

functions, both resulting from the infinite nature of , the causal and stable rational 

functions may be defined correspondingly.  
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Definition 3.5.1.14 [52] Let = / ∈  be the set of rational functions and ,  be 

polynomial functions over  with variable ∈ ℂ. Then the set of rational functions with 

denominator  being a polynomial function corresponding to a causal formal polynomial 

is called the set of causal rational functions and is denoted by . Accordingly, the 

set of rational functions with denominator  being a polynomial function corresponding 

to a stable formal polynomial is called the set of stable rational functions and is designated 

by + . 

 

We close this section by giving a frequency domain characterization of the rings of causal 

and stable rational sequences, which constitutes the basis for the synthesis of the deadbeat 

compensator. 

According to definitions 3.5.1.11 and 3.5.1.12, and theorem 3.5.1.13, a causal rational 

sequence  is expressible as a coprime polynomial fractions /  in which 

 has a nonzero constant term ≠ , i.e.  has no roots at the origin. If the roots 

of  or equivalently the poles of  lie outside the closed unit disc �, the coprime 

polynomial fraction forms a stable rational sequence. In the ensuing section, the notions 

reviewed in the current section will be extended to the case of matrices. 

 

 

3.5.2 Sequential matrices and their classification: 

 

This section is mainly an extension of the notion of sequences and their classifications as 

previously defined, to the case of matrices. The section is in reference to [46]. Generally, 

matrices with all elements sequences are called sequential matrices. In particular, the set 

of ×  matrices whose elements are in , , and +  are respectively 

classified and designated as rational-sequence , causal-sequence , and 

stable-sequence +  matrices.  is not a variable, but rather an indeterminate over  

[46]. Any rational sequence matrix ∈ , can be recast in the form of a matrix 

recurrent sequence as: 

 = + + + +  ,      ∈ ×                  (3.5.2.1) 
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Similar to the order of a sequence, the order of   denoted by �  is  where ≠ . �  defines a causal sequential matrix, whereas, if �  while →  as → ∞,  will be a stable sequential matrix. 

  

Having defined the set of polynomial-sequence matrices [ ] ∈ × [ ] as the set of 

finite sequence matrices with order greater or equal to zero, the following inclusion 

property is obvious: 

 [ ] ⊂ + ⊂ ⊂                   (3.5.2.2) 

 

A polynomial-sequence matrix is said to be causal if it is -unimodular, i.e. its 

determinant is expressible as rational fractions with both numerator and denominator 

causal polynomials.  

A stable polynomial-sequence matrix can be defined accordingly as + -unimodular, 

i.e. its determinant is a rational fraction with both numerator and denominator stable 

polynomials.  

 

Corresponding to the causal and stable polynomials, a polynomial matrix  is causal 

if and only if det ≠ , where  is the constant matrix term of . Also,  will 

be stable if and only if the roots of det  lie outside the closed unit disc �. It is well 

known that any sequential matrix can be expressed as polynomial matrix fractions. 

 

 

3.5.3 Sequential description of discrete time systems: 

 

In the two preceding sections, a summary of basic concepts of sequences and sequential 

matrices were given to accommodate the needs of discrete time systems, which in turn 

enables us to set up a framework in terms of sequences to reformulate the deadbeat 

synthesis problem. This framework is established based on the isomorphism between 

recurrent formal Laurent series in one indeterminate  over , and rational functions over 

, which is due to the infinite nature of . Many concepts and properties stated in this 

section may be found in a wide range of textbooks, like [22, 46, 51, 138, 20, 139, 140]. 
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One of the main features in discrete time systems is that the processed and generated 

signals are in the form of sequences. Mathematically speaking, a discrete time system is 

a transformation ℊ that uniquely maps a real input vector-sequence  to a real output 

vector-sequence , i.e. : 

 

 = ℊ[ ],  , ∈                  (3.5.3.1) 

 

A key sequence in the study of discrete time systems is the unit sequence ={ ; , , , … }, which is mainly known as the impulse sequence or just impulse and is 

designated by . The response of the system ℊ to the impulse sequence is called the 

impulse response and termed , i.e. ∶= ℊ[ ]. In control theory, the impulse sequence  

is treated as a unity amplitude signal applied at time zero. In view of our discussion in 

section 3.4.1, =  may be regarded as an impulse applied at time . The response 

of the system to this signal is denoted by .  

 

For the general case of an input sequence of the form  = { , + , … }, using the formal 

Laurent series representation of  , the output of a discrete time system is achieved as: 

 = ℊ[ ] = ℊ[∑∞= ]                 (3.5.3.2) 

 

Since the systems that are dealt with in this work are linear time invariant (LTI) systems 

for which the principle of superposition applies, the output of a multivariable linear time 

invariant discrete time system with  outputs and  inputs is computed as: 

 = ∑ ∗ ∶= ∗= ,    = ,… ,                  (3.5.3.3) 

 

where ∗ and  respectively designates the convolutory multiplication and the impulse 

response of the system at the -th output due to an impulse at the -th input. Also,  

defines the impulse response matrix of the multivariable system. 

Any discrete time system which can be described by the input-output relation of (3.5.3.1) 

is a system with memory, that is the output at a specific time instance  depends on the 

input applied before and/or after . A subclass of LTI systems are those in which the 

output at any time instance  depend on the input only for . Such systems which 
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arise naturally and are of practical importance are known as the causal systems. The 

condition for causality of an LTI discrete time system is stated in the form of the following 

theorem. 

 

Theorem 3.5.3.1 An LTI discrete time system is causal if and only if � . 

 

Another class of discrete time systems of particular importance is that of BIBO stable 

systems, for which any bounded input signal results in a bounded output signal.  

 

Theorem 3.5.3.2 An LTI discrete time system with input space  and output space  

respectively subspaces of infinite sequences  and  , is BIBO stable if and 

only if: 

 ∑ |( ) |∞=� < ∞,    = ,… ,  , = ,… ,  

 

where � = �( ).   

 

The aforementioned classes of LTI discrete time systems can be characterised in a 

sequential framework. Generally, for a multivariable LTI discrete time system with  

inputs and  outputs, the impulse response matrix , is any sequential matrix in one 

indeterminate  over , i.e. ∈ . The systems we consider in our work, are a 

subclass of LTI systems, namely lumped systems in which the impulse response matrix 

is a recurrent, or rational sequential matrix. Therefore, ∈ . Now, the causal and 

stable systems can be classified accordingly. 

 

Corollary 3.5.3.3 A lumped LTI discrete time system with ⊆  and  ⊆  

is causal if and only if  is a causal sequential matrix, i.e. ∈ .  

 

Corollary 3.5.3.4 A causal lumped LTI discrete time system with ⊆  and  ⊆  is BIBO stable if and only if  is a stable sequential matrix, i.e. ∈ + .  
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As was mentioned in the previous section, rational sequential matrices can be expressed 

as polynomial matrix fractions. The conditions for causality and stability can be expressed 

in terms of MFDs. 

 

Theorem 3.5.3.5 Consider an LTI discrete time system , and let , , ( ̃ , ̃ ) be right and left coprime polynomial MFDs of . Then the system is 

causal if and only if , or ̃  is causal, i.e. det ≠ , or det ̃ ≠ .  

In addition, the system is stable if and only if , or ̃  is stable, i.e. the roots of det , or det ̃  lie outside the closed unit disc ⅅ. 

 

As it is well-known, the impulse response matrix of a system gives rise to its transfer 

function matrix. Therefore, another way of characterising the input-output behaviour of 

a system is through its transfer function.  

 

Definition 3.5.3.6 Consider an LTI discrete time system with impulse response matrix = { , + , … , , … }, ∈ × . The -transform of  is called the transfer 

function matrix and is denoted by ̃ : 

 ̃ = ∑ −∞= ,    ∈ × , ∈ ℂ                 (3.5.3.4) 

 

In order to establish a more precise relationship between  and ̃ , assume a system 

with an impulse response = . For a general input  of order � = , as = +
+ + + + + +  , the output  is a sequence of the form: 

 = + + + + + +  

 

As it can be seen, the order of  is + , from which it is deduced that what is applied 

as input at time instance  is shifted forward to the time instance +  in the output. This 

shows that d is a delay operator. By equating = − = { ; , , … },  will be an advance 

shift operator. According to the dual nature of  as an indeterminate or a variable,  can 

also be interpreted as an indeterminate or a complex variable, while = −  represents 

a bilinear transformation. 

Now, from (3.5.3.4) and the definition of impulse response matrix  we have: 
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= − = ̃                  (3.5.3.5) 

 

It should be clear that  and ̃  may be tackled either as rational functions or 

sequential matrices. To emphasize its sequential nature,  is called the impulse 

response matrix, whereas the transfer function matrix term is used to distinguish the 

functional aspect of  ̃ . Due to isomorphism,  and ̃  are also known as the -

transfer function and -transfer function, respectively.  

As an example, consider the case of a SISO LTI discrete time system with impulse 

response the rational sequence . In view of the discussion in section 3.5.1,  

takes the form of a formal Laurent series over  and is expressible as a fraction of two 

coprime polynomials as: 

 = + + + + = + + ++ + + =  

                                                                                                                          (3.5.3.6) 

 

where , ≠ . If series (3.5.3.6) is regarded as a formal series and considered to be 

causal, hence describing a causal rational sequence { , + , … , , … }, it can be treated 

as the impulse response of a causal LTI discrete time system. However, if due to 

isomorphism, series (3.5.3.6) is considered as a causal rational function of , then it can 

be treated as the transfer function of a causal LTI discrete time system. This becomes 

clear by performing the bilinear transformation − =  in series (3.5.3.6): 

 ̃ = − + − − − + = − + ++ + = −  

                                                                                                                              (3.5.3.7) 

 ̃  is the -transform of the causal impulse response { } and therefore, transfer 

function of a causal discrete time system. According to causality condition ≠ , and 

in view of the coprimeness of the numerator and denominator, it can be shown that ̃  

is a proper rational function in . 

In a similar manner, if (3.5.3.6) is a formal and stable series, thus indicating an absolutely 

summable sequence { }, it can be regarded as the impulse response of a BIBO stable 

discrete time system. Accordingly, ̃  will be the transfer function of such system, and 
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indeed, is the -transform of the absolutely summable impulse response { }. As =− , the stable poles of  lying outside the closed unit disc �, corresponds to the 

stable poles of ̃  which are placed inside the open unit disc �.  

 

In the general case of a MIMO system with  inputs and  outputs, a causal rational 

matrix ∈  representing a system with no poles at zero in the -plane, 

corresponds to a proper rational matrix ̃ ∈ ×  which designates a system with 

no poles at infinity in the -plane. Similarly, a stable rational matrix ∈ +  

whose poles lie outside the closed unit disc, corresponds to a proper and stable rational 

matrix ̃ ∈ ×  whose poles lie inside the open unit disk �. We have seen that 

the causality and stability of systems can be verified from the location of the poles of its 

impulse response matrix  (theorem 3.5.3.5). The peculiarity of the -plane 

description is that the forbidden region for stability and causality, which is the closed unit 

disc in the -plane, is rather simple.  

A measure of the total number of finite as well as infinite poles of , respectively 

designated by �  and �∞ , is its McMillan degree � , defined as �∶= � + �∞  [52]. �  and �∞  can be derived from the Smith-McMillan 

forms of  over  and [ ], respectively [10, 20, 22, 54]. Although Smith and 

Smith-McMillan forms are central in the study of the structure of systems, an alternative 

way for derivation of  �  is through properties of , rather than resorting to the 

aforementioned decompositions. The approach for computing �  follows from the 

next theorem. 

 

Theorem 3.5.3.7 [55, 56] Let ∈ × . Consider any right coprime MFD of 

 over [ ] as = − , and the right composite matrix  defined 

as ∶= [     ] . Then: 

 � =                  (3.5.3.8) 

 

It should be pointed out that the degree of the composite matrix  is invariant of the 

MFD and is known as the Forney dynamical order of . Moreover, if ,  

and ´ , ´  are respectively two right coprime MFDs of the - and -transfer 

matrices, with corresponding composite matrices  and ̃ , then: 
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�( ) = � ̃ =  = ̃                  (3.5.3.9) 

          

In other words, the McMillan degree is also invariant under the bilinear transformation 

[55, 56]. 

 

The left composite matrix of  corresponding to a left MFD over [ ] as =̃− ̃ , can be determined in a similar manner as ∶= [ ̃     ̃ ]. Note 

that in the general definition of the right and left composite matrices, the MFDs are not 

necessarily coprime. 

 

 

3.5.4 Deadbeat controller synthesis in an algebraic framework: 

 

During three former sections, the aim was to construct the foundations necessary for 

recasting the synthesis of the state deadbeat compensator in the algebraic framework. In 

this section, the design procedure and its main results will be presented. The results will 

be developed first for the general case of the deadbeat or finite settling time problem, 

from which the results regarding the specific case of the minimum-time deadbeat 

regulation will be extracted. 

 

In the algebraic or transfer function approach the main control configuration which is 

used is in the form of a unity feedback also known as the one-parameter feedback 

configuration, as depicted in figure 3.5.4.1. Although such a configuration may not be 

ideal one for complicated design problems, it can still accommodate several control 

problems, e.g. tracking and disturbance rejection.  
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Figure 3.5.4.1 The unity feedback configuration 

 

In the figure, consider the plant  and the controller  with respective -transfer functions 

as ∈ × , and ∈ × . The externally applied vector inputs are denoted by 

 and , while  and  show the output signals. All signals are vector sequences in 

. By ℛ we will denote [ ] or any quotient ring of [ ] whose field of fractions is 

, and ℳ ℛ  is the set of matrices with elements from ℛ. Moreover, [ℛ] designates 

the set of ℛ-unimodular matrices with elements from ℛ. Depending on whether , or  

is the external control signal, the construction correspondingly represents either a 

feedback or cascade compensation. 

 

The unity feedback system referred to as the pair , , can be described by either of the 

two following transfer function matrices: 

 ,     ∶     ∶= ,  ,    ∶     ∶= ,                  (3.5.4.1) 

 ,  and ,  are related, and their relationship is expressed in the form of the 

following lemma. 

 

Lemma 3.5.4.1 [20] Suppose that the pair ,  is well-formed. Then: 

 , = , −    ,  = [− ]                 (3.5.4.2) 

 

and so, , ∈ ℳ ℛ  if and only if  , ∈ ℳ ℛ . 

 

+ 

_ 

+ + 
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Although from the above lemma it is inferred that either transfer functions can be used, it 

is usually common to use the error transfer function matrix ,  [52]. 

 

The mathematical description of the error transfer matrix in view of the Schur formula 

[141] can be obtained as:  

 , = [− ]− = [ − + − − + −+ − + − ]                        
                                                                                                                        (3.5.4.3) 

   = [ + − − + −+ − − + − ] 
 

Clearly, the closed-loop system is well-formed if ∶= det + = det +  is 

a nonzero element of . An alternative characterization of the mathematical 

description of the closed-loop system may be obtained by substituting the plant and 

controller by their coprime MFDs over [ ], i.e. 

 = − = ̃− ̃          and         = − = ̃− ̃                  (3.5.4.4) 

 

which gives [46]: 

 , = [ ] ∆̃−  [̃ −̃ ] + [ ] 
                                                                                        (3.5.4.5) 

              = [− ]∆−  [ ̃ −̃ ] + [ ] 
 

where  

 ∆ ∶= ̃ + ̃         and      ∆̃ ∶= ̃ + ̃                  (3.5.4.6) 

 

Theorem 3.5.4.2 [46]  and ̃  are associates, i.e.: 

 ~∆̃   
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This implies that  and ̃  share the same nonunit invariant polynomials. 

 

In a commutative ring  with two elements �, ∈ , � and  are called associates if � =� and � is a unit of  [46]. 

 

The relation between the characteristic polynomial of the closed-loop system with 

minimally realized plant and controller designated by � , and  and ̃  is 

established in the form of the following corollary. 

 

Corollary 3.5.4.3 [46] The characteristic polynomial �  when the plant and controller 

are minimally realized, is given by: 

 �  ~det∆  ~ det∆̃                       

 

As it is shown in [46], the corollary 3.5.4.3 implies that the elementary pole-polynomials 

of ,  are associate to the nonunit invariant polynomials of ∆  and ∆̃ . Therefore, 

the pole structure of the feedback system can be described by either of the det∆  or det∆̃ . 

 

As discussed earlier, two important features of the feedback configuration which need to 

be considered are those of the stability and well-posedness. These can be discussed in 

view of the above theorem and corollary. The closed-loop system of figure 3.5.4.1 is 

externally stable if ~∆̃  are stable polynomial matrices. Moreover, under the 

stabilizability and detectability assumptions for both the plant and controller, the closed-

loop system is internally stable if and only if it is BIBO stable [20]. As we will see, in 

this framework the set of admissible controllers is also expressible in the form of a YJBK 

parameterization. 

 

The physical realizability of the closed-loop system can be examined through verification 

of its well-posedness. Well-posedness condition implies that every subsystem of the 

interconnection is well-posed, and all the transfer functions from any input to any output 

are well-defined and causal. With , ∈ ℳ , and their corresponding coprime 
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MFDs over [ ] as given in (3.5.4.4), the feedback interconnection is well-posed if and 

only if det ∆  ~ det ∆̃ ≠  [20, 46]. 

 

For a strictly causal plant i.e. = , which is a discrete analog of a strictly proper 

system,  the unity feedback will be well-posed for any causal controller . For such a 

plant, any stabilizing controller  is causal and the closed-loop system is well-posed for 

any . This is in view of the argument made in the former section that, in the -plane 

causality is a special case of stability. 

 

Having briefly discussed the framework and also the notions of stability and well-

posedness which are two requisites of the closed-loop system, we now give the solution 

to the deadbeat (FST) problem and the parameterization of deadbeat controllers.  

 

Lemma 3.5.4.4 [52] A causal discrete time system with impulse response , is 

deadbeat if and only if   is a polynomial matrix in , or equivalently  is of finite 

duration. Such systems are known as Finite Impulse Response (FIR) systems and exhibit 

a finite settling time response to almost any recurrent input and not just to step inputs. 

 

Therefore, the unity feedback system of figure 3.5.4.1 exhibits an FST response if and 

only if , ∈ ℳ [ ] , or more precisely , ∈ + × + [ ]. 
 

The succeeding theorem provides the solution to the MIMO finite settling time problem. 

 

Theorem 3.5.4.5 [52, 57] Consider the unity feedback configuration of figure 3.5.4.1, 

with the plant  and the compensator  having coprime MFDs over [ ] as given in 

(3.5.4.4). The solution to the deadbeat problem exists if and only if: 

 ∆ ∶= ̃ + ̃ ∈ [ ]                  (3.5.4.7)       

 

or equivalently:  

 ∆̃ ∶= ̃ + ̃ ∈ [ ]                  (3.5.4.8) 
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Moreover, the family of all causal deadbeat controllers is parameterized as: 

 � = { , ∶  = +  ,     = −  , ∈ ℳ [ ]   and  | − | ≠     if    ≠ }                 (3.5.4.9) 

 � = { ( ̃ , ̃ ) ∶  ̃ = ̃ + ̃ ,    ̃ = ̃ − ̃  ,  ∈ ℳ [ ]     and   | ̃ − ̃ | ≠     if    ̃ ≠ }                 (3.5.4.10) 

 

where  and  are arbitrary, and , , ̃, ̃  are appropriate polynomial matrices satisfying 

the following generalized Bezout identity: 

 [− ̃ ̃̃ ̃ ] [− ] = [ ]                 (3.5.4.11) 

 

Two stated conditions in (3.5.4.9) and (3.5.4.10) are imposed to ensure causality of the 

controllers, as not all controllers ∈ �  are physically realizable. In the special case 

where the plant possesses a delay, i.e. = , the whole �  family is causal [52]. 

The computation of the family �  is accomplished through first computing a particular 

solution of the Diophantine equation: 

 ̃ + ̃ =                  (3.5.4.12)   

 

or: 

 ̃ + ̃ =                  (3.5.4.13) 

 

The set of deadbeat (FST) controllers can then be parameterized in a YJBK format.  

