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ABSTRACT

Serving as a record of what happened during a scientific process, often computational, prove-

nance has become an important piece of computing. The importance of archiving not only data and

results but also the lineage of these entities has led to a variety of systems that capture provenance

as well as models and schemas for this information. Despite significant work focused on obtaining

and modeling provenance, there has been litte work on managing and using this information. Using

the provenance from past work, it is possible to mine common computational structure or determine

differences between executions. Such information can be used to suggest possible completions for

partial workflows, summarize a set of approaches, or extend past work in new directions. These

applications require infrastructure to support efficient queries and accessible reuse.

In order to support knowledge discovery and reuse from provenance information, the manage-

ment of those data is important. One component of provenance is the specification of the com-

putations; workflows provide structured abstractions of code and are commonly used for complex

tasks. Using change-based provenance, it is possible to store large numbers of similar workflows

compactly. This storage also allows efficient computation of differences between specifications.

However, querying for specific structure across a large collection of workflows is difficult because

comparing graphs depends on computing subgraph isomorphism which is NP-Complete. Graph

indexing methods identify features that help distinguish graphs of a collection to filter results for a

subgraph containment query and reduce the number of subgraph isomorphism computations. For

provenance, this work extends these methods to work for more exploratory queries and collections

with significant overlap. However, comparing workflow or provenance graphs may not require exact

equality; a match between two graphs may allow paired nodes to be similar yet not equivalent. This

work presents techniques to better correlate graphs to help summarize collections.

Using this infrastructure, provenance can be reused so that users can learn from their own and

others’ history. Just as textual search has been augmented with suggested completions based on

past or common queries, provenance can be used to suggest how computations can be completed or

which steps might connect to a given subworkflow. In addition, provenance can help further science

by accelerating publication and reuse. By incorporating provenance into publications, authors can

more easily integrate their results, and readers can more easily verify and repeat results. However,

reusing past computations requires maintaining stronger associations with any input data and un-

derlying code as well as providing paths for migrating old work to new hardware or algorithms.



This work presents a framework for maintaining data and code as well as supporting upgrades for

workflow computations.
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CHAPTER 1

INTRODUCTION

1.1 Motivation
Serving as a record of what happened during a scientific process, often computational, prove-

nance has become an important piece of computing. The importance of archiving not only data and

results but also the lineage of these entities has led to a variety of systems that capture provenance as

well as models and schemas for this information. Despite significant work focused on obtaining and

modeling provenance, there has been litte work on managing and using this information. Querying

this information has been studied for feasibility and interoperability concerns, but applications that

drive these queries have been limited. One of the applications for provenance is reproducibility—

exactly replicating a process or computation. This work proposes reuse as an improved application,

allowing provenance users to migrate work to new techiques or hardware and more easily extend

published findings.

Provenance documents how something was accomplished; a collection of such information is

thus extremely valuable in understanding solutions. Furthermore, using data mining, it is possible

to determine similar solutions or common pieces of provenance information. Such parts can then be

used to derive new complete or partial solutions. Note that an important component in such mining

is the structure of the provenance; with more abstraction, it can be easier to locate patterns. In order

to suggest relevant suggestions, existing structure can be used to index into a summary of collected

provenance.

Along similar lines, while suggestions are targeted to help users for specific tasks, summaries

of collections of provenance can be useful for browsing the information. Because provenance is

often understood as a graph of dependencies, a textual summary of information is usually difficult

to parse. On the other hand, visually a collection of graphs is complicated by the fact that comparing

graphs is NP-Complete. This work presents algorithms to build summaries of collections of graphs.

In addition, it demonstrates methods for editing these summaries by splitting and joining multinodes

and multiedges.

To support queries, completions, and summaries for provenance, there must be infrastructure

to support efficient access to the information. Indexing techniques are often used to speed queries

over certain fields in databases, but because provenance information is stored as a graph, a query
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can leverage both distinct node criteria and connectivity constraints. Thus, indexing must also

encapsulate these features. However, because subgraph isomorphism is NP-Complete, even com-

paring two graphs in a collection to test their equivalence can be difficult. Existing techinques for

graph indexing leverage discriminative subgraphs that help filter candidates, limiting the number

of full verifications that need to be calculated via subgraph isomorphism calculations. However,

provenance queries can be more vague, referencing only loosely-connected pieces of a subgraph,

and may return large numbers of results. This work proposes a framework to adapt existing indexing

techniques to make provenance queries more efficient.

