240 research outputs found

    Computational intelligent methods for trusting in social networks

    Get PDF
    104 p.This Thesis covers three research lines of Social Networks. The first proposed reseach line is related with Trust. Different ways of feature extraction are proposed for Trust Prediction comparing results with classic methods. The problem of bad balanced datasets is covered in this work. The second proposed reseach line is related with Recommendation Systems. Two experiments are proposed in this work. The first experiment is about recipe generation with a bread machine. The second experiment is about product generation based on rating given by users. The third research line is related with Influence Maximization. In this work a new heuristic method is proposed to give the minimal set of nodes that maximizes the influence of the network

    Doctor of Philosophy

    Get PDF
    dissertationServing as a record of what happened during a scientific process, often computational, provenance has become an important piece of computing. The importance of archiving not only data and results but also the lineage of these entities has led to a variety of systems that capture provenance as well as models and schemas for this information. Despite significant work focused on obtaining and modeling provenance, there has been little work on managing and using this information. Using the provenance from past work, it is possible to mine common computational structure or determine differences between executions. Such information can be used to suggest possible completions for partial workflows, summarize a set of approaches, or extend past work in new directions. These applications require infrastructure to support efficient queries and accessible reuse. In order to support knowledge discovery and reuse from provenance information, the management of those data is important. One component of provenance is the specification of the computations; workflows provide structured abstractions of code and are commonly used for complex tasks. Using change-based provenance, it is possible to store large numbers of similar workflows compactly. This storage also allows efficient computation of differences between specifications. However, querying for specific structure across a large collection of workflows is difficult because comparing graphs depends on computing subgraph isomorphism which is NP-Complete. Graph indexing methods identify features that help distinguish graphs of a collection to filter results for a subgraph containment query and reduce the number of subgraph isomorphism computations. For provenance, this work extends these methods to work for more exploratory queries and collections with significant overlap. However, comparing workflow or provenance graphs may not require exact equality; a match between two graphs may allow paired nodes to be similar yet not equivalent. This work presents techniques to better correlate graphs to help summarize collections. Using this infrastructure, provenance can be reused so that users can learn from their own and others' history. Just as textual search has been augmented with suggested completions based on past or common queries, provenance can be used to suggest how computations can be completed or which steps might connect to a given subworkflow. In addition, provenance can help further science by accelerating publication and reuse. By incorporating provenance into publications, authors can more easily integrate their results, and readers can more easily verify and repeat results. However, reusing past computations requires maintaining stronger associations with any input data and underlying code as well as providing paths for migrating old work to new hardware or algorithms. This work presents a framework for maintaining data and code as well as supporting upgrades for workflow computations

    User Interfaces to the Web of Data based on Natural Language Generation

    Get PDF
    We explore how Virtual Research Environments based on Semantic Web technologies support research interactions with RDF data in various stages of corpus-based analysis, analyze the Web of Data in terms of human readability, derive labels from variables in SPARQL queries, apply Natural Language Generation to improve user interfaces to the Web of Data by verbalizing SPARQL queries and RDF graphs, and present a method to automatically induce RDF graph verbalization templates via distant supervision

    Community detection in graphs

    Full text link
    The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.Comment: Review article. 103 pages, 42 figures, 2 tables. Two sections expanded + minor modifications. Three figures + one table + references added. Final version published in Physics Report

    On the Evolution of Knowledge Graphs: A Survey and Perspective

    Full text link
    Knowledge graphs (KGs) are structured representations of diversified knowledge. They are widely used in various intelligent applications. In this article, we provide a comprehensive survey on the evolution of various types of knowledge graphs (i.e., static KGs, dynamic KGs, temporal KGs, and event KGs) and techniques for knowledge extraction and reasoning. Furthermore, we introduce the practical applications of different types of KGs, including a case study in financial analysis. Finally, we propose our perspective on the future directions of knowledge engineering, including the potential of combining the power of knowledge graphs and large language models (LLMs), and the evolution of knowledge extraction, reasoning, and representation