One way of achieving a solution to the above Diophantine equation is by reducing the 

problem to a standard linear algebra problem over  using Sylvester matrices. The 

procedure has been elaborated in [52], [57] and [163]. It is developed in such a way that 

provides the means to study the McMillan degree properties of the family of causal 

deadbeat controllers and consequently, characterizing the family based on the McMillan 

degree of the compensators. 
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Particular solutions of the expressions (3.5.4.12) and (3.5.4.13) are those of fixed, and 

minimum column and minimum row complexity solutions, which have been extensively 

discussed in [52] and [57]. According to theorem 3.5.4.5, the deadbeat controller shifts 

the poles of ,  to the infinity in the -plane, and therefore externally stabilizes the 

closed-loop system. Under the stabilizability and detectability assumptions for both the 

plant and compensator, the feedback system is internally stable and all the controllable 

and observable eigenvalues are shifted to the origin of the -plane. Moreover, the system 

exhibits an external FST response (definition 3.2.2). In the case that both subsystems are 

controllable and observable, the closed-loop configuration represents a total (internal as 

well as external) FST response [57]. 

 

For the case of SISO discrete time systems, it can be readily shown that the theorem 

3.5.4.5 reduces to the following theorem. 

 

Theorem 3.5.4.6 [164] In unity feedback configuration of figure 3.5.4.1, let =   

and  = ��. Then the solution of the deadbeat problem exists if and only if: 

 , = + ∈ − { }                 (3.5.4.14) 

 

Moreover, the family of all causal deadbeat controllers is given by: 

 � = { , ∶  = +  ,  = −  , ∈ [ ] and 

               − ≠  if ≠ }                                               (3.5.4.15)                                     

 

where  and  is a particular solution pair of the Diophantine equation: 

 + =                  (3.5.4.16)  

 

The algebraic approach is explicated by means of the following example for the case of 

a SISO system. 

 

Example 3.5.4.1 In figure 3.5.4.1, consider that the plant is described by its transfer 

function as [164, 52]: 
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= ��  = − . − .− . + . 6   

 

and the controller is in the following form: 

 = ��  

 

Regarding theorem 3.5.4.6, the family of all deadbeat compensators satisfy the 

Diophantine equation: 

 − . − . + − . + . =                  (3.5.4.17)  

 

A particular solution pair, designated by , , to the above Diophantine equation may 

be achieved through reducing [ ] to its Smith form. Since  and  are coprime, 

there exists a ×  [ ]-unimodular matrix  such that [46, 22]: 

  [ ] = [ ]                 (3.5.4.18)  

 

Such a  is: 

 = [− . + . . − . + .+ . . + . ]  
 

Hence, according to (3.5.4.18), one particular solution of the equation (3.5.4.17) is: 

 = − . + .   = + .   

 

Correspondingly, since the plant has a delay, i.e. = , the family of all causal 

deadbeat compensators is parameterized as: 

 � = { , ∶  = +  ,  = −  , ∈ [ ]  
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An alternative approach for computing the solution to the Diophantine equation may be 

found in [52, 57, 164].  

Based on the feedback construction of figure 3.5.4.1 and its mathematical description, for 

a step change at  when = , the output  is obtained as: 

 = . + . + . + +   

 

which equivalently may be described by the following sequence: 

 = { ;  . , . , . , . , … }  
It is easy to see that the output signal  settles to the final value of .  from zero 

after two time steps. ∎ 

 

Having discussed the solution to the general problem of deadbeat control, the solution to 

the special case of the minimum-time deadbeat control synthesis problem, in which the 

states are transferred to the origin in not just finite but minimum number of time steps, 

may be stated in the form of the following theorem. 

 

Theorem 3.5.4.7 [57] In the feedback configuration of figure 3.5.4.1 where the plant and 

compensator are both assumed to be controllable and constructible, the family of all 

causal controllers = −  whose right composite matrix = [ ]  has the 

least possible column degrees is exactly the family of the minimum-time state deadbeat 

regulators.  

 

Column degrees of the right composite matrix = [ ]  are less than or equal to − , where  is the controllability index of the plant [52]. 

 

It should be noted that constructibility refers to the ability of determining the states from 

knowledge of the current and past outputs and inputs. While observability always implies 

constructibility, the reverse relation holds only when the state transition matrix of the 

system is nonsingular. Conditions for the constructibility may be found in [18]. 
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In the next section, we present a numerical algorithm for synthesizing the deadbeat 

regulator via the spectral approach. In later chapters, this will be used to compute the state 

and observer gains in the observer-based deadbeat controllers. 

 

 

3.6 A numerical algorithm for eigenvalue assignment: 

 

According to the discussion in sections 3.3 and 3.4, the synthesis problem of state 

deadbeat regulator is expressible as a special eigenvalue assignment problem in which all 

the eigenvalues are clustered at the origin. In order to attain the time minimality criteria, 

the closed-loop system matrix  is assigned a Jordan form of (3.3.12) with given 

specifications of (3.3.13). It was observed that the state transition matrix of the closed-

loop system  is a nilpotent matrix for which the index of nilpotency is the 

controllability index of the system , i.e. = . 

 

In what follows, we present a numerical algorithm developed in [58] which constructs a 

static state feedback of the form: 

 =                  (3.6.1) 

 

for a multi-input LTI discrete time system, described by the difference equation: 

 + = + ,    = , , , …                  (3.6.2) 

 

The dimension of the state and input vectors are assumed to be  and , respectively. 

The numerical algorithm renders a state feedback of the form (3.6.1), such that the 

resulting closed-loop system has a nilpotent state transition matrix  as  = +
 for some minimal power . Therefore, all the eigenvalues of  will be placed at 

the origin of the complex plane and the solution to the homogenous part of the closed-

loop system + = +  dies out after  steps.  

The algorithm is based on the recursive construction of a unitary transformation, yielding 

a coordinate system in which the static state feedback  is computed by merely solving a 
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set of linear equations. The coordinate system is related to the Krylov sequence − , − , − , ….  

 

Evidently, one of the most-noticed aspects of any numerical algorithm is that of the 

stability of the algorithm, called the backward stability. The name follows from the fact 

that application of the algorithm induces an error known as the backward error, which 

can be interpreted as an error on the data. Therefore, backward stability is a property of 

an algorithm, which is in contrast to the other source of the error i.e. conditioning of the 

problem. Conditioning is exclusively associated with a problem and the specific data for 

that problem. A good algorithm therefore, is the one that is backward stable as the size of 

the generated errors is not affected by the algorithm, but mainly by the condition of the 

problem. An unstable algorithm may results in generation of large errors even when the 

problem is well conditioned [59]. 

In the algorithm, what makes the application of unitary transformations peculiar is that 

by exclusively implementing unitary transformations the backward stability of the 

algorithm is guaranteed. A sequence of such transformations will also be backward stable 

since the norm of each transformation is unit. Exceptions, however, have to be made in 

exploiting unitary transformations, e.g. in cases where a special structure is apparent in 

the data like sparse matrices [59, 60]. 

 

It is well known that arbitrary eigenvalue assignment under the action of control law given 

in (3.6.1) is equivalent to the controllability of the system [45]. As a result, the solution 

to the problem of regulator synthesis may be more readily achieved by transforming the 

state space model of the system into a canonical form which separates the assignable and 

unassignable parts of the system, or more precisely the controllable and uncontrollable 

subsystems. A numerically effective way is reducing the pair ,  to a block 

Hessenberg form through orthogonal similarity transformations. The process constructs 

an orthogonal matrix  such that: 

 = − =   and  = ̃ = [ ]                 (3.6.3) 

 

where  is an upper Hessenberg matrix, i.e. ℎ =  for > +  (In a lower Hessenberg 

matrix ℎ =  for > + ). (3.6.3) is called the controller-Hessenberg form of , , 
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or the staircase form, and the pair , ̃  is known as the controller-Hessenberg pair of ,  [61]. This form can be achieved using Householder’s or Given’s method. In [61] 

and [62] a procedure for reduction to the controller-Hessenberg form using Householder’s 

transformation and  factorization with column pivoting is given. The algorithm is 

usually known as staircase algorithm and transforms the pair ,  to: 

 

[ | ] = [ ̃| ] =
[  
   ||

, , , … ,, , , … ,⋱ ⋱ ⋱
, − , ]  

                    (3.6.4) 

 

By construction,  and all the sub-diagonal blocks are of full rank. The controllability, 

and controllable and uncontrollable subsystems are determined from the rank property of , − . The block , −  has either full rank, signifying that the pair ,  is controllable, 

or , −  is a zero matrix signifying that the system is uncontrollable [61, 63]. In the case 

of uncontrollability, the following sub-matrix represent the controllable sub-system 

whose spectrum can be assigned arbitrarily: 

 

[  
   
 , , −, , −⋱ ⋱

− , − − , − ]  
   
  

}}
} −

                 (3.6.5) 

 

In (3.6.3) the transformation  reduces the -th controllable subspace ,  to [59]: 

 , = Im [ ]                 (3.6.6) 

 

where = + + + , for = ,… , . Therefore, the columns of  form 

orthogonal bases for the growing subspace , . Orthogonality of the transformation 

 ensures stable numerical behaviour of the algorithm [63]. 
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The first step in the numerical algorithm for the synthesis of the deadbeat regulator is 

reduction of the system to its staircase model as in (3.6.7) and (3.6.8), hence the 

solvability of the problem can be verified. The problem is solvable if all the uncontrollable 

modes are already at zero, in other words the uncontrollable subsystem is nilpotent.  

 

It should be pointed out that due to the similarity of closed-loop matrices +  and + , transforming the system to its staircase model does not affect the 

design problem formulation.  

 [ | ] = [ | ∗ ̅] =                 (3.6.7) 

 

[  
   
  

|
| , , … , , +, , … , , +

⋱ ⋱ ⋱, − , , ++ , + ]  
   
   

}}
}} +

                 (3.6.8) 

                                     −                        +  

 

In (3.6.7),  and ̅  respectively designates the controllable and uncontrollable 

subsystems, and their dimensions are equal to that of the associated controllable and 

uncontrollable subspaces. Also,  denotes the controllability index of the pair. In the 

sequel, the problem is assumed to be solvable. So, ̅ is irrelevant and can be omitted. 

As stated before, by construction  and the off-diagonal blocks , −  in (3.6.8) have 

full row rank , = ,… , . The last +  rows correspond to the uncontrollable 

subsystem. According to the rank properties of  and the off-diagonal blocks, one can 

check that the dimension of the reachable subspace, also known as the Krylov subspace, 

of the whole system is equivalent to that of the controllable subsystem [59, 60]: 

 dim ,  = dim , =                  (3.6.9) 

 

where: 
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= + + + ,    =  for  >                  (3.6.10) 

 

From the definitions of controllability in lemma 3.3.4, the -th controllable subspace  

in (3.3.4), and the fact that the closed-loop matrix = +  can be chosen to be 

invertible, it follows that: 

 =                  (3.6.11) 

 

which in view of the expression (3.3.6) can equivalently be indicated as: 

  , = Im[ − ,  − , … ,  − ]                 (3.6.12) 

 

A feedback matrix  is a solution to deadbeat control problem if [37, 58]: 

 + ⊂ −     = ,… ,              (3.6.13) 

 

The condition in (3.6.13) is just sufficient. However, to achieve the additional property 

of time minimality one seeks a feedback gain which satisfies that condition. 

Now, if  is a solution of (3.6.13), and  is a unitary transformation partitioned in  blocks 

of   columns: 

 = [ |… | ] 
           

 

such that: 

 = Im[ |… | ] 
 

then [58, 38]: 
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´ + =
[  
   , … ,⋱⋱ − , ]  

    
}}
} −}

                 (3.6.14) 

                                      

 

The unitary transformation matrix  is the product of  block diagonal matrices ̂  

acquired in a recursion of  steps, each constructed in such a way that zeroes out the 

diagonal and the sub-diagonal blocks in the staircase model of (3.6.8). The state feedback 

gain  can also be computed simultaneously.  

 

The specific construction of (3.6.14) follows from the fact that in the new coordinate 

system the controllable subspaces are spanned by: 

 = Im [ ] ,   = ,… ,                  (3.6.15) 

 

The algorithm has been coded in MATLAB. The first part of the code computes the 

staircase model through which the controllability of the system is verified. If the system 

is uncontrollable, it gives the number of uncontrollable modes and defines whether the 

system is “beatable to death”. This is accomplished through comparison of the 

uncontrollable modes with some tolerance. If they could be regarded as zero, the outputs 

from the first part of the code are delivered to the second part, which computes the state 

feedback gain matrix of (3.6.1) such that the closed-loop state transition matrix  is 

nilpotent. 

The code has been applied on two examples and the results are included in the following 

paragraphs.  

 

Example 3.6.1 Take the case of the pair ,  as: 

 = [ ]   ,  = [ ]                  
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The staircase model of the pair is: 

 = [ . − .. . ]   ,  ̃ = [− . − . ] 
 

It is clear that the system is uncontrollable, and the dimension of the uncontrollable 

subsystem is one. However, as this mode is almost zero, the system can be regarded as 

beatable to death in two time steps. The deadbeat gain  which transfers all the 

eigenvalues of the closed-loop system matrix = +  to zero is computed as: 

 = [− . − . − .− . − . − . ]  ∎ 

 

Example 3.6.2 Consider the pair: 

 

= [ −       −    −   − −−       ]   ,   = [ ]                  

 

This system is uncontrollable with one uncontrollable mode which is close enough to zero 

to be regarded as zero. The system is beatable to death in two steps, and its stair case form 

is: 

 

= [− .   . − .    .− .   . − .    .− . − . − . ]   ,  ̃ = [− . − .    . ] 

 

The state feedback gain , which locates the closed-loop system eigenvalues at the origin 

is achieved as: 

 = [− .     . − . − .    . − .     .     . ] ∎ 
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3.7 conclusion: 

 

In this chapter the problem of state deadbeat control problem, which is that of finding an 

input sequence steering the states of a linear discrete time system from any arbitrary initial 

condition to the origin of the complex plane in finite number of time steps, was addressed. 

The two main synthesis approaches to tackle the problem, namely the state space and the 

algebraic (or transfer function) approaches, were examined. Within the state space 

framework, two classes of deadbeat regulator synthesis procedures, i.e. dynamic and 

spectral approaches, were reviewed. Investigating the main features of the closed-loop 

state transition matrix attained in the dynamic approach, specifically its nilpotency, 

revealed that the problem is equivalent to the generalized eigenvalue problem in which 

all the eigenvalues are assigned to the origin. This in turn, inspired the second approach, 

referred to as the spectral approach, in which state deadbeat problem is treated as an 

eigenvalue assignment problem. It was observed that the deadbeat regulator was in the 

form of a static state feedback. In the minimum-time deadbeat control, the nature of the 

control law is forced on us by the requirement that every state be driven to the origin in 

minimum time steps, whereas in the general case of the deadbeat regulator it was a priori 

assumption.  

Development of the dynamic approach rests upon choosing  (system dimension) linearly 

independent columns of controllability matrix, for which three major procedures were 

given. From the non-uniqueness of the selection procedure, the non-uniqueness of the 

deadbeat regulator gain was inferred. It was argued that the minimum number of time 

steps to transfer any initial state to the origin is equal to the controllability index of the 

system. By relaxing the time-optimality constraint, the number of time steps increases up 

to the maximum value equal to the order of the system. 

 

In the second part of this chapter, state deadbeat regulator problem was reformulated in 

an algebraic set up. This was in regards to one of the main features in discrete time 

systems in which the processed and generated signals are discrete (i.e. time sequences). 

So first, a brief introduction to the concepts of sequences and sequential matrices were 

given to accommodate the needs of sequential description of discrete time systems. The 

key fact in development of the algebraic approach is the isomorphism between rational 

sequences in an indeterminate  and rational functions with  being a variable, over an 
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infinite filed. In the case of linear dynamical system the infinite field is the set of real 

numbers . The rational sequences were identified as the impulse response of a lumped 

linear discrete time system, whereas rational functions mathematically described the 

transfer function of such systems. According to the fact that rational sequential matrices 

are expressible as polynomial matrix fractions, causality and stability conditions were 

discussed in terms of MFDs.  

The results concerning the design of deadbeat regulator in algebraic framework were first 

given for the general case of Finite Settling Time (FST) problem, from which those 

regarding the specific case of time-optimal deadbeat regulation were extracted. It was 

observed that in a discrete time system, necessary and sufficient conditions for all the 

internal signals to settle to a new steady state value in a finite and not just minimum 

number of time steps is that the system is FIR. The family of all deadbeat controllers were 

derived as the solution to a polynomial Diophantine equation. This is accomplished 

through first computation of a particular solution of Diophantine equation, and then the 

whole set of FST controllers was parameterized in a YJBK format.  

 

It is clear that the state space and algebraic approaches are connected. Nett in [15] shows 

for the general case of a synthesis problem how the two approaches can be reconciled by 

establishing the equivalence of left and right coprime factorizations with the solution of 

a state feedback and output injection stabilization problem. For the special case of 

deadbeat regulator design problem Kucera in [171] and [172] examines the close parallels 

between the two techniques. In both schemes it was observed that the solution to the 

design problem of state deadbeat controller is achievable as the solution to Diophantine 

equations which accordingly led to the parameterization of all deadbeat regulators in a 

YJBK fashion. Although the state space approach is more convenient and easier to 

understand, the major advantage of the algebraic approach over the state space technique 

may be attributed to the possibility of parameterizing the family of deadbeat controllers 

based on their McMillan degree, which is regarded as a measure for the complexity of the 

controller.  This is especially true in the case of deadbeat synthesis problem which usually 

results in controllers with high McMillan degrees which in the state space approach can 

be tackled through rather complicated balanced-truncation or Hankel-norm based 

techniques. The other two problems which are more easily treated via the transfer function 
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approach are those of the strong and simultaneous stabilization as addressed in [163, 161, 

57, 52]. 

 

This chapter was concluded by giving a numerical algorithm for assigning all the 

eigenvalues to the origin of the complex plane. The algorithm which first reduces the 

system to its staircase model, is based on the recursive construction of a unitary 

transformation, yielding a coordinate system in which the state feedback is computed by 

merely solving a set of linear equations. The coordinate system was related to the Krylov 

sequence. 
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Chapter 4 

Deadbeat controller design with time domain 

constraints  

 

 

 

4.1 Introduction: 

 

This chapter studies the design of deadbeat controllers with time domain constraints, 

through application of Linear and Quadratic Programming. In section 3.6, a numerical 

algorithm to design a static state feedback which assigns all the eigenvalues to the origin 

in the minimum number of time steps was presented. According to the -parameterization 

of the stabilized closed-loop systems introduced in chapter two, and the fact that a 

deadbeat system has all its modes at the origin, the algorithm may be applied to design 

deadbeat systems.  

As we saw earlier, in -parameterization, the set of closed-loop eigenvalues is the union 

of those of the state feedback and the observer as the constituent elements of the observer-

based admissible controllers. With regard to this, requiring the system to be minimum-

time deadbeat compels to compute  and , i.e. the gains of the state feedback and 

observer respectively, such that the poles of +  and +  are assigned to the 

origin in the optimal time. This in turn, is equivalent to locating all the poles of   

(expression (2.7.6)) in the closed-loop system map = ℱ , = + , 

and hence those of , , and  at the origin. Accordingly, , , and  

subsystems will all be minimum-time deadbeat systems. 

 

Recasting the deadbeat system characterization as the LFT interconnection of  and the 

parameter , transforms the synthesis problem of deadbeat regulator to the design of  

such that the performance specifications are satisfied. However, including the design 

parameter  into the closed-loop system description, will result in the system to be non-

minimum-time deadbeat.  
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With respect to section 3.2, relaxing the time-minimality constraint on steering the states 

to the origin in the optimal-time deadbeat controllers, yields the more general class of 

deadbeat or FST compensators. The achieved degree of freedom, which is the result of 

relaxing the time-minimality constraint, can be exploited to exert time or frequency 

domain performance specifications.  

 

In section 3.5.4, it was shown that a causal discrete time system represents deadbeat 

response if and only if its impulse response is of finite duration, i.e. it is a polynomial. As 

mentioned before, this type of compensators are known as Finite Impulse Response (FIR). 

 

In this chapter (and occasionally in later chapters), in order to emphasize the finite nature 

of deadbeat systems’ impulse response, we frequently use the term FIR rather than 

deadbeat. Based on the mathematical description of deadbeat systems, it is shown that 

deadbeat controller synthesis problem with typical time domain performance 

specifications in the LFT framework of figure 2.3.1 or the equivalent construction of 

figure 2.6.1, is expressible as a Linear Programming (LP) problem. In addition, it is shown 

that more stringent LQG-type constraints may be recast as quadratic programming with 

the  parameter as the design variable. This is accomplished through the established 

relation between the LQG and  problem. 

 

 

4.2 Input-output description of deadbeat systems: 

 

As it is known, the pulse transfer function of a system may be defined by the rational 

function [64]: 

 = = + − + + −+ − + + − = ∑ −=+ ∑ −=     ,      

                                                                                                                                   (4.2.1) 

 

in which −  designates the unit delay operator. (4.2.1) is expressible in terms of the 

following difference equation: 
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= − − − − − − −  

             + + − + + −                         (4.2.2) 

 

By assuming that the coefficients  are all zero, (4.2.1) reduces to: 

 = = + − + + −                  (4.2.3) 

 

which corresponds to the difference equation: 

 = + − + + −                  (4.2.4) 

 

It is clear that the assumption = , = ,… ,  is equivalent to regarding all the poles 

to be zero. In view of the nilpotency property in deadbeat systems, it can be readily 

inferred that (4.2.3) describes the pulse transfer function of a deadbeat system. 

Accordingly, the expression (4.2.4) formulates the impulse response of such systems, 

which is of finite length. This mathematically justifies our earlier declaration that 

deadbeat systems are FIR.  

 

Based on the conventional notation, the transfer function of an -tap FIR system (i.e. a 

system with an impulse response of length , and hence the order − ) with Markov 

parameters ℎ  can be represented as: 

 = ∑ ℎ −−=                  (4.2.5) 

 

 

4.3 Transient response and time domain constraints: 

 

It is well known that the response of any system includes two parts, i.e. transient and 

steady state responses. The transient response can be attributed to the poles of the closed-

loop system, whereas the steady state response arises from the poles of the input or forcing 

function. When a system is subject to inputs or disturbances, because of its energy storage 

feature, it cannot respond instantaneously which in turn gives rise to the transient 

response. Clearly, it is desirable that the transient response is sufficiently fast and exhibits 
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satisfactory damping. Frequently, transient response characteristics of a system are 

analysed in terms of the system response to standard inputs such as unit step, or ramp. 

This is in view to the fact that the system response to arbitrary inputs may be estimated 

from its response to such standard inputs.  

 

In this section, we introduce a partial list of typical performance specifications of control 

systems in terms of their transient response to a unit step. As it is known, step inputs are 

easy to generate and sufficiently drastic to provide useful information on both the 

transient and steady state response traits. Some of the common time domain quantities 

which describe transient response characteristics of a discrete time system with unit step 

response denoted by , are as follows [49, 65, 66, 3]: 

 

 Percentage overshoot is defined as: 

 max − ∞∞ ×                  (4.3.1) 

 

This is an indication of the extent to which the output exceeds its steady state value before 

settling down. 

 

 Rise time is defined as: 

 min{  | = . ∞}                 (4.3.2) 

 

This is a measure of speed of the system, or equivalently present time delay in response 

of the system.  

 

 5% settling time is defined as: 

 min{  | | ′ − ∞| . ∞    ′ }                 (4.3.3) 

 

Settling time is an indication of the required time for the system response to settle to its 

steady state value. 
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 Percentage (adverse) undershoot is defined as: 

 max {− ∞ × }                 (4.3.4) 

 

 5% dead time is defined as: 

 max{ | | ′ | . ∞    ′ < }                 (4.3.5) 

 

This is a measure of the time needed for the system to react.  

  

 Decoupling: 

 

To clarify this performance characteristic, consider the case of a MIMO system with  

command inputs and  regulated variables. The diagonal entries of the ×  system 

transfer function are the transfer functions from the inputs to their associated regulated 

variable. Each of these transfer functions may be required to meet different specifications, 

like the ones we have discussed so far. The off-diagonal entries of the system transfer 

function are the transfer functions from the command signals to other regulated variables, 

which are known as the command interaction transfer functions. In order to minimize the 

disruption of regulated variable by command inputs other than their associated ones, it is 

generally desirable that the command interaction transfer functions be “small”. A mild 

constraint on command interaction is asymptotic decoupling expressed as: 

 lim →∞  is diagonal                 (4.3.6) 

 

The above constraint implies that for constant command inputs, the effect on each 

regulated variable due to the other commands converges to zero, in other words, for 

constant command inputs there is no steady state interaction. 

A stronger condition to restrict the command interaction is an envelope constraint on each 

entry of : 

 

,   ∀                  (4.3.7) 
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in which  and  are matrices specified by the designer. 

An extreme form of the envelope constraint is to require that the step response transfer 

matrix be diagonal, or equivalently all the off-diagonal step responses are zero. This is 

known as exact or complete decoupling, which prohibits any command interaction at all. 

 

 Slew rate [69,70]: 

 

Another typical specification in terms of the step response of the system is slew rate 

limits, which is expressible as: 

 |∆∆ | = |ℎ | ,    ∀                  (4.3.8) 

 

(4.3.8) implies that the slew rate constraint limits the maximum rate of change of a signal 

per unit of time. It is one of the most common constraints enforced on the control signals 

in systems.  

 

In practical applications, because of the physical constraints imposed by actuators, control 

signals should always be limited. The limitations may be expressed as magnitude 

constraint on the control action as: 

 

   

 

However, as in most cases it is the rapid fluctuations in the control signal that may cause 

most damage to the actuator not the size of the control signal amplitude, it is more 

appropriate to limit the control signal slew rate rather than its magnitude. Large control 

signal derivatives or inter-sample variations may harm actuators, or at the very least 

causes expensive wearing of actuators.  

The slew rate constraint on control action may be described by the following inequalities: 

 ∆ ∆∆ ∆                  (4.3.9) 
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4.4 Linear Programming (LP): 

 

This section introduces the Linear Programming problem [109, 67, 68]. In section 4.5 this 

optimization procedure will be applied to design deadbeat controller subject to time 

domain constraints.  

 

Generally, the standard form of an optimization problem may be formulated as: 

 

minimize       

subject to       ,      = ,… ,                  (4.4.1) 

                     ℎ =  ,      = ,… ,  

 

in which , , and ℎ  designates objective function, inequality constraints, and 

equality constraints, respectively. The domain � of the optimization problem (4.4.1) is 

the intersection of objective and all equality and inequality functions and is defined as: 

 

 � = dom domℎ=  =                  (4.4.2) 

 

This is the set of points for which the objective and all constraint functions are defined. 

Note that dom denotes the domain of a function; for a function : → , the domain 

of  is the subset of  of points  for which  is defined.  

A point ∈ � is said to be feasible and is the one that satisfies the whole set of inequality 

and equality constraints. The set of all feasible points is also known as the feasible set or 

the constraint set. The optimization problem is feasible if the feasible set is nonempty, 

and infeasible otherwise.  

 

Clearly, in an optimization problem the aim is to find the optimal value ∗ where: 

 ∗ = inf  {  | , = , … , , ; ℎ = , = ,… ,  }                 (4.4.3) 

  

The point ∗ is an optimal point if it is feasible and ∗ = ∗. The set of all optimal 

points , is called the optimal set and defined as: 
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= {  | , = ,… , , ; ℎ = , = ,… ,  , ; = ∗} 
 

In the case that the objective function is identically zero, if the feasible set is nonempty 

the optimal value is zero. But, if the feasible set is empty the optimal value is ∞, which 

agrees with the standard convention that the infimum of an empty set is ∞. A prerequisite 

in any optimization problem is to solve the feasibility problem, which is that of 

determining whether or not the constraints are consistent, and if so, find a point that 

satisfies them. The feasibility problem can be expressed as: 

 

find                

subject to       ,      = ,… ,                  (4.4.4) 

                     ℎ =  ,      = ,… ,  

 

In the optimization problem of (4.4.1), when the objective and constraint functions are 

restricted to be affine, the problem is referred to as Linear Program (LP) and can be 

formulated in the form: 

 

minimize     +   

subject to     ℎ                 (4.4.5) 

                    =  

 

Since the constant term  does not affect the optimal or feasible set, it is common to omit 

it [67]. 

Figure 4.4.1 illustrates a geometric interpretation of an LP [67]. The shaded polyhedron 

represents the feasible set of the LP. The dashed lines are level curves of the linear 

objective function , which are orthogonal to . The optimal value ∗, is the farthest 

point in the feasible set and in the direction of − . 
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Figure 4.4.1 The geometric interpretation of an LP 

 

One of the significant properties of a Linear Programming problem is that the constraint 

functions form a convex polyhedron (obtained as the intersection of a finite number of 

half-spaces and hyperplanes), and the optimum value occurs at an extreme point of the 

polyhedron. Given that a solution exists, it is guaranteed to be a unique solution value. 

However, the problem may have multiple optimal solutions, when the level curves are 

parallel to the edges of the polyhedron [68, 109]. 

 

 

4.5 Deadbeat controller design with time domain constraints using   

      linear programming: 

 

In chapter 2, it was mentioned that most control synthesis problems can be reconstructed 

as a lower LFT illustrated in figure 4.5.1. 

 

 

 

Figure 4.5.1 LFT framework  
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Having partitioned the generalized plant  as in (2.3.2), the closed-loop map  from 

the exogenous inputs  to the regulated variables , was described as: 

 

 = ℱ , = + − −                  (4.5.1) 

 

The parameterization of all stabilizing controllers was also derived. It was observed that 

the set of stabilizing controllers is expressible as a coprime factorization, involving 

elements of the doubly coprime factorization of the system to be stabilized and a stable 

but arbitrary parameter . In fact, the doubly coprime factorization was equivalent to the 

choice of a single stabilizing controller , and the whole set of stabilizing controllers 

being parameterized as  = ℱ ,  was generated through augmenting that central 

controller . It was shown that every controller which stabilizes , can be realized as an 

observer-based controller. 

The linear fractional nature of the stabilizing controllers enabled us to replace the linear 

fractional parameterization of the closed-loop map ℱ , , with a parameterization 

which is affine in the parameter : 

 = ℱ , = +                  (4.5.2) 

 

This transformation simplifies the problem by reducing the search over a free parameter ∈ ∞, instead of an optimisation over an implicitly defined set.  

The expression (4.5.1), although simply described analytically, translates simple design 

specifications on the closed-loop map to complicated constraints on the controller  in a 

linear fractional way. This is in contrast to the equivalent expression of (4.5.2) in which 

design specifications can be expressed affinely in term of the free parameter . This has 

been extensively elaborated in [4].  

 

The above attribute of the closed-loop map of (4.5.2) may be exploited to simplify the 

design problem of deadbeat controllers subject to time domain constraints. To proceed, 

consider the general feedback configuration of figure 4.5.2, in which  is the plant and  

is the controller.  and  are the dimensions of the control input  and the measured 

outputs , respectively. Let  and  be the dimensions of the  and  respectively. 

The dimension of the closed-loop map , which by definition contains every closed-
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loop map of interest, is × . In this construction,  will be a stable ×  transfer 

matrix.  

In order to impose a constraint on any transfer function describing a specific input-output 

channel, first we should be able to extract description of the mapping of interest.  

 

 

Figure 4.5.2 LFT framework with  channels of exogenous inputs and regulated outputs 

 

This can be achieved through pre- and post-multiplying  with selection matrices ∈×  and ∈ ×  (shaped with zeros and ones) as [71]: 

 =                  (4.5.3) 

 

Having a deadbeat closed-loop system, as was discussed in the second chapter, demands 

that all the eigenvalues be at the origin. According to the state space characterization of = [ ] in (2.7.6), the eigenvalues of   are the union of those of +  and + . By employing the presented algorithm in section 3.6, all eigenvalues of  , and 

accordingly those of  , , and , can be readily assigned to the origin. In view of 

the discussion in section 4.2, this is equivalent to making , , and  all FIR. 

However, making the entire closed-loop system deadbeat compels to restrict the free 

parameter  to be FIR, too. In other words,  is described by a finite-length impulse 

response:  

 = ∑ −−=                  (4.5.4) 

 

Confining  to be an -tap FIR system corresponds to choosing the basis { , − , … , − }.  

[ ] 

  

 

 

[ ] 
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The state space characterization of   can be easily extracted. To do so, let  designates 

the individual SISO FIR component systems in , with Markov parameters { , , … , − , , , … }. Regarding the state space realization of the 

function −  as: 

  

− = [ ]             
 

in which ∈ − × −  is a shift matrix made up of all zeros except for ones on the 

first subdiagonal, and  and  are respectively the first and last columns of − ,  

may be realized as: 

 [ ] = [ , ]                 (4.5.5) 

 

where  is a row matrix as [ , … , − ] and , =  [71, 73, 74, 72]. 

 

Restricting the design parameter  and the transfer matrices , , and  to be FIR 

results in turning imposed time-domain constraints on any regulated output into linear 

constraints on the Markov parameters of  [73, 74, 75, 4]. This in turn, can be exploited 

to recast the deadbeat controller design with time domain constraints as an LP. To see 

this, take the case that for some fixed input vector of the signal , the first  samples of 

the corresponding -th output  are required to remain between some given bounds.  

can be, for instance, a vector = [      ] in which  is a step. Clearly, by 

linearity the general case can be recovered using superposition. The output  is 

expressible as = = + ∙ . , in which scalar transfer functions .  and .  denote row and column vectors with entries  and , respectively. To simplify the 

notation, let = , = ∙ , and = .  with their associated power series 

expansion as = ∑ − , = ∑ − , and = ∑ − . Correspondingly,  can 

be written as: 

 = + = ∑ ( + ∑ ∑ − −== )−= −                  (4.5.6) 
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The expression + = + ∑ ∑ − −==  clearly shows that the 

constraints on  are translated into constraints on ’s. To make this lucid, suppose that 

 is required to be bounded as . In view of (4.5.6), this is equivalent to: 

 − ∑ −= ∑ (∑ ∑ − −=−= )= − ∑ −=                  (4.5.7) 

 

which in turn equates to: 

 

                 (4.5.8) 

 

where   

 = ∑ ∑ − −=−=  ,    = ,… ,                  (4.5.9) 

 

In the next section, the deadbeat control design problem subject to more stringent time 

domain specifications in the form of a quadratic (LQG-type) performance criterion will 

be addressed.  

 

 

4.6 Time domain constraints in LQG framework: 

 

In the preceding section, the deadbeat controller design problem with time domain 

constraints was investigated. It was observed that linear constraints exerted on the 

regulated outputs are translated into linear constraints on the  parameter. This attribute 

could in turn be exploited to recast the problem of deadbeat controller design with 

temporal constraints as a linear program with  as the design parameter. 

  

An alternate form of time domain constraints, which are more stringent, may be expressed 

in the form of LQ (linear quadratic) paradigm with quadratic time domain performance 

criteria. Including the measurement noise  and disturbance signals (process noise) , 

and modelling them as stochastic processes with known statistical properties in the LQ 

paradigm, introduces the LQG (Linear Quadratic Gaussian) design method. As the name 

suggests, in LQG the signals  and  are assumed to be uncorrelated zero-mean white 
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Gaussian stochastic processes with constant intensity matrices  and , respectively. 

So,  and  are white noise processes with covariances [80]: 

 { t � } = − �               { t � } = − �                    (4.6.1) { t � } =   

 

where  is the expectation operator and − �  is a delta function. 

 

In a continuous-time system with state space description: 

 = + +  = +                                   (4.6.2) =  

 

the objective in LQG control problem is to find an optimal control  which minimizes 

the performance index [79]: 

 = { →∞ [ + ] }                 (4.6.3) 

 

The common forms for the weighting matrices  ad  are respectively =  and =� , where the parameter � is real and non-negative. As a result, (4.6.3) will take the form: 

 = { →∞ [ + � ] }                 (4.6.4) 

 

in which the first term in the integral measures the accumulated deviation of the output 

from zero, while the second term measures the input size or actuator authority. Therefore, 

the whole term in the integral designates the quadratic error expression.  

 

The choice of the constant weighting matrices  and , which are respectively positive 

semidefinite and positive definite matrices, reflects the trade-off between the requirement 

of regulating the outputs and the expenditure of the control energy.  
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It is well established that the solution to the LQG problem, known as the separation 

theorem or certainty equivalence principle, consists of first determining the optimal 

control to a deterministic LQR (Linear Quadratic Regulator) problem, followed by the 

second step of finding an optimal estimate ̂ of the state , such that:  

 [[ − ̂] [ − ̂]]  
 

is minimized. This term serves as a measure for how well ̂ approximates . The optimal 

state estimate may be achieved from a Kalman filter [65, 79, 80]. 

 

The solution to the LQG problem, is in the form of state feedback law = . It 

minimizes the rate at which the integrated generalized square error:             

 [ + ]   

 

approaches ∞. Clearly, due to the presence of white noise disturbance, the state and the 

input cannot be driven to 0. Subsequently, the integrated generalized quadratic error does 

not converge to a finite number as → ∞. The rate at which the error approaches ∞ may 

be given as lim →∞ [ + ] . This limit equals the steady-state mean 

square error: 

 lim →∞ [ + ]                 (4.6.5) 

 

Thus, the state feedback minimizes the steady-state mean square error [65]. 

 

The LQG problem may be tackled through a different interpretation. It has been shown 

to be a special case of a broader class of problems, which has become known as  

optimization. This interpretation eliminates the need to incorporate the stochastic 

ingredients of the LQG and reduces role of the intensity matrices  and  from 

describing the white noise processes to that of design parameters. This interpretation 

offers a great deal of flexibility, especially that in many applications it is difficult to 

establish the precise stochastic properties of disturbance and noise signals [65]. 
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The relation between the LQG and  optimization is observed by recognizing that the 

LQG performance index may be represented as a system  norm. The relation has been 

extensively elaborated in the literature, e.g. [9, 65, 79, 80, 81], and will be briefly 

discussed in what follows.  

 

Consider the general framework of figure 4.5.1 with the associated closed-loop map 

description , as in (4.5.1). The  norm of , designated by ‖ ‖ , is defined as: 

 ‖ ‖ = � tr[ ∗ ]+∞−∞                  (4.6.6) 

 

in which tr specifies the trace of a matrix, the asterisk denotes conjugate transpose. In 

regard to the Parseval’s theorem, (4.6.6) is equal to the  norm of the impulse response 

of , termed ℎ : 

 ‖ℎ ‖ = ‖ ‖ = tr[ℎ � ℎ � ] �+∞ = ∑ |ℎ � |+∞ �             (4.6.7) 

 

By changing the order of integration and summation in (4.6.7), it may be expressed in the 

following equivalent form: 

 ‖ℎ ‖ = ∑ |ℎ � | �+∞
                 (4.6.8)    

 

(4.6.8) implies that the  norm can be interpreted as the total 2-norm of the outputs 

resulting from applying unit impulses to each input channel one after another. Regarding 

to the fact that the 2-norm of a signal is the square root of its energy, it may also be 

inferred that the squared  norm coincides with the total output energy in the impulse 

response of the system. This elucidates the deterministic interpretation of the  norm. 

 

 norm, however, may also be given a stochastic interpretation. To see this, suppose that 

in the feedback configuration of figure 4.5.1, the exogenous input  is a white noise of 

unit intensity i.e. [ � ] = − � . The expected power in the error signal  

then will be achieved as: 
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[lim →∞ ] =  tr [ ∗] =  � tr[ ∗]∞−∞   

 

        = ‖ ‖                  (4.6.9) 

 

which with respect to the Parseval’s theorem is equal to the  norm of the closed-loop 

map impulse response, i.e. ‖ℎ ‖ . Now it is easy to see that the  norm minimization 

(known as  problem) amounts to the minimization of the output (error) RMS value 

(Root Mean Square value) of , when the system is driven by a unit intensity white noise 

input. This (in view of the expression (4.6.5)) establishes the equivalence between the  

and the LQG problems. 

  

To illustrate the reverse relation, which is the capability of casting the LQG problem into 

an equivalent  optimization problem, take the following stochastic system: 

 = + +   = +   

 

where  and  are uncorrelated white noise signals as described in (4.6.1). In the 

general framework of figure 4.5.1, define an error signal  as: 

 = [ ] [ ]  
 

and represent the stochastic inputs as a function of the exogenous input , being a white 

noise process of unit intensity, as: 

 [ ] = [ ]   

 

The LQG cost function of (4.6.3) will accordingly turn to: 

 = [lim →∞ ]  
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which in view of the equalities in (4.6.9) is the  norm of the closed-loop map, ‖ℎ ‖ .  