    Subgroup discovery for structured target concepts

    Get PDF
    The main object of study in this thesis is subgroup discovery, a theoretical framework for finding subgroups in data—i.e., named sub-populations— whose behaviour with respect to a specified target concept is exceptional when compared to the rest of the dataset. This is a powerful tool that conveys crucial information to a human audience, but despite past advances has been limited to simple target concepts. In this work we propose algorithms that bring this framework to novel application domains. We introduce the concept of representative subgroups, which we use not only to ensure the fairness of a sub-population with regard to a sensitive trait, such as race or gender, but also to go beyond known trends in the data. For entities with additional relational information that can be encoded as a graph, we introduce a novel measure of robust connectedness which improves on established alternative measures of density; we then provide a method that uses this measure to discover which named sub-populations are more well-connected. Our contributions within subgroup discovery crescent with the introduction of kernelised subgroup discovery: a novel framework that enables the discovery of subgroups on i.i.d. target concepts with virtually any kind of structure. Importantly, our framework additionally provides a concrete and efficient tool that works out-of-the-box without any modification, apart from specifying the Gramian of a positive definite kernel. To use within kernelised subgroup discovery, but also on any other kind of kernel method, we additionally introduce a novel random walk graph kernel. Our kernel allows the fine tuning of the alignment between the vertices of the two compared graphs, during the count of the random walks, while we also propose meaningful structure-aware vertex labels to utilise this new capability. With these contributions we thoroughly extend the applicability of subgroup discovery and ultimately re-define it as a kernel method.Der Hauptgegenstand dieser Arbeit ist die Subgruppenentdeckung (Subgroup Discovery), ein theoretischer Rahmen fĂŒr das Auffinden von Subgruppen in Daten—d. h. benannte Teilpopulationen—deren Verhalten in Bezug auf ein bestimmtes Targetkonzept im Vergleich zum Rest des Datensatzes außergewöhnlich ist. Es handelt sich hierbei um ein leistungsfĂ€higes Instrument, das einem menschlichen Publikum wichtige Informationen vermittelt. Allerdings ist es trotz bisherigen Fortschritte auf einfache Targetkonzepte beschrĂ€nkt. In dieser Arbeit schlagen wir Algorithmen vor, die diesen Rahmen auf neuartige Anwendungsbereiche ĂŒbertragen. Wir fĂŒhren das Konzept der reprĂ€sentativen Untergruppen ein, mit dem wir nicht nur die Fairness einer Teilpopulation in Bezug auf ein sensibles Merkmal wie Rasse oder Geschlecht sicherstellen, sondern auch ĂŒber bekannte Trends in den Daten hinausgehen können. FĂŒr EntitĂ€ten mit zusĂ€tzlicher relationalen Information, die als Graph kodiert werden kann, fĂŒhren wir ein neuartiges Maß fĂŒr robuste Verbundenheit ein, das die etablierten alternativen Dichtemaße verbessert; anschließend stellen wir eine Methode bereit, die dieses Maß verwendet, um herauszufinden, welche benannte Teilpopulationen besser verbunden sind. Unsere BeitrĂ€ge in diesem Rahmen gipfeln in der EinfĂŒhrung der kernelisierten Subgruppenentdeckung: ein neuartiger Rahmen, der die Entdeckung von Subgruppen fĂŒr u.i.v. Targetkonzepten mit praktisch jeder Art von Struktur ermöglicht. Wichtigerweise, unser Rahmen bereitstellt zusĂ€tzlich ein konkretes und effizientes Werkzeug, das ohne jegliche Modifikation funktioniert, abgesehen von der Angabe des Gramian eines positiv definitiven Kernels. FĂŒr den Einsatz innerhalb der kernelisierten Subgruppentdeckung, aber auch fĂŒr jede andere Art von Kernel-Methode, fĂŒhren wir zusĂ€tzlich einen neuartigen Random-Walk-Graph-Kernel ein. Unser Kernel ermöglicht die Feinabstimmung der Ausrichtung zwischen den Eckpunkten der beiden unter-Vergleich-gestelltenen Graphen wĂ€hrend der ZĂ€hlung der Random Walks, wĂ€hrend wir auch sinnvolle strukturbewusste Vertex-Labels vorschlagen, um diese neue FĂ€higkeit zu nutzen. Mit diesen BeitrĂ€gen erweitern wir die Anwendbarkeit der Subgruppentdeckung grĂŒndlich und definieren wir sie im Endeffekt als Kernel-Methode neu

    Semantic approaches to domain template construction and opinion mining from natural language

    Get PDF
    Most of the text mining algorithms in use today are based on lexical representation of input texts, for example bag of words. A possible alternative is to first convert text into a semantic representation, one that captures the text content in a structured way and using only a set of pre-agreed labels. This thesis explores the feasibility of such an approach to two tasks on collections of documents: identifying common structure in input documents (»domain template construction«), and helping users find differing opinions in input documents (»opinion mining«). We first discuss ways of converting natural text to a semantic representation. We propose and compare two new methods with varying degrees of target representation complexity. The first method, showing more promise, is based on dependency parser output which it converts to lightweight semantic frames, with role fillers aligned to WordNet. The second method structures text using Semantic Role Labeling techniques and aligns the output to the Cyc ontology.\ud Based on the first of the above representations, we next propose and evaluate two methods for constructing frame-based templates for documents from a given domain (e.g. bombing attack news reports). A template is the set of all salient attributes (e.g. attacker, number of casualties, \ldots). The idea of both methods is to construct abstract frames for which more specific instances (according to the WordNet hierarchy) can be found in the input documents. Fragments of these abstract frames represent the sought-for attributes. We achieve state of the art performance and additionally provide detailed type constraints for the attributes, something not possible with competing methods. Finally, we propose a software system for exposing differing opinions in the news. For any given event, we present the user with all known articles on the topic and let them navigate them by three semantic properties simultaneously: sentiment, topical focus and geography of origin. The result is a dynamically reranked set of relevant articles and a near real time focused summary of those articles. The summary, too, is computed from the semantic text representation discussed above. We conducted a user study of the whole system with very positive results

    Semantic approaches to domain template construction and opinion mining from natural language

    Get PDF
    Most of the text mining algorithms in use today are based on lexical representation of input texts, for example bag of words. A possible alternative is to first convert text into a semantic representation, one that captures the text content in a structured way and using only a set of pre-agreed labels. This thesis explores the feasibility of such an approach to two tasks on collections of documents: identifying common structure in input documents (»domain template construction«), and helping users find differing opinions in input documents (»opinion mining«). We first discuss ways of converting natural text to a semantic representation. We propose and compare two new methods with varying degrees of target representation complexity. The first method, showing more promise, is based on dependency parser output which it converts to lightweight semantic frames, with role fillers aligned to WordNet. The second method structures text using Semantic Role Labeling techniques and aligns the output to the Cyc ontology. Based on the first of the above representations, we next propose and evaluate two methods for constructing frame-based templates for documents from a given domain (e.g. bombing attack news reports). A template is the set of all salient attributes (e.g. attacker, number of casualties, \ldots). The idea of both methods is to construct abstract frames for which more specific instances (according to the WordNet hierarchy) can be found in the input documents. Fragments of these abstract frames represent the sought-for attributes. We achieve state of the art performance and additionally provide detailed type constraints for the attributes, something not possible with competing methods. Finally, we propose a software system for exposing differing opinions in the news. For any given event, we present the user with all known articles on the topic and let them navigate them by three semantic properties simultaneously: sentiment, topical focus and geography of origin. The result is a dynamically reranked set of relevant articles and a near real time focused summary of those articles. The summary, too, is computed from the semantic text representation discussed above. We conducted a user study of the whole system with very positive results
    • 

    corecore