 

So, in this section the relation between the LQG and  optimization problems was 

established. It was observed that the LQG performance index which aims to minimize the 

RMS value of the error signal (the squared-power of which represents the average power 

of the signal), is expressible as the system  norm when it is excited by white noise input 

signals. On the other hand, the  norm was given two deterministic and stochastic 

interpretations. The stochastic interpretation enabled us to equate the  problem with 

that of minimizing the RMS value (or equivalently the power) of the system response to 

white noise inputs.  

 

In the succeeding section, the equivalence between the problems of LQG and  

optimizations will be employed to design a deadbeat controller subject to the quadratic 

time domain constraints.  

 

 

4.7 Deadbeat controller design with LQG performance criteria: 

 

In the previous section, it was observed that solving the LQG problem amounts to 

minimizing the  norm of the closed-loop system. In this section, the equivalence will 

be exploited to design the deadbeat controller with LQG constraints. As we will see, the 

problem reduces to a quadratic programming, with quadratic constraints imposed on the 

 parameter.  

 

In the general framework of figure 4.5.1, suppose that the closed-loop transfer function 

 is an + -tap FIR system with Markov parameters : 

 = ∑ −=                  (4.7.1) 

 

and the exogenous input  is an uncorrelated zero-mean white noise signal with variance � , denoted by . The output  will correspondingly be: 

 = + − + + −                   (4.7.2) 
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According to the discrete-version of (4.6.9): 

 ‖ ‖ = tr [ ]                 (4.7.3)                          

 

in which [ ] is expressible as: 

 [ ] = [ ] + + [ − − ]   

                       = � + +   

 

Therefore, 

 ‖ ‖ =  � ∑ tr[ ]=                  (4.7.4)   

 

Square root of the term tr[ ] is known as the Frobenius norm and is designated by ‖ ‖ . It can be readily shown that ‖ ‖ = ‖vec ‖ . 

For the sake of simplicity and without loss of generality, we can assume that � =  (i.e. 

white noise has unit intensity). As a result, the  norm of the regulated output may be 

formulated as: 

 ‖ ‖ = ∑ ‖ ‖= = ∑ ‖vec ‖=                  (4.7.5) 

 

It is known from chapter 2 that the closed-loop map of the general configuration of figure 

4.5.1 is expressible in terms of the stable, but otherwise arbitrary, parameter : 

 = +   

 

Moreover, it was discussed earlier that making the entire closed-loop system deadbeat, 

compels us to confine all the terms in the closed-loop map to be FIR. Having described 

, , , and the parameter  respectively as + -, + -, + -, and +
-tap FIR systems: 
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= + − + + � −   = + − + + −                  (4.7.6) = + − + + −   = + − + + −   

 

the Markov parameters ’s may be computed as: 

 = ̂ + ∑ ∑ − −−==  ,  = , , … , { , + + } 
                                                                                                                                   (4.7.7) 

in which: 

 ̂ = { = , , … ,
                 (4.7.8) 

 

Consequently, the  norm of the regulated output can be achieved as the following: 

 ‖ ‖ = ∑ ‖vec ‖= =  

 ∑ ‖vec(̂ ) + ∑ [∑ ⨂ − −−= ] vec= ‖=                  (4.7.9) 

 

which in turn, results in the following compact description: 

 ‖ ‖ = ∑ ‖̃ + Π ̃‖=                  (4.7.10) 

 

The equality (4.7.10) is concluded via the following substitutions: 

 ̃ = vec( ̂ )   and   Π = ∑ [∑ ⨂ − −−= ]=                  (4.7.11) 

 

From the expression (4.7.10), it can be readily inferred that any constraint in the form of 

LQG imposed on the regulated signals, is equivalent to a quadratic programming with  

as the design parameter.  
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It is worth mentioning that ‖ ‖ , when the system is driven by Gaussian white noise 

signal, also represents the variance of the regulated signal : 

 � = − = −                  (4.7.12) 

 

where � and  respectively denote the variance and the mean, or in the case of a stochastic 

signal the expected value. This is in view of the fact that the output resulting from a 

system with impulse response  which is driven by a white noise with mean , has 

mean  with  as its factor [82]: 

 = ∑+∞=−∞                  (4.7.13) 

 

Since in LQG, the noise is in the form of an uncorrelated zero-mean white noise signal, 

the output correspondingly will be a stochastic signal of zero mean. According to (4.7.12), 

this implies that: 

 � =   

 

The term on the right hand side of the above equality, when the number of outputs is ,  

can be given as: 

 = ∑ [ ] ==  tr [ ]                 (4.7.14) 

 

which in turn is the  norm of  [83]. 

 

The design procedures in sections 4.6 and 4.7 are represented by means of the following 

example. 

 

Example 4.7.1 This example considers the design problem of a deadbeat controller to 

reduce the vibrations in a one-storey scaled-down building model caused by earthquake 

while additional constraints on the magnitude and slew rate of the control input are 

satisfied. The design is first accomplished for the case where the earthquake signal is 

modelled as an impulse. However, in the second part, the controller is designed under a 
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real earthquake signal. Model structure of the building is based on the example given in 

[77] and is depicted in figure 4.7.1. 

 

 

 

 

Figure 4.7.1 Model structure of an one-storey building 

 

Parameters describing the construction are as follows:    = base mass =   = base damping coefficient =  / /  = base stiffness =  /  = first floor mass = .   = first floor damping coefficient = .  / /  = first floor stiffness =  /  

 

In the figure, displacement of the base and first floor from the equilibrium point is 

designated by  and , respectively. The external acceleration exerted by the earthquake 

is also denoted by . The actuator, specified by , applies an equal and opposite force F 

on the two masses along the illustrated directions. Electrical model of the actuator is 

represented in figure 4.7.2. 

 

F F 
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Figure 4.7.2 The electrical model of the actuator 

 

The voltage  represents the input to the linear actuator as a result of which the actuator’s 

output force  is generated.  designates the back-emf while  denotes the current.  The 

following actuator parameters have been assumed: 

 = force constant =  /  = electric constant =  v/ /    = electric resistance = .  Ω 

 

The actuator force F and back-emf  are computed as:   

 F =   = = −   

 

where  is the relative linear velocity at the two ends of the actuator. 

 

Based on the above description for the model building and the actuator, system model 

equations when the state vector is defined as = [ ] and the measured 

variable is the acceleration of first floor, i.e. = , are given as: 

 = + +   = +   

 

in which the input signal  is the actuator voltage . Matrices describing the system state 

space model are parameterized as follows:  
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= [  
  − + − + + +− + − + ]  

  
  

 = [ − ]         

 = [ − + − + ]  
 = [ ]  
 = [ ]   

 

In order to synthesize the deadbeat controller, the continuous time model, illustrated in 

figure 4.7.3, was discretized with sampling interval of = .  .  

 

 

 

Figure 4.7.3 The generalized regulator 

 

The equivalent discrete system (zero-order-hold equivalent) is depicted in figure 4.7.4. 

 

 

 

=  

  

=  
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Figure 4.7.4 Discrete model 

 

As mentioned earlier, this example aims to compute a deadbeat control law such that the 

rms acceleration =  of the first storey is minimized, while the control input  and its 

slew rate are constrained within realistic limits. The magnitude of the control input and 

its slew rate are restricted between +  and −  volts and between +20 and -20 volts/s, 

respectively According to the discussion in section 4.5, the synthesis problem can be 

expressed as a Linear Program which is described below: 

 minmax | |,    = ,… , −  

such that:     | | =  volts,    = ,… , −  | + − | =  volts,   = ,… , −  

 

where  represents the number of samples. 

 

The example was simulated in MATLAB. For  chosen to be an impulse signal, the 

regulated variables of the closed-loop system which are the first floor acceleration and 

the control signal , were plotted. The results are shown in figures 4.7.5 and 4.7.6. The 

achieved optimum value was .  / .  
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Figure 4.7.5 The first floor acceleration 

 

 

 

Figure 4.7.6 The control input  

 

As it is clear from figure 4.7.6, the magnitude of control input  is bounded within the 

desired limits.  

 

In the next step of the design, the system was simulated with data for the earthquake 

signal. In MATLAB, the file quake.mat contains 200Hz data from the October 17, 1989 

Loma Prieta earthquake in the Santa Cruz mountains. This file was used to synthesize the 
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controller under realistic conditions. In order to see the advantages achieved through 

application of the deadbeat controller in the system under consideration, the results were 

compared with those from the open-loop system and a controller designed via LQR. The 

LQR problem formulated and solved was: 

 [ ] = ∑ [ ]∞= [ ] [ ]  
 

in which ,  and  matrices were suitably selected. Simulation results are given in 

figures 4.7.7-4.7.10. 

 

 

 

 

Figure 4.7.7 First floor acceleration- open-loop system 
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Figure 4.7.8 First floor acceleration- LQR design 

 

 

 

 

Figure 4.7.9 First floor acceleration- deadbeat control 
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Figure 4.7.10 Deadbeat control input 

 

As figures 4.7.7-4.7.9 show, the peak acceleration with deadbeat response is almost 17 

times lower than peak response of open-loop system and almost 4 times lower than LQR 

design for comparable peak values of control signal shown in figure 4.7.10. 

 

 

4.8 Conclusion: 

 

This chapter addressed the problem of deadbeat controller design with time domain 

constraints. First, the mathematical description of deadbeat systems was briefly reviewed. 

It was observed that having a control system with finite settling time responses compels 

to restrict not only , , and  but also the free parameter  to be deadbeat. In terms 

of their impulse responses, this was equivalent to making them all FIR. 

A partial list of typical time domain performance specifications in terms of the system 

response to unit step was derived. Based on a concise description of linear programming, 

it was shown that time domain performance specifications translate into constraints on 

the parameter . This attribute was then exploited to recast the deadbeat controller design 

with transient and steady state time domain constraints as an LP with  being the design 

parameter. 

More stringent time domain performance criteria in the form of LQG were also 

considered. The problem was tackled through a different interpretation of LQG in which 
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it is regarded to be a special case of a broader class of problems known as  optimization. 

This interpretation eliminates the need to incorporate the stochastic ingredient of the 

LQG. The relation between the LQG and  optimization is observed by recognizing that 

the LQG performance index which aims to minimize the RMS value of the error signal 

(the squared-power of which represents the average power of the signal), is expressible 

as the system  norm when it is excited by white noise input signal. On the other hand, 

 norm was given two deterministic and stochastic interpretations. The stochastic 

interpretation enabled us to equate the  optimization problem with that of minimizing 

the RMS value (or equivalently the power) of the system response to white noise inputs. 

In the case of deterministic inputs, squared  norm coincides with the total output energy 

in the impulse response of the system. The relation between the LQG and  problems 

was then employed to translate the problem of deadbeat controller design with LQG 

performance criteria into a quadratic programming with the  parameter as the design 

variable. This chapter concluded by an example to represent the design procedures. So, 

basically in this chapter the main achieved result was showing that the synthesis problem 

of deadbeat regulator subject to the transient and steady state performance specifications 

is expressible as a linear program. Moreover, the synthesis problem when the controller 

is to satisfy quadratic performance requirements can be recast as a quadratic program. 
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Chapter 5 

Robust pole placement, LMI approach 
 

 

 

5.1 Introduction: 

 

In designing any control system, stability is regarded as the minimum requirement. In 

most practical situations though, a good controller should also represents acceptable 

dynamical behaviour, e.g. sufficiently fast and well-damped time responses. It is well 

known that a customary way of defining many properties of system dynamics is through 

root clustering. However, for LTI systems achieving the exact location of the poles might 

be difficult, due to the fact that no mathematical model can exactly describe a physical 

system. Further to the uncertainty arising from lack of understanding of the physical 

process which amounts to non-exact characterization of the system, deliberate negligence 

of the system dynamics in the modelling process, in order to make a number of 

simplifications, may also introduce uncertainty into the system description. 

 

As was argued in earlier chapters, attaining deadbeat response, which is the main aim of 

this thesis, requires locating all the eigenvalues at the origin of the complex plane. 

However, due to the existence of uncertainty, performance of the system might be 

adversely affected and hence, the deadbeat characteristic of the system response will be 

lost. In this chapter, we are concerned with the synthesis problem of robust deadbeat 

controller. First, different sources of uncertainty, their classifications and ways of 

representing them will be reviewed. The sensitivity of eigenvalues to parametric 

uncertainty and conditions for minimising it, will then be briefly examined. This is 

followed by revising the general concept of quadratic stability in the form of the 

Lyapunov theorem, based on which the conditions for quadratic stability of systems 

subject to structured norm-bounded parametric uncertainties entering both the state and 

input matrices, are derived. Notion of the quadratic stability will then be extended to 

obtain the criteria for quadratic stability of the systems in the generalized stability regions, 

the so-called quadratic �-stability problem. This is accomplished through introduction of 
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the LMI (Linear Matrix Inequality) regions. All the conditions are derived first based on 

the continuous time system descriptions. However, in later sections they will be 

accommodated to the case of discrete time systems, which are the main focus of this work. 

In the light of achieved results, the robust deadbeat compensator for systems perturbed 

by structured parametric uncertainty will be synthesised.  

 

 

5.2 System uncertainty and its classifications: 

 

Real systems always involve some amount of uncertainty. So, it is natural that the 

robustness of system properties be one of the main concerns in any analysis and synthesis 

problem. System uncertainty and the issue of robustness have been greatly discussed in 

many references like [1, 2, 5, 65, 79, 83-85, 99] from which the following revision is 

taken. 

 

Basically, uncertainty in the plant model have several origins based on which sources of 

model uncertainty may be classified into two main classes, namely parametric uncertainty 

and unstructured uncertainty corresponding to neglected or unmodelled dynamics. 

Parametric uncertainty arises from the parameters in system description which are only 

known approximately or are in error. Because of existing nonlinearities or changes in the 

operating conditions, there are also varying parameters in the linear model of the system. 

Imperfections in measurement devices may also introduce uncertainty in the model 

through giving rise to uncertainty on the manipulated inputs. 

There are situations in which despite the availability of a detailed model, it is simpler to 

consider a model of lower-order and instead, regard the neglected dynamics as 

uncertainty. Even without deliberate negligence of system dynamics, the structure and 

the model order may be unknown, especially at high frequencies. Obviously these two 

cases amount to the neglected and unmodelled dynamics, respectively. Finally, 

sometimes the controller computed from the design problem may differ from the one 

implemented in practice. In this case, uncertainty might be included in the form of 

unmodelled dynamics, to account for inaccuracies resulting from controller 

implementation or its order reduction.  
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One or several sources of the two aforementioned perturbation classes may be combined 

together to form a single lumped perturbation of a chosen structure, which can be 

considered as the third class of uncertainty, the so-called lumped uncertainty.  

 

Dealing with perturbations in any analysis and synthesis problem requires the uncertainty 

to be quantified. In order to quantify parametric uncertainty, it is assumed that the 

equations characterising the dynamical behaviour of a system are known but there is 

uncertainty about the precise values of parameters in these equations, typically described 

by an interval of possible values. In the case of a discrete time system, difference 

equations adapted for representing the uncertainty in the parameters of the system may 

be characterized as: 

 + = + ,   ∈   

 

in which the uncertain parameter vector  is not known a priori. It is only known that it 

belongs to the bounding set , which is the set of bounding parameters and generally 

defined as a hyper-rectangle in the parameter space, the so-called parameter box [81]. 

In the above description, each uncertain parameter  is assumed to belong to a known 

interval. It is not difficult to see that the parametric uncertainty is real in nature and models 

the perturbation in a structured manner. That is why this type of perturbation is also 

known as structured uncertainty. In comparison, since the other two classes of uncertainty 

are somewhat less precise and subsequently more difficult to quantify, they are referred 

to as unstructured uncertainty. The frequency domain is particularly well suited for these 

two types to be dealt with in, and are usually quantified by norm bounds. 

 

Although at first sight it seems that the parametric uncertainty is easier to handle, but it is 

often avoided. In modelling this type of perturbation, a large effort is required to describe 

the exact model structure which in turn restrains the unmodelled dynamics to be dealt 

with. On the other hand, as structured uncertainty is real in nature, mathematically and 

numerically it is more difficult to be dealt with, especially when it comes to controller 

synthesis. These motives justify translating the parametric uncertainty into complex 

perturbations. Clearly, this introduces conservatism into the model, but as it is shown in 



129 

 

[79], the conservatism can be reduced by lumping these perturbations into a single 

complex one.  

 

In robustness analysis and synthesis problems as in most other problems, usually the 

starting point is an illustration of the system in hand. In robustness problems, the 

customary way is pulling out the uncertain perturbations into a block diagonal matrix as:  

 

∆= diag{∆ } = [∆ ⋱ ∆ ⋱]                 (5.2.1) 

 

in which each ∆  designates a specific source of uncertainty. Then, the uncertainty could 

be combined with the general framework of figure 2.3.1, to form the general configuration 

for controller synthesis as in figure 5.2.1 [79, 8, 1]. 

 

 

 

Figure 5.2.1 The general configuration for robust controller synthesis 

 

Alternatively, combining the generalized plant and compensator as a lower LFT to get an 

equivalent block , gets the so-called ∆-structure which may be utilized for robust 

analysis. The construction is illustrated in figure 5.2.2 [79, 1]. 

 

  

  

 

 

∆ 

∆ ∆ 
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Figure 5.2.2 The ∆-structure for robust analysis 

 

 

5.3 Investigating the sensitivity of eigenvalues to perturbations: 

 

Among various approaches to achieve a better system response, a major one is considered 

to be closed-loop pole assignment, and it is well known that many characteristics of 

system dynamics may be defined in this way. Since physical systems always involve 

some amount of uncertainty, the exact locations of the poles might be difficult to attain. 

Hence, different techniques in robust control theory which deal with various control 

problems in which plant modelling uncertainty or exogenous signal uncertainty is a 

dominant issue, were employed to locate the poles within a prescribed region. Besides 

existence of uncertainty, other motivations for seeking root clustering in specific regions 

are that of the asymptotic and relative stability and achieving desirable transient response, 

e.g. by assigning the eigenvalues in a shifted left half plane to adjust the minimal decay 

rate of the system [86, 87]. In this chapter though, the incentive is robustly assigning the 

eigenvalues to the origin of the complex plane, as the deadbeat response requirement 

implies. 

 

Historically, two main approaches to robust control problem have emerged; frequency 

domain technique, and time domain technique. Here, we tackle the problem of discrete 

time robust eigenvalue assignment in the time-domain framework. However, first it is 

worth examining the sensitivity of eigenvalues to parametric uncertainty and conditions 

for minimizing it.  

A nominal LTI discrete time system with dynamic state equation: 

 + = +                   (5.3.1) 

  
 

∆ 

∆ ∆ 
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perturbed by linear time varying perturbations entering both the state and input matrices, 

may be described by difference equation of the form: 

 

 + = � +                   (5.3.2) 

 

where ∈ , ∈ , and   and  are matrices of appropriate dimensions. The 

vector-valued functions � ∈  and ∈  represent the time varying parametric 

perturbations, referred to as model parameter uncertainty and input connection parameter 

uncertainty, respectively. In the general description of (5.3.2), it is assumed that the pre-

specified uncertainty restrain sets  and  are compact. [89, 90].  

The general characterization (5.3.2) of a perturbed system may be simplified as: 

 + = + ∆ + + ∆B                   (5.3.3) 

 

in which  and  are the nominal values, while ∆  and ∆B designate uncertainty. The 

bounding set of perturbation matrices is defined to be Ω such that ∆ , ∆ ∈ Ω, where Ω is a compact set in × × × .  

It is well known that behaviour of the system (5.3.1), governed by the eigenvalues of the 

system matrix, may be modified through application of a state feedback control =+ . This, in turn, yields the modified dynamic system + = ++  with a desired set of poles ℓ = { , , … , }, closed under complex 

conjugation. Such state feedback gain matrix  exists if and only if the pair ,  is 

controllable [45]. In the case of single input systems = , as is declared in [92], the 

gain matrix  can be shown to be unique. When the number of independent inputs is 

equal to that of the states, the system is always completely controllable and any given set 

of closed-loop eigenvalues is achievable by feedback. In the case that there are fewer 

inputs than states, the solution to  is in general underdetermined with many degrees of 

freedom. These extra degrees of freedom may be exploited to exert additional 

requirements, like insensitivity of eigenvalues to perturbations in the coefficient matrices 

of the closed-loop system equation. 

In order to examine the sensitivity of eigenvalues to uncertainties, let  and , =, , … , , be respectively the associated right and left eigenvectors of ∈ ℓ, which is an 

eigenvalue of the closed-loop system matrix = + . If  has  linearly 
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independent eigenvectors, i.e. it is non-defective, the sensitivity of eigenvalue , 

designated by , to the existing perturbations in the components , , and  hinge upon 

the magnitude of its condition number , where [93]: 

 = = 
‖ ‖ ‖ ‖| � |                  (5.3.4) 

 

By stacking the eigenvectors to form the eigenvector matrix � = [ , ,… , ], an 

upper bound on the sensitivities of the eigenvalues may be defined as [93]: 

 max � ≡ ‖�‖ ‖�−�‖                  (5.3.5) 

 

in which �  is the condition number of the matrix �. Evidently, �  establishes a 

measure for the robustness of eigenvalues to the existing perturbations. Based on this, the 

robust eigenvalue assignment problem may be recast as the problem of selecting 

independent vectors , = , , … , , such that the closed-loop system has the desired 

set of ℓ eigenvalues while the conditioning of the eigenproblem is minimized. It is not 

difficult to see that the degrees of freedom available in the selection of the matrix �  are 

reflected precisely by those available in the choice of the feedback gain matrix . The 

only restriction in assigning the eigenvectors arises from the fact that the closed-loop 

system matrix  has to be non-defective. This restriction just imposes simple conditions 

on the multiplicity of the poles which may be assigned [88]. 

To conclude the section, we remark that �  is not the only possible measure of the 

sensitivity of the eigenvalues which may be defined [88]. 

 

 

5.4 Quadratic stability: 

 

As was argued in earlier chapters, attaining a deadbeat response demands the placement 

of all the eigenvalues at the origin of the complex plane. However, due to the existence 

of uncertainty in the mathematical description of the system, it is almost impossible to 

assign all the closed-loop poles exactly to the origin for every model in the uncertainty 
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set. As a result, robust performance is adversely affected and hence the deadbeat 

characteristic of the system response will be lost for the closed-loop systems 

corresponding to (almost all) uncertain parameters. This reveals the significance of the 

robust pole placement. In this section, we consider a quick revision of the notion of 

quadratic stability. This forms the foundation for the discussion in the subsequent section 

which addresses a specific notion of stability, known as quadratic �-stability and which 

in fact is the counterpart of quadratic stability in the context of pole clustering. 

 

In the field of uncertain systems, as is well-known, one of the major tools in stability 

analysis is Lyapunov theory [108, 110, 111]. The Lyapunov approach which deals with 

both linear and nonlinear systems described by differential or difference equations, 

consists of two methods of stability analysis, called the first method and the second or 

direct method. The distinction between the two methods arises from the fact that the first 

method depends on finding approximate solutions to the differential or difference 

equations, while in the direct method such knowledge is not necessary. That is the reason 

the second method is of great importance in practice.  

 

The second method of Lyapunov is based on a generalization of the fact that “if the system 

has an asymptotically stable equilibrium state, then the stored energy of the system 

displaced within a domain of attraction (i.e. the largest region of asymptotic stability) 

decays with increasing time until it finally assumes its minimum value at the equilibrium 

state” [49, p. 322].  

In order to capture the notion of energy function in systems with descriptions which are 

purely mathematical, a fictitious energy function known as the Lyapunov function is 

introduced. Generically speaking, a Lyapunov function ,  is a positive definite scalar 

function which is continuous together with its first partial derivative in a region around 

the origin. It is a monotonically decreasing function along the system trajectories. For a 

system described by = , , this property can be verified just through examining 

the negativity of the Lyapunov function derivative , = , , +,  and without knowing the system trajectories. Evidently, when ,  is 

regarded as the generalized energy, ,  could be interpreted as the associated 

generalized dissipation. The relation between energy function and Lyapunov function has 

been explored in [9]. 
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As is extensively discussed in the literature, the simplest positive definite function for a 

Lyapunov function is of the quadratic form = ∑ ∑ == . However, in 

general, Lyapunov functions are not necessarily of a simple quadratic form. 

The Lyapunov stability theory for a discrete time system may be summarized as follows:  

 

Theorem 5.4.1 [49] For the discrete time system + =  with the state 

vector ∈ , and  an -vector with the property = , suppose that there exists 

a scalar function  continuous in  such that: 

 

1. >  for ≠  

2. ∆ <  for ≠ , in which 

            ∆ = + − = −  

            is the first difference of  along the system trajectories. 

3. =  

4. → ∞ as ‖ ‖ → ∞ 

 

Then the equilibrium state =  is asymptotically stable in the large and  is a 

Lyapunov function. 

 

The above Lyapunov theorem for LTI discrete time systems, which are the main focus of 

this work, with quadratic Lyapunov functions can be stated in the form of succeeding 

theorem:  

 

Theorem 5.4.2 [49] For the LTI discrete time system + =  where  is a 

constant nonsingular matrix, let us select a quadratic Lyapunov function =Р . According to the Lyapunov difference: 

 ∆ = + −   = Р − Р                                            

        = −                                                                            (5.4.1)               

 

the system is asymptotically stable if and only if for any given positive definite symmetric 

matrix , there exists a positive definite symmetric matrix Р such that the matrix equality 
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Р − Р = − , known as the Lyapunov algebraic equation, is satisfied. This notion of 

stability is also referred to as the quadratic stability. 

 

As can be seen, in the case of linear systems the stability conditions obtained from a 

particular Lyapunov function are both sufficient and necessary. Bearing in mind that 

systems are always subject to some type of uncertainty, it will be natural to look into the 

generalization of the Lyapunov theorem for the case of perturbed systems. This issue will 

be addressed in the next section. 

 

 

5.5 Quadratic stability of continuous time systems with structured   

      norm-bounded parametric uncertainty entering the state matrix: 

 

The preceding section reviewed the general concept of quadratic stability. In the 

forthcoming sections, we will study the generalization of quadratic stability for the case 

of systems subject to parametric uncertainty. Although we are mainly interested in the 

results for the perturbed discrete time systems, we first consider continuous time systems 

and then the results will be extended to the case of discrete time systems.  

 

An LTI continuous system subject to parametric uncertainty may be characterized by the 

most basic form, i.e. when perturbation enters only the state matrix, the so-called model 

parameter uncertainty, as: 

 =                  (5.5.1) 

 

with ∈ ⊂  being the vector of uncertain parameters, and  denoting the parameter 

box. Such systems are referred to as linear parameter varying (LPV) systems, whose state 

space matrices are fixed functions of some vector of varying parameters  [112, 113].   

Evidently, the above description encompasses a collection of an infinite number of 

systems. For any given ∈ , (5.5.1) yields a system of differential equations with 

constant coefficients. On the other hand, if  is a vector-valued function of time belonging 

to a certain functional space , for any . ∈  the description (5.5.1) defines a system 

of differential equations with time-varying coefficients [100].  
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Definition 5.5.1 [90, 95, 101, 102] The system (5.5.1) is quadratically stable in  if and 

only if there exists a positive definite matrix Р, such that for all ∈ : 

 Р + Р <                  (5.5.2) 

 

In view of the Lyapunov algebraic equation for continuous time systems [49], it is readily 

seen that the quadratic stability of the system (5.5.1) is reduced to the question of whether 

there is a quadratic Lyapunov function in the form = Р , which establishes 

quadratic stability.  

It should be noted that the concept of quadratic stability requires existence of a single 

quadratic Lyapunov function Р for all the systems in the uncertainty domain. The 

existence of a fixed Lyapunov function for all possible choices of the uncertain 

parameters ensures the closed-loop system stability for time-varying perturbations [94, 

102]. 

 

The elementary parametric uncertainty description of (5.5.1) may be recast in a more 

customary fashion as what follows [95, 96]: 

 = + ∆                  (5.5.3)  

 

In the above characterization of uncertainty, known as structured norm-bounded 

uncertainty, the matrices ∈ ×  and ∈ ×  are known real matrices that 

characterize the structure of the perturbations and take into account scaling factors, while 

the unknown matrix ∆ designates the modelling uncertainty. The uncertainty is assumed 

to be bounded and normalized as follows: 

 ∆∈ � ≔ {∆:  ‖∆‖ }                 (5.5.4) 

 

The idea behind the presumed structure of (5.5.3) for uncertainty, which in fact is a 

generalization of the more intuitive uncertainty representation = + ∆ , is 

twofold. First, there are many physical systems in which the uncertainty may be modelled 

in this manner. Moreover, a linear interconnection of a nominal plant with the uncertainty 
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∆ results in a description of the form (5.5.3) [94]. As a matter of fact, system (5.4.3) is 

equivalent to the classical feedback interconnection of the linear system: 

 = + Δ                  (5.5.5) Δ =   

 

and the perturbation: 

 Δ = Δ                  (5.5.6) 

 

A larger class of uncertainties may be captured by assuming a nonzero direct feed-through 

matrix ∈ × , as: 

 = + Δ                  (5.5.7) Δ = + Δ   

 

and the perturbation  specified in (5.5.6). The resultant feedback system: 

 = + ∆ − ∆ −  = + − − ∆                  (5.5.8) 

 

is depicted in figure 5.5.1. 

 

 

 

Figure 5.5.1 Closed-loop feedback interconnection of the system (5.4.3) and the 

uncertainty characterized in (5.5.4) with nonzero feed-through matrix  (as in (5.4.7)) 

 

 

∆ 

∆ 

[ ] ∆ 
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In view of definition 5.4.1, system (5.5.8) is quadratically stable if and only if there exist 

a positive definite matrix P such that for all ‖∆‖ : 

 + ∆ − ∆ − P + P + ∆ − ∆ − <                  (5.5.9) 

 

The condition (5.5.9) may be expressed equivalently in the form of following theorem. 

 

Theorem 5.5.2 [100] Necessary and sufficient condition for quadratic stability of system 

(5.5.8) is the existence of a positive definite matrix P such that: 

 [ P + PA + P +P + − − ] <                  (5.5.10) 

 

What is interesting about the foregoing theorem is that the condition for quadratic stability 

is indicated in the form of an LMI feasibility problem. As is well known, solving LMIs 

is a convex optimization problem [141]. Moreover, LMI problems can be solved via 

efficient tractable numerical algorithms, e.g. interior-point methods [9, 103, 104, 105, 

106]. This is especially beneficial for solving problems lacking analytical solution. 

One of the major implications of the inequality condition (5.5.10) is that − > , 

from which it can correspondingly be inferred that: 

 ‖ ∆‖ ‖ ‖ ‖∆‖ ‖ ‖ <                  (5.5.11) 

 

This ensures that for all ‖∆‖ , − ∆ is nonsingular, which is exactly the 

requirement for well-posedness of the system (5.5.8). Therefore, the condition for 

quadratic stability automatically guarantees the closed-loop system well-posedness. 

In view of the Schur complement [141], the criterion in theorem 5.5.2 is also expressible 

as: 

 

[ P + PA PP − − ] <                  (5.5.12) 
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which again is in the form of an LMI feasibility condition. The discussion in this section 

centred around stability of continuous time systems with perturbed state matrix. The 

problem may be expanded to the case of uncertain systems in which the perturbation 

influences both the state and input matrices. Stability of such systems is the topic of the 

following section. 

 

 

5.6 Quadratic stability of continuous time systems with structured 

      norm-bounded parametric uncertainty entering both the state and   

      input matrices: 

 

Generically, a continuous time system in which both state and input matrices are subject 

to parametric uncertainty, respectively known as model parameter uncertainty and input 

connection parameter uncertainty, is described in the form of a linear parameter varying 

(LPV) system whose state space matrix is fixed function of some vector of varying 

parameters , as [112, 113]: 

 = +                   (5.6.1) 

 

where ∈ , u ∈ , and ∈ ⊂ , with  being the parameter box. Due to 

the same reasons argued in section 5.5, the perturbations can be expressed as structured 

norm-bounded uncertainties [95, 96, 107]: 

 [∆    ∆ ] = ∆ − ∆ − [    ]                 (5.6.2) 

 

with ‖ ‖ < , and ∆∈ ×  any uncertain matrix satisfying: 

 ∆∈ � ≔ {∆:  ‖∆‖ }                 (5.6.3) 

 

Quadratic stability of perturbed system (5.6.1) may be achieved via application of a 

memoryless linear time-invariant state-feedback compensator. 
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Definition 5.6.1 [100] System (5.6.1) is said to be quadratically stabilizable via linear 

state feedback control = , ∈ ×  if and only if the closed-loop system: 

 = +                  (5.6.4) 

 

is quadratically stable.  

 

According to the debate in [114], quadratic stability through dynamic time-varying linear 

state feedback compensator infers quadratic stability through static time-invariant linear 

state feedback compensator. However, Petersen in [115] by making use of a contradictory 

example has argued that quadratic stabilizability of a linear system subject to parametric 

uncertainties described in (5.6.1) via a nonlinear controller does not necessarily imply 

quadratic stabilizability by a linear controller. 

By imposing additional assumptions of (5.6.2) and (5.6.3) on the structure of uncertainty, 

it is shown in [95] and [116] that quadratic stability via nonlinear control implies 

quadratic stability via linear control. This declaration is indicated in the form of the 

following theorem: 

 

Theorem 5.6.2 [96] For the system (5.6.1) subject to norm-bounded uncertainties with 

the structure described in (5.6.2) and (5.6.3), the following statements are equivalent: 

 

(i) The system admits a control Lyapunov function. 

(ii) The system is quadratically stabilizable. 

(iii) The system is quadratically stabilizable via linear time-invariant 

(memoryless) control. 

 

It should be pointed out that existence of a control Lyapunov function is just a necessary 

condition for quadratic stability of the system with the general characterization of (5.6.1). 

 

Having discussed the nature of controller which renders the system with assumed norm-

bounded uncertainties quadratically stable, the closed-loop interconnection illustrated in 

figure 5.6.1, can be achieved as (see (5.5.5)-(5.5.7)): 
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= + + Δ                         Δ = + + Δ                  (5.6.5) ∆ = ∆ ∆  

 

With regards to the inequality condition (5.5.12), the necessary and sufficient condition 

for quadratic stability of the system (5.6.1) subject to norm-bounded uncertainties 

described in (5.6.2) and (5.6.3), can be expressed as the existence of a positive definite 

matrix P such that the following LMI feasibility condition is satisfied [100]: 

 

[ + P + P + P +P −+ − ] <                  (5.6.6) 

 

The notion of quadratic stability may be extended, in a natural way, to the case when the 

eigenvalues should be assigned to the sub-regions of the complex plane, the so-called 

generalized stability regions. The problem, known as the quadratic �-stability, is dealt 

with in the two ensuing sections. 

 

 

 

Figure 5.6.1 Closed-loop feedback configuration of perturbed system (5.6.5) with state     

                     feedback 

 

 

 

∆  

∆ 

[ ] 

∆ 
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5.7 Quadratic �-stability of continuous time systems with structured   

      norm-bounded parametric uncertainty entering the state matrix: 

 

Basically, the standard Lyapunov theorem concerns the asymptotic behaviour of the states 

in both discrete and continuous time systems. However, as was mentioned earlier, besides 

stability, requiring desirable system dynamical behaviour compels us to assign the closed-

loop poles to specific sub-regions of the complex plane, designated by a set � [87]. 

Over and above, in practice it is appealing to have robust performance which in turn 

necessitates robust assignment of the modes to the generalized stability region �. Such 

problems are known as robust �-stability problems [97]. In this section, robust �-stability 

will be addressed based on the generalization of the Lyapunov theorem. This leads to a 

necessary and sufficient condition for �-stability in the generalized stability regions. 

When a system is subject to uncertainty, the notion of �-stability may be developed in a 

natural way to that of the quadratic �-stability. Hence, quadratic �-stability extends �-

stability to uncertain systems in a similar fashion as quadratic stability extends stability 

to uncertain systems.  

The generalization of the Lyapunov theory was accomplished through introduction of 

Linear Matrix Inequality (LMI) regions. 

 

Definition 5.7.1 [98] A subset � of the complex plane is called an LMI region if there 

exists a symmetric matrix Λ, and a matrix Θ such that: 

 � = { ∈ ℂ:   � < }                 (5.7.1) 

 

with the matrix-valued function � : 

 � = Λ + Θ + ∗Θ                  (5.7.2) 

 

that is referred to as the characteristic function of �. 

 

A wide variety of typical clustering regions may be characterised in the form of LMI 

regions. As an example, take the case of left half plane Re < − , which is cast as an 

LMI region by � = + ∗ + < .  
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Another favourable example is the disk centred at − ,  with radius  that corresponds 

to the LMI region described by: 

 

 � = [ − ++ ∗ − ] <                  (5.7.3) 

 

with: 

 Λ = [− − ],     Θ = [ ]                 (5.7.4) 

  

Based on the definition of LMI regions, the condition for �-stability of a definite system 

may be expressed as follows: 

 

Theorem 5.7.2 [97] A real matrix  is said to be �-stable if and only if there exists a 

positive definite matrix P such that: 

  � , P =  Λ⨂P + Θ⨂ P + Θ ⨂ P <                  (5.7.5) 

 

In view of the LMI characterization of usual LHP (left half plane), it is readily seen that 

the inequality (5.7.5) is in fact the generalization of the Lyapunov theorem, in that by 

substituting Λ = Θ = , it reduces to P + P < . 

 

When the state matrix  is subject to model parameter uncertainty, the above theorem 

accordingly converts to the next theorem. 

 

Theorem 5.7.3 [98, 97] The uncertain system =  is quadratically �-stable 

if and only if there exists a positive definite matrix P such that for all ∈ : 

  � , P =  Λ⨂P + Θ⨂ P + Θ ⨂ P <                  (5.7.6) 

 

For the case of an autonomous continuous time system perturbed by structured norm-

bounded uncertainty, which were discussed in section 5.5 and described as: 
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= + ∆ − ∆ −  ,      ∆∈ ×  and ‖∆‖                   (5.7.7) 

 

results similar to that of the theorem 5.7.3 are achievable in form of the succeeding 

theorem. 

 

Theorem 5.7.4 [97, 100] Necessary and sufficient condition for quadratic �-stability of 

the uncertain system (5.7.7), is the existence of a positive definite matrix P such that: 

 

 � , P =  Λ⨂P + Θ ⨂(P + ∆ − ∆ − )   

                                    +Θ ⨂ + ∆ − ∆ − P <                  (5.7.8) 

 

Investigating quadratic �-stability of the system (5.7.7) could also be accomplished 

through examining criteria expressed in terms of LMIs, derived directly from (5.7.8). In 

this way, testing stability conditions can be efficiently tackled by exploiting LMI problem 

peculiarities and their solvers [9, 103, 104, 105, 106]. However, it should be noted that 

the LMI-based condition will only be a sufficient condition for quadratic �-stability, as 

stated in the next theorem. 

 

Theorem 5.7.5 [97] Suppose that the characteristic function of the generalized stability 

region � (see (5.7.2)), has a matrix Θ of rank  and factorized as Θ = Θ Θ , in which Θ , Θ ∈ �×ℎ are full row rank matrices (such a factorization is readily obtained from 

the SVD of Θ). Then, the system (5.7.7) is said to be quadratically �-stable if there exist 

positive definite matrices P ∈ ×  and ∈ �×�, such that: 

 

[  � , P Θ ⨂ P Θ ⨂Θ ⨂ P − ⨂ ⨂VΘ ⨂ ⨂ − ⨂ ] <                  (5.7.9) 

 

Although the above linear matrix inequality is just sufficient condition, in the case that Θ 

is of rank one the matrix  reduces to a scalar, which without loss of generality could be 

set to one. This in turn, leads the inequality (5.7.9) to be not just sufficient but also 

necessary condition [100]. This fact will be deployed to extract the condition for 
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quadratically assigning the modes of discrete time systems when � is a circular region. 

According to (5.7.4), for a circular region the matrix Θ is of rank one. 

It should be pointed out that, (5.7.9) indicates: 

 [ ⨂ − ⨂− ⨂ ⨂ ] >   

 

which in turn guarantees the positive definiteness of − . This, subsequently, ensures 

that − ∆ in (5.7.7) is invertible for all ‖∆‖ .  

 

In the next section, the quadratic �-stability problem will be extended to the case of 

continuous time systems which are subject to both structured norm-bounded model and 

input connection parameter uncertainties. 

 

 

5.8 Quadratic �-stability of continuous time systems with structured   

      norm-bounded parametric uncertainty entering both the state and   

      input matrix: 

 

In section 5.6, quadratic stability of continuous time systems subject to structured norm-

bounded model and input connection parameter uncertainties was studied. In the current 

section, this notion of stability will be extended to the generalized stability regions �.  

Consider the perturbed system: 

 = + ∆ + + ∆                   (5.8.1) 

 

with uncertainties characterized as: 

 [∆    ∆ ] = ∆ − ∆ − [    ],    ∆∈ × , ‖∆‖ , and ‖ ‖ <                  (5.8.2) 

 

In view of the definition 5.6.1, the system (5.8.1), (5.8.2) is quadratically �-stabilizable 

via linear state feedback control = , if and only if there exists a matrix ∈ ×  

such that the closed-loop system (5.6.5) is quadratically �-stable. 
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According to theorem 5.7.5, the condition for quadratic �-stabilizability can be stated in 

the form of the ensuing theorem. 

 

Theorem 5.8.1 [100] The system (5.8.1), (5.8.2) is quadratically �-stable via state 

feedback paradigm = , if there exist positive definite matrices P ∈ ×  and ∈�×�, and a matrix ∈ ×  such that: 

 

[  � + , P Θ ⨂ P Θ ⨂ +Θ ⨂ P − ⨂ ⨂VΘ ⨂ + ⨂ − ⨂ ] <                  (5.8.3) 

 

where  is the rank of matrix Θ, factorized as Θ = Θ Θ . As mentioned before, such a 

factorization is readily attainable from the SVD (singular value decomposition) of Θ. [97] 

 

It is explicit that the above condition is not in the form of an LMI. However, it can be 

transformed into a linear matrix inequality by letting = � and = −  [9, 106], in 

which = P−  is positive definite. That way, (5.8.3) will accordingly convert to the 

subsequent LMI based feasibility problem [100]: 

 

[  �, , , Θ ⨂ Θ ⨂ +Θ ⨂ − � �⨂Θ ⨂ + �⨂ − � ] <                  (5.8.4) 

 

where: 

  �, , , = Λ⨂S + Θ⨂ + + Θ ⨂ +                  (5.8.5) 

 

For the case that Θ is a matrix of rank one, e.g. when � is a circular region or simply the 

LHP,  the linear inequality of (5.8.4) turns to both sufficient and necessary condition for 

quadratic �-stability of the system (5.8.1)-(5.8.2).  

 

Having investigated the conditions for quadratic stability of continuous time systems 

subject to structured norm-bounded parametric uncertainties when the stability region is 

the LHP or any generalized stability region in the complex plane formulated as an LMI 



147 

 

region, we are now in a position to examine the conditions for the case of discrete time 

systems, which are the main focus of this work. As we will see, quadratic stability of 

discrete time systems is equivalent to the quadratic �-stability of continuous time systems 

when the � region is the unit circle centred at the origin of the complex plane. The results 

will then be utilized to design a robust deadbeat controller, i.e. a controller which robustly 

assigns the eigenvalues to the origin of the complex plane. 

 

 

5.9 Quadratic stability of discrete time systems with structured norm-   

      bounded parametric uncertainty: 

 

So far, the notion of quadratic stability and the conditions to achieve it has been 

investigated for the case of continuous time systems subject to structured norm-bounded 

uncertainties, characterized in (5.6.2). The concept, which on its own is developed as the 

generalization of the Lyapunov stability theorem for uncertain systems, was then 

extended to the generalized stability regions � in the complex plane, the so-called LMI 

regions. 

 

In this section the criteria to attain quadratic stability in discrete time systems perturbed 

by norm-bounded model parameter and input connection parameter uncertainties will be 

examined. The conditions will then be applied to synthesize a robust deadbeat 

compensator which robustly assigns the poles near the origin of the complex plane. 

 

The most basic form of a perturbed discrete time system is when it is subject to parametric 

uncertainty entering only the state matrix as: 

 + =                  (5.9.1) 

 

Here, ∈ ⊂  designates the vector of uncertain parameters.  

The system (5.9.1) is said to be quadratically stable in , if and only if there exists a 

matrix P > , such that for all ∈ : [117] 

 P − P <                  (5.9.2) 
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In view of the Schur complement [141], the above expression can be equivalently restated 

as the solvability of a feasibility problem with LMI constraint as: 

 [ −P PP −P ] <                  (5.9.3) 

 

Referring to the theorem 5.7.3, and also the described LMI characterization of a circle in 

(5.7.3)-(5.7.4), it can be easily seen that (5.9.3) is in fact the condition for quadratic �-

stability of the continuous time counterpart of the system (5.9.1), i.e. = , 

when the stability region is considered to be the unity circle centred at the origin. 

Basically, the conditions for quadratic stability of discrete time systems may be directly 

derived from those for quadratic �-stability of continuous time systems when � is the 

unit disk centred at the origin. This statement can be formally expressed in the form of 

the following theorem. 

   

Theorem 5.9.1 [100] Quadratic stability of a discrete time system is equivalent to 

quadratic �-stability of its continuous time counterpart when � is the unit disk centred at 

the origin of the complex plane.  

 

Let’s again take the case of the system (5.9.1). Due to the reasons stated in section 5.4, 

the perturbation will be considered to be structured and norm-bounded. This leads to the 

subsequent description of the system: 

 + = + ∆  = + ∆ − ∆ −                  (5.9.4)               

 

with real scaling matrices ∈ ×  and ∈ ×  characterizing the structure of the 

uncertainty, and the unknown matrix ∆ designating the modelling uncertainty defined as: 

 ∆∈ � ≔ {∆:  ‖∆‖ }                 (5.9.5) 

 

The direct feed-through matrix ∈ ×  (refer to (5.5.5)-(5.5.7)), is considered to be 

nonzero to account for larger class of uncertain systems. As before, for the sake of well-

posedness, the constraint ‖ ‖ <  will be assumed throughout the section.  
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Theorem 5.9.2 [100] Necessary and sufficient condition for quadratic stability of the 

system (5.9.4) is the existence of a positive definite matrix P such that: 

 [ P − P + P +P + P − − ] <                  (5.9.6) 

 

The LMI-based feasibility condition of (5.9.6) is readily achievable in view of theorems 

5.7.5 and 5.9.1, and through substitution of:  

 Λ = [− − ],    Θ = [ ]  
 

where Θ is factorized as: 

 Θ = Θ Θ = [ ] [ ]  
 

Note that as the matrix Θ is of rank one, i.e. = , the matrix ∈ �×� in the inequality 

(5.7.9) will be scalar, which as mentioned before, without loss of generality may be 

equated to one. The scalar nature of the matrix , makes the condition of (5.9.6) not just 

sufficient but also necessary. 

 

The theorem 5.9.1 may also be exploited to attain the criteria for quadratic stability of 

more general form of a perturbed system, that is when the system is subject to both model 

parameter and input connection parameter uncertainties. Obviously, such a system is 

describable by the ensuing difference equation: 

 + = +                   (5.9.7) 

 

with ∈  and ∈ . 

In the case that the structured norm-bounded formulation for perturbations is used, (5.9.7) 

is replaced by:  

 + = + ∆ + + ∆                   (5.9.8) 
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with the uncertainties parameterized as: 

 [∆    ∆ ] = ∆ − ∆ − [    ],   ∆∈ × , ‖∆‖ , and ‖ ‖ <                  (5.9.9) 

 

Now, the criteria for quadratic stability of the above system is expressible in the light of 

the theorems 5.9.1 and 5.8.1, and also the expression 5.8.4, as an LMI based feasibility 

condition as shown next: 

                                                                                                                                 

Theorem 5.9.3 Necessary and sufficient condition for quadratic stabilizability of the 

system (5.9.8), (5.9.9) via static state feedback control is the existence of a positive 

definite matrix  and a matrix  such that: 

 

[  
 − ++ − +−+ − ]  

 <                  (5.9.10) 

  

The quadratically stabilizing state feedback control law is given by = , in which = − . 

 

By recalling the fact that a deadbeat controller locates the eigenvalues at the origin, it is 

easily deduced that theorem 5.9.3 could provide the means for synthesis of a robust 

deadbeat controller when the system is subject to uncertainty. This motivates the 

discussion of the next sections. 

 

 

5.10 Quadratic �-stability of discrete time systems with structured    

      norm-bounded parametric uncertainty when � is a circular   

      region: 

 

In most practical applications we are interested in locating the eigenvalues in some 

specific region of the complex plane, which is considered as one of the major approaches 

for guaranteeing the dynamical behaviour of the system. In our case, i.e. deadbeat control, 

it was observed that achieving the deadbeat response necessitates the placement of all 
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closed-loop poles at the origin. According to the model-based design procedure of the 

compensator, and the fact that in practice all the mathematical models of real physical 

systems are subject to modelling errors, which can severely compromise the robustness 

and performance of the system, it seems natural to look for robust pole clustering 

schemes. In the case of the deadbeat controller, in order to maintain as far as possible the 

approximate deadbeat characteristic of the response, the eigenvalues should be robustly 

assigned as close as possible to the origin of the complex plane, despite the variation of 

the uncertain parameters within the uncertainty region. In this case, if the achievable 

worst-case spectral radius of the closed-loop matrix is sufficiently small, the tail of the 

impulse response of the system (although not optimal-time deadbeat any longer) will be 

guaranteed to exhibit the sufficiently high decay characteristics and thus will be a good 

approximation to an ideal deadbeat response. Note that for uncertain systems, despite the 

presence of the model of the perturbations, it is in general impossible to exactly locate the 

eigenvalues at a specific place of the complex plane. Therefore, the solution of a robust 

regional pole-placement problem is of great significance. It is important to note that, from 

the robust performance point of view, it is essential to locate the poles of the uncertain 

system as close as possible to those of the nominal system, because the performance of 

two systems with severely separated eigenvalues differ significantly from one another. 

This in turn, compels that the region in which the eigenvalues of the uncertain system are 

cluttered, is as small as possible. Hence, the aim will be quantitatively defining the 

smallest region which encompasses all the eigenvalues of the closed-loop system, and 

also designing a compensator which assigns the eigenvalues to such a region.  

 

In the previous section, the criterion for quadratically stabilizing a discrete time system 

was investigated. In the current section though, the required modifications on the stated 

condition in theorem 5.9.3 will be examined, in order to synthesize a quadratically �-

stabilizing compensator, when � is a circular region of radius  and centred at ∈ ℂ. 

This region is denoted by ,  and is such that − | |. Notice that in the case of 

the robust deadbeat controller, it is desired that this circular region is centred at the origin 

and has the smallest possible radius.  

Consider the case of an uncertain discrete time system described as: 

 + = + ∆ + + ∆                   (5.10.1) 
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with the structured perturbations ∆ ∈ ×  and ∆ ∈ × , assumed to belong to the 

compact bounding set Ω in × × × : 

 ∆ , ∆ ∈ Ω                 (5.10.2) 

 

Theorem 5.10.1 [102, 119] When � is , , the uncertain system (5.10.1), (5.10.2) is 

quadratically �-stabilizable with the static state feedback controller =  if 

there exists a matrix ∈ ×  and a positive definite matrix P ∈ ×  such that: 

 P − � + + ∆ + ∆ P � + + ∆ + ∆ >                  (5.10.3) 

 

where � = − .  is regarded as the design parameter which varies in accordance 

with the intended location of the poles. 

 

In view of the theorem 5.10.1, the objective is rephrased as determining the minimum 

radius ∗ of the disk ,  enclosing all the poles of the system (5.10.1), when it is 

subject to the perturbations characterized in (5.10.2). In addition, the controller which 

renders the described system quadratically stable in , ∗  needs to be computed. 

 

In view of the reasons for assuming structured norm-bounded perturbations presented in 

section 5.5, let us again consider the model parameter and input connection parameter 

uncertainties to have the characterization defined in (5.9.9) as: 

 [∆    ∆ ] = ∆[    ],   ∆∈ × , ‖∆‖                  (5.10.4) 

 

Note that for the sake of simplicity here the feed-through matrix  is set to zero. Now, the 

condition for quadratic �-stability of the uncertain system (5.10.1), (5.10.4), when � is 

the disk , , is stated in following theorem. 

 

Theorem 5.10.2 [120, 118] The uncertain system (5.10.1), (5.10.4) is quadratically �-

stabilizable in ,  if and only if there exists a symmetric positive definite matrix ∈×  and a matrix ∈ ×  such that: 
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[ − + −+ − ++ ] >                  (5.10.5) 

 

Clearly, the LMI-based feasibility condition of (5.10.5) may be derived directly as a 

special case of theorem 5.9.3.  

The stated condition of theorem 5.10.2 leads to the formulation of the problem of defining 

the minimum radius ∗ of the disk ,  in which the eigenvalues are clustered. In fact, 

the problem is expressible as the ensuing optimization problem [118]: 

 min                                                                                                          

subject to: 

 

[ − + −+ − ++ ] >                  (5.10.6)  

 

The problem has a solution ∗ if and only if the perturbed system (5.10.1), (5.10.4) is 

quadratically �-stabilizable. In this case, the disk with minimum radius ∗ centred at , 

containing all the closed-loop eigenvalues, is achievable as: 

 ∗ = √ ∗ − | |                 (5.10.7) 

 

Moreover, the state feedback compensator which assigns all the poles inside the circular 

region , ∗  is = , where = −  with  and  being any feasible 

solution of the linear matrix inequality (5.10.5). It is apparent that if the optimization 

problem is infeasible, there is no quadratically �-stabilizing controller. 

It is interesting to note that by substituting for =  and = , the theorem 5.10.2 yields 

the criterion for quadratic stability of a discrete time system.  
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5.11 Robust deadbeat controller: 

 

In chapter 3, the deadbeat control synthesis problem was defined as that of designing a 

control law such that the closed-loop system matrix is nilpotent, i.e. it has all its 

eigenvalues located at the origin of the complex plane. The nilpotency property, enabled 

us to recast the controller synthesis as an eigenvalue assignment problem. However, due 

to the presence of uncertainties, the deadbeat characteristic of the system response may 

be adversely affected and lost. Therefore, it seems essential to robustly cluster all the 

closed-loop poles at the origin. Clearly, since the nature and structure of the perturbations 

are known to us only to a limited extent, it is almost impossible to exactly assign all the 

poles to the origin. This reveals the requisite to place the eigenvalues in the smallest 

possible region centred around the origin.  

 

In the previous section, we studied a procedure that provided the smallest circular region 

in which all the poles could be located. In this section, the procedure will be employed to 

attain the minimum radius of the disk centred at the origin, encompassing all the closed-

loop eigenvalues. This will obviously, yield the best achievable approximate deadbeat 

response. The controller which accomplish the assignment will also be defined. 

 

In chapter 2, the framework based on which this thesis has been developed was illustrated 

in figure 2.3.1. The set of all internally stabilizing controllers were obtained as the 

combination of a stable observer and a stabilizing state feedback, depicted in figure 2.7.1. 

According to the mathematical description of the closed-loop system, characterized in 

(2.7.6), the set of closed-loop poles is achievable as the union of that of the state feedback 

and the observer, i.e. the eigenvalues of +  and + , respectively. Hence, the 

requirement for having a deadbeat response compels us to assign the whole set of the 

modes to the origin, or in the presence of the uncertainty, to the smallest circular region 

centred at the origin.    

Due to the structure of the closed-loop system matrix:  

 = [ + −+ ]  
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where ,  , and  matrices are all assumed to be subject to the structured norm-

bounded parametric uncertainties, ∆ , ∆ , and ∆ , it may seem that the problem of 

determining the smallest circular region enclosing all the closed-loop modes is dependent 

on both of the state feedback and the observer, while they are coupled. However, in what 

follows we show that computation of the optimum radius could in fact be reduced to 

finding the maximum value of the two achievable minimum radii associated with each of 

the state feedback and the observer systems, whose perturbed state space matrices are 

designated by the pairs + ∆ , + ∆  and + ∆ , + ∆ , respectively. 

Hence, the problem of robust deadbeat controller design may be formulated as that of 

determining the maximum radius of the two calculated circular regions of minimum 

radius, each encompassing the eigenvalues of the state feedback or the observer. To see 

this, take the perturbed state space description of the closed-loop system as: 

 + = [ + ∆ ] + + [ + ∆ ]   = + +                                               (5.11.1) = [ + ∆ ] + + [ + ∆ ]  

 

in which the uncertainties are characterized as: 

 [ ∆ ∆∆ ∆ ] = [ ] ∆[    ]                 (5.11.2) 

 

with , , , and  being known real matrices of compatible sizes, describing the 

structure of the perturbations, while the unknown matrix ∆ designates the modelling 

uncertainty. The uncertainty is assumed to be bounded and normalized as follows: 

 ∆∈ � ≔ {∆:  ‖∆‖ }                 (5.11.3) 

 

Now, the robust deadbeat problem may be defined in the form of problem 5.11.1: 

 

Problem 5.11.1 For ∆ , ∆ ∈ Ω  and ∆ , ∆ ∈ Ω  where Ω  and Ω  are compact 

sets, minimize the radius  of the disk , , enclosing all the closed-loop eigenvalues 

of , such that the matrices: 
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+ ∆ + + ∆    and    + ∆ + + ∆   

 

are quadratically �-stable. 

                     

In (5.11.2), for the sake of simplicity, and without loss of generality, it will be assumed 

that  and accordingly ∆  are zero. The procedure for eliminating the feed-through 

matrix has been elaborated in [6]. It will also be presumed that = = = = . 

The assumptions leads to the simplification of (5.11.2) to: 

 [ ∆ ∆∆ ] = ∆                 (5.11.4) 

 

Relative to (5.11.3), the uncertainty may now be described by: 

 ‖∆‖ = ‖[ ∆ ∆∆ ]‖                  (5.11.5) 

 

In [137], Parrott investigates minimization problem of the norm on the left hand side of 

the above inequality. The result of his work is given in the form of the following theorem. 

 

Theorem 5.11.2 [137, 1] The infimum over all choices of the operator  of the norm of 

the operator matrix [ ] whose entries are matrices of appropriate dimensions, is the 

minimum of the norms of the first row and of the first column: 

 min‖[ ]‖ = max {‖[ ]‖ , ‖[ ]‖ }  
 

Parrott’s theorem, which plays an important role in many control related optimization 

problems, states that the minimization problem can be expressed as two decoupled 

minimization problems. In view of his theorem, (5.11.5) can be restated as two 

independent norm bounds as: 

 ‖[∆ ∆ ]‖    and  ‖[ ∆∆ ]‖                  (5.11.6) 
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From (5.11.6) it can be inferred that the robust deadbeat control design problem,  which 

in fact is equivalent to minimizing the radius of the circular region enclosing all the 

closed-loop poles, is expressible as two decoupled minimization problems in which the 

radius of each of the disks enclosing the eigenvalues of the state feedback and the observer 

are minimized. The smallest possible circular region in which all the closed-loop poles 

can be located is then achieved as the disk with greater radius. The minimum radius 

associated to each of the state feedback and observer systems can be readily computed by 

means of the procedure presented in the theorem 5.10.2. The state feedback and observer 

gains, respectively denoted by  and , are also achievable as the by-product of the 

theorem. 

The proposed control design procedure has been clarified by means of the following 

example. 

 

Example 5.11.1 This example considers the design of a robust deadbeat controller when 

the system is subject to structured norm-bounded parametric uncertainties. The system 

under consideration is a DC motor with the electrical model depicted in figure 5.11.1.  

 

 

 

Figure 5.11.1 The electric equivalent circuit of the armature and the free-body diagram  

                        of the rotor 

 

It is assumed that the input of the system is the voltage source  applied to the motor’s 

armature, while the output is the rotational speed of the shaft �. A viscous friction model 

is further assumed. The friction torque is proportional to the shaft angular velocity. The 

physical parameters of the system are as follows: 
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 = moment of inertia of the rotor = .  .  = motor viscous friction constant = .  . .  = electromotive force constant = .  / /  = motor torque constant = .  . /  = electric resistance =  Ω = electric resistance = .   

 

In figure 5.11.1, the back-emf is designated by ; this is proportional to the angular 

velocity of the shaft, the constant of proportionality being : 

 = �  

 

For a fixed external magnetic field, the motor torque, denoted by , is proportional to the 

armature current  with constant of proportionality : 

 =   

 

Based on the above description, the system state space model when the state vector is 

defined as = [� ], is: 

 = +   =   

 

in which: 

 

= [−− − ] ,       = [ ],       = [ ]       
 

Note that in the state space model it is assumed that = = . The continuous time 

model is discretized with sampling interval of = .  , and the zero-order-hold 

equivalent state space discrete-time model is: 
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+ = +   =   

 

In order to design a robust deadbeat compensator, it is assumed that all the matrices , 

, and  in the discrete state space model are uncertain, with the uncertainty models 

, , and , respectively, which are shown below: 

 

 [∆    ∆ ] = ∆ [    ],    ‖∆ ‖   

in which 

 = [ . . ]   = [ . . ]  = .    

 

and 

 [∆    ∆ ] = ∆ [    ],    ‖∆ ‖  

 

in which: 

 = [ . . ]   = [ . . ]  = .   

 

In view of the discussion in this section, the robust deadbeat control design problem 

reduces to that of finding the maximum value of the two achievable minimum radii 

associated with the state feedback and the observer eigenvalues, respectively.  

 

The example is simulated in MATLAB. The minimum radii of the two circular regions 

containing the eigenvalues of the pairs +  and + , for the defined 

structured model uncertainty in the pairs + ∆  , + ∆   and + ∆  , +∆   are obtained as 0.34249 and 0.037804, respectively.  
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The locus of the eigenvalues of +  and +  for 100 equally spaced values 

of ∆  and ∆  between -1 and 1 are depicted in figures 5.11.2 and 5.11.3. Note that this 

entails no conservativeness as at least one eigenvalue is located at the boundary in each 

case. Clearly, the smallest possible circular region in which the closed-loop eigenvalues 

of the uncertain system are clustered is a disk of radius 0.34249. The controller gain which 

assigns the eigenvalues to this disk was achieved as [− . − . ].  
 

 

Figure 5.11.2 The eigenvalue locus of +  
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Figure 5.11.3 The eigenvalue locus of +  

 

 

5.12 Conclusion: 

 

This chapter considered the synthesis problem of robust deadbeat controller when the 

system is subject to the parametric uncertainty. First, the two major classes of 

perturbations, namely the parametric uncertainty and the neglected or unmodelled 

dynamic uncertainties, were briefly reviewed. Next, the sensitivity of an eigenvalue , 

designated by , to parametric uncertainties was examined. It was shown that  depends 

critically on the magnitude of the condition number associated with . It was also 

observed that the condition number of the eigenvector matrix may provide an upper bound 

on the sensitivities of the eigenvalues, hence establishing a measure for the robustness of 

the eigenvalues to model perturbations. This was then followed by a revision of the 

Lyapunov theorem, which is known to be one of the major tools in stability analysis.  

 

General descriptions of uncertain models were then given. By assuming structured norm-

bounded parametric uncertainties for characterization of the perturbations, the notion of 

quadratic stability was generalized to uncertain systems subject to perturbations of this 

type entering either the state, or both the state and input matrices, respectively, known as 
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model parameter uncertainty and input connection parameter uncertainty. Necessary and 

sufficient conditions for quadratic stability of these systems were obtained in the form of 

the LMI-based feasibility conditions. As was discussed, by imposing structure for the 

perturbations, quadratic stability is achievable through application of a linear time-

invariant compensator. 

  

The demand to have robust performance in the face of the uncertainty, which in turn 

necessitates robust assignment of the closed-loop poles to generalized stability regions of 

the complex plane, denoted by �, led us to the problem of quadratic �-stability. As a 

matter of fact, quadratic �-stability extended �-stability to uncertain systems in a similar 

way that quadratic stability extends stability to uncertain systems. Generalization of the 

Lyapunov theorem to the sub-regions of the complex plane was accomplished through 

introduction of LMI-defined regions. Again, the necessary and sufficient conditions for 

quadratic �-stability of a system when it was subject to only the model parameter 

uncertainty, or both model and input connection parametric uncertainties, were derived.  

 

Up to this point, all the stability criteria obtained were based on the description of 

continuous time systems. All the results were next translated into the discrete time case. 

This was achieved by using the fact that quadratic stability of a discrete time system is 

equivalent to quadratic �-stability of its continuous time counterpart, when � is the unit 

disk centred at the origin of the complex plane.  

 

In order to design a robust deadbeat controller, the results were employed to robustly 

locate all the closed-loop poles in the smallest possible circular region, centred at the 

origin of the complex plane. The radius of the disk, was computed as the solution to an 

optimization problem with LMI constraints. It was observed that the problem of robust 

deadbeat controller synthesis is expressible as that of determining the maximum radius 

of the two circular regions of minimum radius, each encompassing the eigenvalues of the 

state feedback or the observer parts of the closed-loop state matrix. So, in spite of what 

could be inferred from the structure of the uncertainty, the two problems were decoupled.  

Therefore, the main contribution of this chapter was proposing a new procedure for 

designing robust deadbeat controller when the system is subject to structured norm-

bounded parametric uncertainties. The procedure was in terms of LMIs.  
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Chapter 6 

Deadbeat controller design with �∞ norm 

minimization constraint; the LMI approach 
 

 

 

6.1 Introduction: 

 

This chapter deals with the synthesis problem of deadbeat controller subject to the ∞ 

norm optimization constraint, which is regarded as a frequency domain constraint.  

First, a brief introduction to the notion of the ∞ norm and its interpretation is given. This 

is followed by the formulation of the optimal and suboptimal ∞ control problem and its 

motivations. Three major schemes to solve the ∞ problem, namely the model-matching, 

Riccati equation-based, and the LMI approaches, are then reviewed.  

 

Based on the -parameterization of the closed-loop system discussed in chapter 2, it is 

shown that the Markov parameters of the design parameter  appear affinely in only the 

 and  matrices of the state space realization of the closed-loop system. This feature 

will be exploited to formulate the constrained design problem of deadbeat controller in 

the LMI framework. The resulting LMI will be a linear function of the matrix variables, 

which is due to the above property in the description of the closed-loop system.  

As in earlier chapters, ∞ will denote the space of real-rational proper and stable 

transfer matrices. 

 

 

6.2 The �∞ norm: 

 

In any control system, further to providing the internal stability, the objective is to fulfil 

certain design specifications. A direct criterion corresponding to the description of 

performance specifications, is offered by the notion of the signal norms. Quantitative 
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treatment of the performance of a control system requires introduction of appropriate 

norms for certain signals of interest, which are directly dependent on the situation at hand.  

Another concept closely related to the size of a signal is the size of a system, which is 

also of great importance. As it is well known, a system is a mapping from one signal 

space, the input space, to another signal space, the output space, respectively designated 

by  and . To facilitate accommodating the discussion in this chapter to the work in 

this thesis, take the general framework of the figure 2.3.1, which resulted in the equivalent 

construction of the figure 6.2.1, and its associated input-output mathematical 

characterization as: 

 = ℱ ( [ ] , ) = +                  (6.2.1) 

 

The closed-loop mapping  may be described by: 

 ∶ →   

        : → =                  (6.2.2) 

 

Regarding  as an operator from input space to the output space, a norm is induced by 

the normed-spaces  and  on , which loosely speaking quantifies the amplification 

(or attenuation) applied by the system on a given input signal . Hence, the system norm 

which is also known as the system gain, gives an implication of the achievable 

performance of a system for various classes of input signals.  

 

 

 

Figure 6.2.1 The equivalent representation of the general framework of the figure 2.3.1 
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One of the most fundamental norms defined for characterizing the performance of a 

system in analysis and design, is the so-called ∞ norm. The ∞ norm is an operator 

norm which is induced by the  norm, i.e. when both the input and output signals belong 

to the  space. The set of square-summable signals (sequences), i.e. the signals with finite 

energy, forms the  space. The  norm of a signal = , , , … ∈  in the time 

domain, denoted by ‖ ‖ , is given by [121]: 

 ‖ ‖ = [∑∞= ] ⁄                  (6.2.3) 

 

The  space in the time domain may be related to the  space in the frequency domain, 

respectively denoted by −∞,+∞  and . This is accomplished according to the 

fact that a function in the  space in the time domain admits a bilateral Fourier transform, 

which yields an isometric isomorphism between −∞,+∞  and  [1]. It can be 

shown that discrete Fourier transform of the signal ∈ −∞,+∞ , designated by ̂ � , belongs to the space of square-integrable functions on the unit circle [121]. 

 

Having reviewed the  norm of signals, the ∞ norm of the system , designated by ‖ ‖∞, may be defined as the norm induced by the  norms of the input signal  and 

the output signal , as: 

 ‖ ‖∞ =  
‖ �� ‖‖ ‖ ,    ∈  and ‖ ‖ ≠                  (6.2.4) 

 

For obvious reasons, the ∞ norm is also referred to as the  gain of the system. Clearly, 

this quantity represents the largest possible  gain provided by the system over the set of 

all square-summable signals. 

The ∞ norm may also be computed in the frequency domain, and is expressible as: 

 

 ‖ ‖∞ = sup� �̅ ( �)                  (6.2.5) 

 

in which �̅ denotes the largest singular value of the system, with the supremum being 

over all frequencies  [1]. 
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In the case of  being a scalar transfer function, its infinity norm can be interpreted as 

the distance between the origin and the farthest point on the Nyquist plot of , or as 

the peak value on the Bode magnitude plot of | | [6]. However, in general it is an 

indicator of the worst-case energy of the output for energy bounded inputs, which 

accordingly could come naturally as a measure of the worst case performance for many 

classes of input signals. 

 

 

6.3 The �∞ control problem formulation and its motivations: 

 

As was mentioned in the previous section, many of the control objectives can be 

formulated as requiring a certain closed-loop transfer matrix be small in some sense. One 

of the measures to express the smallness of the transfer matrix, was defined as the ∞ 

norm or equivalently the  gain of the system.  

Basically, the standard form for the control problem in which the objective is ∞ norm 

minimization of the transfer matrix of interest, which in our case is , can be 

formulated as what follows.  

 

Definition 6.3.1 [122] Given the closed-loop mapping = ℱ , , find a stabilizing 

proper compensator  that minimizes the ∞ norm of the transfer matrix from  to : 

 min  ‖ ‖∞ = min  ‖ℱ , ‖∞                 (6.3.1) 

 

As can be seen, the ∞ problem is stated based on the scheme of the figure 2.3.1. 

However, in view of the -parameterization of the closed-loop map, illustrated in figure 

6.2.1, and its associated mathematical description of (6.2.1), the problem may be recast 

as:  

 

Definition 6.3.2 Find the stable (otherwise arbitrary) parameter , such that the following ∞ norm in minimized: 

 min∈ ∞‖ℱ , ‖∞ = min∈ ∞‖ + ‖∞                 (6.3.2) 
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Evidently, two above descriptions of the problem leads to the optimum value. Yet, very 

often in practice, finding the optimal solution is both theoretically and numerically 

involved. In general, such solutions may be unattainable, ill-conditioned of high 

McMillan degree [123]. This reveals the need for seeking suboptimal controllers, 

achievable as the solution to the following problem definition: 

 

Definition 6.3.3 [1] Given > , find all admissible controllers , if any, such that ‖ ‖∞ < . 

 

Originally, the ∞ optimization problem initiated from the requirement to reduce the 

sensitivity of a feedback system against disturbances. It first appeared in the seminal work 

of Zames [125] and Doyle, Stein [126]. Some of the most celebrated examples of control 

objectives expressible as ∞ norm constraints are disturbance attenuation, robust control, 

and the mixed sensitivity problem. These problems and more other classical synthesis 

problems which can be recast as an ∞ optimization problem, have been discussed in 

[124, 83, 19]. For an extensive list of references we refer the reader to [122]. 

 

 

6.4 Approaches to solve the �∞ optimization problem: 

 

Having reviewed the description of ∞ minimization problem in previous section, we 

aim now to concentrate on the solution of the problem. Various approaches for tackling 

the ∞ problem have been introduced in the literature, some of which are developed in 

the frequency domain and some in the state space framework. In this section, the focus 

will be on the three major procedures, which will be discussed briefly as we proceed. The 

discussion pertains to the figure 6.2.1, and its associated mathematical characterization in 

(6.2.1).   

 

One of the earliest approaches to treat the ∞ problem, is the so-called model-matching 

problem. As the name suggests, in this scheme the ∞ problem is considered to be 

equivalent to that of matching two models. With regard to the closed-loop description of 

the figure 6.1.1 as = + , it is readily observed that the ∞ minimization 

problem may be interpreted as matching the given transfer matrix − ∈ ∞, with the 
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cascade of the three transfer matrices , in which  and  are known transfer 

matrices in ∞, whereas the ∈ ∞ is the design parameter. This interpretation has 

been depicted in figure 6.4.1 [127]. 

 

 

 

Figure 6.4.1 Model-matching problem illustration 

 

Based on the above interpretation, the main problem is now expressible as finding ∈∞ such that the model-matching error ‖ + ‖∞ is minimized (or kept below 

a specified level) [127]. According to [128], a sufficient condition to achieve the 

minimum is that the two matrices  and   have constant ranks for all the frequencies < ∞. In practice, this condition for well-defined problems is fulfilled. 

In order to compute a solution to the model-matching problem, it has been shown in [128] 

that the problem is equivalent to yet another problem, the so-called Hankel-norm 

approximation problem, also known as the Nehari extension problem. To see this, let us 

assume that  and   are square and inner (or all-pass), i.e. [1, 133]: 

 ~ =    and   ~ =                  (6.4.1) 

 

in which the tilde designates the parahermitian transpose of the transfer matrix. Now, the 

model-matching error, owing to the norm-preserving property of the inner matrices [1], 

may be reformulated as: 

 ‖ + ‖∞ = ‖ ~ ~ + ‖∞ = ‖ ~ ~ + ‖∞                               

                                = ‖ ~ + ~‖∞                                                  (6.4.2) 

 

 

 

  

  − 

+ 
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In (6.4.2), while ~ is unstable, ~  has only stable eigenvalues [129]. By denoting ~  as , the model-matching problem transforms into that of approximating a 

stable transfer matrix  by the unstable one − ~: [122] 

 min∈ ∞‖ + ‖∞ = min∈ ∞‖ + ~‖∞                 (6.4.3) 

 

The above results rely on the assumptions that  and   are inner. As it is stated in 

[127, 130], this may be accomplished through appropriate selection of the state feedback 

gain  and the observer gain , in the  parameterization of the system. However, the 

first assumption made on  and  , i.e. being square, is violated by some important 

classes of problems, e.g. the mixed performance and robustness problem [83]. In the 

general case that  and   are neither square nor inner, it is always possible to find 

orthogonal complements of the transfer matrices  and  , respectively denoted by ⊥ and  ⊥, such that [ ⊥] and [ ⊥]  are square and inner [1]. 

Following the same procedure in (6.4.2), we will have [133, 127]: 

 ‖ + ‖∞ = ‖[ + ]‖∞                 (6.4.4) 

 

in which: 

 = ~ ~        ,     = ~ ⊥~                     (6.4.5) = ⊥~ ~      ,     = ⊥~ ⊥~  

 

Therefore, (6.4.4) converts the problem of minimizing the model-matching error to that 

of the ∞ norm minimization of the quantity on the right hand side of the equality as: 

 min∈ ∞‖ + ‖∞ = min∈ ∞ ‖[ + ]‖∞                 (6.4.6) 

 

This is known as the four-block problem, compared to the special case of (6.4.3), which 

consists of just one block, hence the name one-block problem.  
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The right hand side identity in the equality (6.4.6) may also be inferred as the distance 

between a transfer matrices = [ ] and − ∈ ∞, hence the name distance 

problem as an alternative [133]: 

 min∈ ∞ ‖[ + ]‖∞ = dist , [ ∞ ]                  (6.4.7) 

 

The solution to such problems is extensively elaborated in [130] for the case of continuous 

time systems. It is developed based on the notion of the norm of a certain operator, the 

so-called Hankel operator [132], usually designated by . It is shown that the norm of  

equals the spectral norm of the square root of the product of the controllability and 

observability Gramians of the transfer matrix , and that the minimal model-matching 

error equals the norm of the Hankel operator [133, 131, 130]. For a discrete time treatment 

of the distance problem the reader is referred to [134]. 

 

According to the fact that in the Hankel approximation problem, the procedure to attain 

the solution is both theoretically and computationally very involved, in [136] Glover et 

al. propose a new approach which relies on the solution to two algebraic Riccati equations 

with the same order as the system. Here, we will briefly describe their approach. The 

results are given in terms of the description of systems in the continuous time framework, 

which is regarded as the more standard framework. 

It is well-known that associated with the continuous time algebraic Riccati equation: 

 ∗ + + + =                  (6.4.8) 

 

in which ,  and  are real ×  matrices with  and  symmetric, there exists a ×
 Hamiltonian matrix: 

 = [− − ∗]                 (6.4.9) 

 

Assuming that  has no eigenvalues on the imaginary axis, the spectrum of , i.e. � , 

will be symmetric about the imaginary axis. It is then possible to construct two invariant 

subspaces of dimension , corresponding to the stable and unstable modes of , 
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respectively denoted by −  and + . If we could find a basis for −  and 

partition it as: 

 

− = Im [ ] ,   , ∈ ℂ ×                  (6.4.10) 

 

such that  is nonsingular, or equivalently, the two following subspaces are complement: 

 

−  ,  Im [ ]                 (6.4.11) 

 

we can then define  as = − .  is uniquely determined by . In other words, →
 serves as a function, known as Ric, with the domain designated by dom Ric . 

Therefore, dom Ric  encompasses Hamiltonian matrices with no purely imaginary 

eigenvalues, and those for which the two subspaces in (3.6.11) are complementary. These 

two features of the elements of dom Ric  are usually recognized as the stability property 

and the complementarity, respectively. [1] 

 

Theorem 6.4.1 [1] Suppose ∈ dom Ric  and = Ric . Then: 

 

(i)  is real symmetric. 

(ii)  satisfies the algebraic Riccati equation of (6.4.8). 

(iii) +  is stable. 

 

In the above theorem,  is called a stabilizing solution to the Riccati equation of (6.4.8), 

i.e. the set of spectrum of +  is in the open LHP. 

The proposed approach in [136] to tackle the sub-optimal ∞ problem and the conditions 

for solvability of the problem, is based on the above way of constructing stabilizing 

solutions to the Riccati equation in terms of invariant subspaces of . In [135], Doyle et 

al. consider a simplified version of the problem stated in [136], by equating the  and 

 matrices in the plant state space description (expression (2.3.2)) to zero.  For the sake 

of brevity, in here we just represent the results stated in [135] in the form of the theorem 

6.4.2. It should be pointed out that the results are based on further assumptions on the 
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plant, which will not be restated here. These assumptions are quite standard and may be 

found in many references, e.g. [135, 136, 1, 85]. 

 

The solution and solvability conditions for the sub-optimal ∞ problem, i.e. ‖ ‖∞ <
 for some > , involves two Hamiltonian matrices: 

 

∞ = [ − −− − ]                 (6.4.12) 

 

∞ = [ − −− − ]   
 

Theorem 6.4.2 [135] There exists an admissible controller such that ‖ ‖∞ <  if and 

only if the following three conditions are satisfied: 

 

i) ∞ ∈ dom Ric  and ∞ = Ric ∞  

ii) ∞ ∈ dom Ric  and ∞ = Ric ∞  

iii) � ∞ ∞ <  

 

As can be seen, the feasibility condition is expressed in terms of the existence of unique 

positive definite stabilizing solutions to two algebraic Riccati equations, such that the 

spectral radius �, of their product is less than . 

 

Conditions for the general case i.e. when  and  matrices are nonzero, are studied 

in [136]. The sub-optimal controller is parameterized in both [135] and [136], when the 

problem is feasible. 

 

Having surveyed two of the major methods for tackling the ∞ problem, we conclude 

this section by introducing yet another scheme for treating the problem. In this approach, 

the ∞ norm minimization problem is transferred into a standard linear matrix inequality 

(LMI) feasibility problem. [142] The LMI characterization of the ∞ problem, is the so-

called bounded real lemma, which is stated in the form of the following theorem: 
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Theorem 6.4.3 [106, 6] For an asymptotically stable discrete time system with the state 

space realization = − − + , ‖ ‖∞ <  if and only if there exists a 

symmetric positive definite matrix  such that: 

 

[ − − − ]                  (6.4.13) 

 

It is well-known that LMIs arise in many control analysis and synthesis problems and are 

reformulable as convex optimization problems, which correspondingly makes them 

readily amenable to computer solutions. [141] Moreover, LMI problems can be solved 

via efficient tractable numerical algorithms, e.g. interior-point method. [9, 103, 104, 105, 

106] LMIs are especially beneficial for solving problems lacking analytical solution. Due 

to these peculiar attributes of LMIs, they have always been of special interest to many 

researchers and engineers. 

In the next section, this approach will be exploited to synthesize a deadbeat compensator 

with ∞ norm constraint. 

 

 

6.5 Synthesis of deadbeat controller subject to �∞ norm constraint:  

 

In chapter 4, we looked upon the synthesis problem of the deadbeat controller under time 

domain constraints. In this section though, we consider the compensator design problem 

subject to the ∞ norm minimization. According to the brief introduction of the ∞ norm 

and its interpretation given in section 6.2, by minimizing the ∞ norm of the system we 

in fact minimize the largest possible  gain provided by the system over the set of all 

square-summable input signals, i.e. the signals with finite energy. In other words, the peak 

in the magnitude frequency response of the closed-loop system is minimized for that 

specific class of the input signals. 

The current section is again based on the closed-loop interconnection of the figure 6.2.1, 

and its associated characterization: 

 = +                  (6.5.1) 
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in which , , and  are all FIR and belong to the set of proper and stable rational 

transfer matrices ∞. The design parameter  is also considered to be FIR and stable. 

The requirement of the transfer matrices being deadbeat, obviously renders the closed-

loop system as deadbeat.  

Now, consider that  is an + -tap FIR system as:  

 = ∑ −=                  (6.5.2) 

 

with ’s being matrices of dimension × : 

 

= [ ⋱ ]                 (6.5.3) 

 

Each Markov parameter  may alternatively be characterized in terms of the selection 

matrices  of size × , with all elements equal to zero except the -th element being 

one, which corresponds to the -th element in . Parameterizing ’s  in this fashion 

will accordingly yield to the following description of the closed-loop system: 

 = + ∑ ,= , = + ∑ ,= , = − +                     

           +∑ ,= , = −                                                                       (6.5.4)      

 

or equivalently: 

 = + ∑ , ,= , = , = −                  (6.5.5) 

 

The expression (6.5.5) reveals a substantial property of the closed-loop system, that is all 

the design parameters , = ,… , , = ,… , , = , … ,  appear affinely in only 

the  and  matrices of the state space realization of the closed-loop system . Hence, 

the realization of  can be represented as: 

 = − − +                  (6.5.6) 

 



175 

 

emphasizing the fact that the  and  matrices are affine functions of the design 

parameters .  

 

Based on the above characterization of the closed-loop system which is clearly deadbeat, 

the design problem of the deadbeat compensator with ∞ norm constraint may now be 

easily formulated in the framework of the theorem 6.4.3 as an LMI. It should be pointed 

out that what makes the description of (6.5.5) peculiar is that it imposes the LMI in 

(6.4.13) to be linear in terms of the matrix variables, which are the symmetric positive 

definite matrix , , and . 

 

In order to represent how the above procedure works, we have considered as an example 

the synthesis problem of a deadbeat controller with the requirement of the ∞ norm of 

the regulated output being optimized, for the case of a random SISO system. 

 

Example 6.5.1 Consider the unity feedback configuration of figure 6.5.1 in which the 

plant  is the DC motor with the state space model described in the example 5.11.1. The 

regulated variable  is the rotational speed of the motor shaft. In this example the aim is 

to design a deadbeat controller such that the ∞ norm of the closed-loop system is 

minimized. 

 

 

 

Figure 6.5.1 Unity feedback configuration 

 

The feedback configuration of figure 6.5.1 can be reconstructed in the equivalent form of 

a lower LFT configuration, as illustrated in figure 6.5.2. 

 

  + − 
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Figure 6.5.2 The equivalent lower LFT configuration of figure 6.5.1 

 

In the new framework, the objective transforms into designing the deadbeat controller  

such that ‖ ‖∞ is minimized.  

 

Regarding the discussion in chapter 2, the closed-loop transfer matrix is parameterized 

as: 

 = ℱ , = +   

 

in which the design parameter  is considered to be FIR. 

By designing the state feedback and observer gain matrices in the observer-based 

controller such that all the eigenvalues of the closed-loop system  are assigned to the 

origin of the complex plane (expression (2.7.6)), all , , and  transfer functions 

are achieved respectively as 5-, 3-, and 3-tap FIR systems. Since in this example all the 

sub-systems are SISO, the series connection of  , and , designated by , can be 

obtained as the convolution of two polynomials. To start with,  is assumed to be a 3-tap 

FIR system. 

Having represented , , and  in terms of their Markov parameters as: 

 = + − + − + − + −   = + − + − + − + −                       = + − + −   
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the closed-loop system is realizable as = − − +  in which ∈6×6 is a shift matrix made up of all zeros except for ones on the first super-diagonal, = 6 denoting the last column of the identity matrix of size six. Also, the  and  

matrices are as follows: 

 = + =  

[ ] [ ]  
+ [ ]  
 

= + = [ ] [ ] +   

 

Now, the design problem is expressible as: 

 min�, ,     

 

S.t. [ − − − ]                  

 

where = ‖ ‖∞.  

 

This example was simulated in MATLAB, and minimum value of ‖ ‖∞ for various 

orders of the design parameter  were achieved and represented in table 6.5.1. The third 

column in the table shows the number of variables involved in solving the minimization 

problem. Clearly, by increasing the order of the controller the number of decision 

variables drastically increases. 
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Order of  Value of the minimized norm Number of variables 

1 8.6404 11 

2 5.5105 17 

3 3.8628 24 

5 1.9656 41 

7 1.2424 62 

9 1.0661 87 

 

Table 6.5.1 

 

The frequency response magnitude of the closed-loop system was also plotted for 

different orders of , and illustrated in figure 6.5.3. As can be seen, by increasing the 

order of , the  gain of the system uniformly reduces towards zero and become more 

flat all the time. 

 

 

 

Figure 6.5.3 Frequency response magnitude for different orders of  
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6.6 Conclusion: 

 

In this chapter, the design problem of deadbeat controller subject to the ∞ norm 

minimization was investigated. As it is known, the ∞ norm is an operator norm induced 

by the  norm of the input and output signals. In the frequency domain though, it is 

interpreted as the largest singular value of the system over the whole set of frequencies. 

Therefore, it is an indicator of the worst-case energy of the output in response to energy 

bounded inputs, which accordingly could come naturally as a measure of the worst case 

performance for many classes of input signals. 

Based on the considered framework in the form of a lower LFT, the ∞ problem was 

formulated as finding the stable parameter  such that the ∞ norm of the closed-loop 

system ‖ ‖∞ is minimized.  

Among various approaches for tackling the ∞ norm minimization problem, a brief 

overview on three major methods, namely the model-matching, Riccati equation-based, 

and the LMI approaches was given. In the model-matching scheme, the main problem is 

transferred to designing ∈ ∞ such that the given transfer matrix ∈ ∞ matches 

the cascade of the three transfer matrices . This in turn, was equivalent to yet 

another problem, the so-called Hankel approximation problem, or the Nehari extension 

problem, which was also discussed briefly. We then, looked into the Riccati equation-

based approach, in which the solvability of the ∞ problem was expressed in terms of the 

existence of unique positive definite stabilizing solutions to two algebraic Riccati 

equations and the spectral radius of their product.  

In this work, the applied method for designing the deadbeat compensator with ∞ norm 

constraint was the LMI approach, in that the problem is recast in the form of an LMI. As 

it is proved in section 6.5, the elements of the design parameter  enter affinely in only 

the  and  matrices of the state space realization of the closed-loop system = ℱ , . In view of this feature of the closed-loop system and the fact that , 

, and  transfer matrices are all designed to be FIR systems, we were able to 

formulate the design problem in terms of an LMI, that was a linear function of the matrix 

variables. The design procedure was then represented by means of an example. 
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Chapter 7 

Conclusion 
 

 

 

This thesis has addressed the synthesis problem of linear state deadbeat controller subject 

to time and frequency domain performance specifications. Moreover, the robust design 

problem was investigated when the plant is subject to structured norm-bounded 

parametric uncertainty.  

Basically, the objective in a state deadbeat regulator is to drive a discrete time system 

from any arbitrary initial state to the desired final state (which without loss of generality 

can be considered to be the origin of the complex plane) in finite number of time steps. 

As was argued, deadbeat is a characteristic exclusive to discrete time systems.  

 

The first part of the thesis presented a formal framework in which the design problem is 

treated. The framework is a natural extension of YJBK algebraic theory and is in the form 

of a lower LFT of a fixed deadbeat system (“generator” of all deadbeat controllers) with 

a free deadbeat system of arbitrary high McMillan degree. 

The conditions for the fundamental requirement of internal stability were investigated. 

This was first accomplished using the state space realization of the closed-loop system. 

However, internal stability was alternatively treated in terms of the matrix fractional 

description (MFD) of the plant and the compensator. It was observed that expressing the 

plant and the controller as an irreducible quotient of elements from the set of proper and 

stable matrices, i.e. coprime factors in ∞, not only captures the usual notion of 

instability as the result of the presence of unstable closed-loop poles, but also excludes 

the possibility of unstable pole-zero cancellations between the plant and controller 

required by the notion of internal stability. This enabled us to characterize the whole 

family of admissible controllers in terms of the elements of a doubly coprime factorization 

of the system to be stabilized, and the proper and stable but arbitrary design parameter . 

Characterizing the controller in this fashion, reduced the linear fractional description of 

the closed-loop system = ℱ , = + − −  to an affine 

parameterization in terms of the free parameter  as = ℱ , = + . 
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This, in turn, simplified the design procedure by reducing the problem of search or 

optimization over the set of admissible controllers  to a search or unconstrained 

optimization over . It was finally shown that all stabilizing controllers are realizable in 

the form of observer-based state feedback. 

  

In chapter 3 two major approaches to tackle the deadbeat controller design problem were 

discussed, namely the state space approach and the algebraic approach. The former 

method was based on the concepts of controllability and controllable subspaces. It was 

observed that the number of steps after which the states settle to their final value, and also 

the controller, are dependent on how  (the order of the system) linearly independent 

columns of the controllability matrix are selected. The minimum possible number of steps 

was given by the controllability index of the system. 

The properties of the closed-loop system were investigated. It was observed that the 

system matrix is nilpotent with the index of nilpotency equal to the system controllability 

index. This attribute led to interpreting the problem of deadbeat controller design as an 

eigenvalue assignment problem, when all poles are located at the origin. The fact that the 

structure of the Jordan matrix assigned to the closed-loop system matrix is non-unique, 

again implies non-uniqueness of the set of deadbeat controllers. 

 

The design problem was also examined via the algebraic approach, developed in view of 

the isomorphism between certain classes of formal series in one indeterminate over , 

and series expansion of functions over . 

The deadbeat regulator was derived as the solution to a polynomial matrix Diophantine 

equation. As in the state apace approach, the set of stabilizing controllers was 

parameterized in terms of a free parameter in a YJBK fomat. 

 

In the final part of the chapter, a numerical algorithm was presented to compute the state 

feedback gain for assigning all the closed-loop controllable modes to the origin. This was 

developed based on the recursive construction of unitary transformations, resulting into a 

coordinate system in which the gain was computed by merely solving a set of linear 

equations. In order to split the controllable and uncontrollable parts, the system was first 

transformed into the staircase model. Provided that the uncontrollable subsystem was 

nilpotent, the problem was feasible and the algorithm was applied to the controllable 
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subsystem. The observer gain was also achieved as the solution to the dual problem of 

the state feedback. The numerical procedure was programmed in MATLAB, and 

illustrated with few examples.  

 

In chapter 4, the design problem of deadbeat regulator subject to time domain constraints 

was addressed. First the input-output mathematical description of a system with deadbeat 

response was studied. It was observed that the impulse response of such systems are 

polynomials in the unit delay operator − . Therefore, they are alternatively known as 

FIR (Finite Impulse Response) systems. With respect to the input-output characterization 

of the closed-loop map = + , having deadbeat response compelled , 

, , and  all to be FIR. This was equivalent to assigning all the eigenvalues of the 

observer-based state feedback to the origin, and selecting the design parameter  such 

that its impulse response is of finite length. 

 

Next, the attention of the work was turned to the constrained design problem of the 

deadbeat compensator. Due to the affine dependence of the closed-loop map on the design 

parameter , the performance specifications can be recast as linear constraints on the 

elements of . This is in contrast to the case when the closed-loop system is characterized 

in terms of the LFT interconnection of the plant and the controller , where simple design 

specifications translate into complicated constraints on . The achieved simplification in 

expressing the performance specifications accordingly enabled us to reformulate the 

constrained deadbeat regulator synthesis problem as a linear program.  

 

More sophisticated design requirements in the form of LQG were also examined. First, 

the relation between the LQG and  optimization problem was established. As was 

discussed, the LQG performance index may be stated as the system  norm when it is 

excited by white noise input disturbance signals. The equivalence was then exploited to 

show that the design problem of deadbeat controller with LQG constraints reduces to 

quadratic programming, with constraints exerted on the design parameter .  

 

Chapter 5 considered the robust design problem of deadbeat compensator, when the plant 

is subject to structured norm-bounded model parameter and input connection parameter 

uncertainties. The synthesis method was based on the Lyapunov approach. 
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First, the conditions for quadratic stability and the particular form of the quadratic �-

stability were discussed for the case of perturbed continuous time systems. The conditions 

were then readily accommodated to discrete time systems. The significant attribute of the 

attained stability criteria was that all were formulated as LMI feasibility problems. This 

property provided the means to treat the robust deadbeat design problem through existing 

efficient tractable numerical algorithms for solving LMIs.  

When the plant is uncertain it is clearly impossible to place all closed-loop poles at the 

origin for all possible combinations of the uncertain parameters. In an approximately 

deadbeat system, the most natural region to confine the poles of the closed-loop system 

in, is a circle centred at the origin. Evidently, this is equivalent to the quadratic �-stability 

of the system when � is a disk centred at the origin. To approximate the deadbeat 

characteristic as closely as possible, the circle is required to have minimum radius. This 

problem was recast as an optimization problem with the associated LMI condition being 

modified accordingly as its constraint. Due to the fact that the eigenvalues of a deadbeat 

system are the union of those of the state feedback and the observer, as the constituent 

elements of the observer-based controller, it was necessary to minimize the largest radius 

corresponding to the two subsystems. Using Parrott’s lemma it was shown that the 

problem of finding the minimum radius could be split into finding the smallest circular 

regions associated with each of the subsystems, and then selecting the greater disk as the 

smallest possible circular region which encloses whole set of the closed-loop poles. The 

design procedure was illustrated by means of an example.  

 

In the final chapter of this thesis, chapter 6, we studied the synthesis problem of the 

deadbeat regulator subject to ∞ norm specifications. First, the interpretation of the ∞ 

norm in both the time and frequency domains was discussed. As it is well-known, the ∞ 

norm is an indicator of the worst-case energy of the output for energy bounded inputs. 

Hence, it may be regarded as a measure of the worst case performance for many classes 

of input signals.  

Three major schemes to tackle the ∞ norm optimization problem were briefly reviewed, 

namely model-matching, Riccati equation-based, and the LMI approaches. In this case, 

the last method was deemed to be the most appropriate one due to ease of implementation. 

The LMI characterization of the ∞ problem, the so-called bounded real lemma, 

translates the ∞ norm optimization problem into an LMI feasibility problem, expressed 
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in terms of the state space matrices of the closed-loop system. As , the Markov parameters 

of the design parameter  appear affinely only in the  and  matrices of the state space 

realization of the closed-loop map . This makes the linear matrix inequality a linear 

function of the matrix variables, and so it can be easily solved. The chapter concluded by 

considering an example of the design problem. 

 

The main achievements of the thesis are summarized as follows: 

 

 It was shown that the  parameterization of all stabilizing controllers extends 

naturally to the deadbeat case. The “central” deadbeat (FST) controller, obtained 

when the free parameter is set to zero, corresponds to minimum-time deadbeat 

control, which in a sense is the simplest controller in this framework, although not 

necessarily the most appropriate one when performance and robustness 

specifications are taken into account. By confining the design parameter  to be 

FIR, the family of deadbeat regulators was parameterized affinely in terms of . 

 

 The robust deadbeat control design problem was addressed. This was 

accomplished based on the notion of quadratic stability through application of the 

LMI approach and extends the results presented in the previous paragraph when 

the effect of numerical or model errors is significant. It was observed that the 

problem may be reduced to two decoupled robust eigenvalue assignment 

problems, in which the systems to be considered are the constituent elements of 

the controller, i.e. the observer and the state feedback. The circular regions with 

minimal radius centred at the origin of the complex plane were computed, 

corresponding to the worst-case eigenvalue assignment problem of the two 

subsystems. It was shown that the circular region with greater radius is the 

smallest region to which whole set of the closed-loop poles may be assigned. 

 

 The synthesis problem of the deadbeat regulator subject to classical time domain 

constraints was reformulated as a linear program. This was accomplished in view 

of the affine dependence of the closed-loop map on the design parameter . 
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 The achieved parameterization of the deadbeat compensators was exploited to 

recast the design problem when the system is to satisfy more stringent time 

domain specifications in the form of LQG as a quadratic programming. The 

procedure is based on the equivalence between the LQG and  problem. 

 

 Shaping the frequency response of deadbeat system in terms of the worst case 

performance, quantified by its ∞ norm, was formulated as a convex program. It 

was shown that in the state space characterization of the closed-loop map it is only 

the  and  matrices of the system which are dependent on the Markov parameters 

of the design parameter  in an affine manner. This feature yields to the involved 

LMI constraint be a linear function of the matrix variables. 

 

Suggestions for future work: 

 

The work which has been done in this thesis may be developed and extended as what 

follows.  

 

 FST-based multiple objective control: The thesis has considered individual 

optimization settings, such as /LQG and ∞ optimal control. It has been shown 

that the FIR framework can be used to formulate and solve problems of these two 

types by converting them to standard quadratic programming (QP) and convex 

programming (LMI-type) problems, respectively. Since QP can be effectively 

combined with LP, mixed LQG problems with time-domain specifications (e.g. 

hard constraints on state variables, slew-rates or transient response characteristics) 

can be easily be formulated and solved. In future work, the optimization of 

additional norms can be considered (e.g. generalized , -norm) which are 

appropriate for a variety of closed-loop specifications and models of disturbance 

and noise signals. In addition, multiple objective optimization problems using 

(simultaneously) different norms and mixed time-domain and frequency-domain 

specifications can be considered. 

  

 Approximation Error analysis: The thesis has developed a version of Youla’s 

parameterization of the set of all closed-loop transfer functions corresponding to 
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all internally stabilizing controllers, in the form of an affine map of an FIR system 

with the set of all ∞ functions (  parameterization). It has been argued that 

replacing the later set by the set of all matrix FIR filters is not too restrictive, 

provided a bound on the order of these filters is chosen sufficiently large. 

Although the validity of this method is intuitively clear, a more formal error 

analysis would be beneficial for quantifying the effects of the approximation on 

the achievable performance and stability properties. Such an analysis could also 

be used to provide a-priori estimates of the required degree of the FIR matrix 

parameter in terms of bandwidth or transient decay-rate specifications. 

  

 Controller model reduction: The approach described in the thesis often results in 

controllers of high McMillan degree, obtained in the form of an LFT of a 

(typically low-degree) controller-generator with an FIR filter which has 

(typically) high McMillan degree. Thus, for reasons related to practical 

implementation, some form of model reduction should be applied. One way of 

doing this is to model reduce the FIR parameter directly, using for example the 

balanced-truncation or Hankel-norm based techniques of [169]. Alternatively, 

model reduction can be applied to the controller after the LFT of the generator 

with the FIR matrix filter has been computed. In either case, the effects of the 

controller approximation on the stability margins and performance of the closed-

loop system should be carefully considered. 

  

 Robust LP: In recent years, significant progress has been made in the area of 

robust optimization, especially in the area of Linear Programming. These methods 

typically assume that both the objective function which is optimized and the 

constraints of the problem are uncertain and worst-case or probabilistic techniques 

are employed to formulate and solve the problem in a robust setting. It seems that 

this optimization framework is directly applicable to our case when the model of 

the plant is assumed to be uncertain. The investigation of robust LP techniques in 

the context of the present work would be interesting and could provide valuable 

links between the fields of robust optimization and robust control. 
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