A key concern in provenance is the data associated with the steps involved. For exploratory

science, it is not always possible or efficient to curate data and ensure their longevity. At the

same time, referencing data by filenames or URIs is problematic; a file can be moved or deleted,

and linking provenance from outside the originating machine is difficult. This work proposes

a framework for both identifying and managing the input and output data involved inline with

provenance information.

For the goal of reuse—not simply reproducibility, it is important to have the ability to migrate

and adapt documented processes to use new hardware or techniques. To identify possible incom-

patibilities and how the necessary changes may be completed, documenting version information is

required. At the same time, the provenance of the changes themselves can be invaluable when diag-

nosing differences in results. Thus, provenance plays an important role in both allowing upgrades

but also in documenting changes.

1.2 Thesis Statement
Techniques for the management and analysis of provenance enable applications for knowledge

discovery and reuse by leveraging the information contained in provenance stores.

1.3 Dissertation Objectives
In this dissertation, we present a set of techniques for managing and analyzing provenance

information as well as applications that use this framework to aid in future work. The goal is to use

provenance, often viewed as archival data, to help develop solutions that use this information. The

outline of this dissertation can be separated into four contributions:


 A method to suggest possible workflow completions using provenance information about

previously constructed workflows [85]. This technique both offers starting points for novice

users and reduces the effort for more experienced users in constructing workflows.


 A framework for indexing provenance information that permits more exploratory queries

and supports queries that have large numbers of results. The techinques augment existing
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graph indexing techniques by adding an extra layer to the index for more quickly locating

large numbers of results as well as incorporating disconnected features.


 A technique to display a collection of graphs in a visual summary that allows discovery of

similarities and differences. This can be used to display collections of provenance graphs

so users can discover changes, and the summaries are editable so they can serve to develop

reusable analogies that can be applied to other work.


 An infrastructure to support new modes of publication. To support work on executable

papers and Web-based publications, it is necessary to maintain links to data [84] and support

the longevity of provenance for later use through upgrades [86].

The rest of this dissertation is organized as follows. Chapter 2 reviews background on prove-

nance and other work in this area. Chapter 3 describes VisComplete, a recommendation system for

workflows that uses provenance information to derive completions. Chapter 4 describes an indexing

scheme for querying provenance information. Then, Chapter 5 describes techniques for visualizing

collections of graphs, including provenance graphs. Chapter 6 describes contributions that enabled

greater reuse and longevity for publications. Finally, Chapter 7 presents conclusions and directions

for future work.



CHAPTER 2

BACKGROUND

As this work relies on provenance, it is important to start by reviewing what constitutes prove-

nance, how it is generated and captured, and what techniques exist to manipulate and access this

information. The techinques and frameworks have been implemented or integrated into computa-

tional work, usually via an existing system. The VisTrails scientific workflow system has served as a

testbed for this work, and both the system and workflows in general have prompted and aided many

of the applications. However, the framework and algorithms are general and can be integrated with

other systems. This chapter begins by defining provenance before describing scientific workflow

systems and provenance capabilities. VisTrails is used as an example to highlight how provenance

and scientific workflow systems are coupled.

2.1 Provenance
Provenance is the lineage or history of some object, including relationships to other objects that

influence it. It can refer to the trail of ownership of a piece of artwork from painter to current owner,

the steps in baking a cake from ingredient collection to finished product, or the processes involved in

deriving a scientific result from experimental setup to analyses. While the term has not always been

associated with science, the concepts are ingrained into both the work and mindset of scientists.

Published results are derived from information about the exact procedures followed, captured data,

annotations, and documented analyses. In addition, all of this information is documented in the

publication so other scientists can validate procedures and reproduce and extend results. This

provenance is often as important, if not more, than the results.

As computing resources are used for more tasks and data are stored in digital form, the pace

of work has accelerated and the complexity of tasks has increased. Manually keeping track of all

steps followed, parameters set, and data used is burdensome and prone to error. For computational

tasks, it is more efficient to have computers record this information. Computational provenance,

then, tracks the steps and data involved in some computational task. The provenance (also referred

to as the audit trail, lineage, and pedigree) of a data product contains information about the process

and data used to derive the product [47, 137]. It provides important documentation that is key

to preserving the data, to determining its quality and authorship, and to reproducing as well as
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validating the results. These are all important requirements of the scientific process.

The scope and granularity of provenance information vary based on the task and capture mech-

anism. For example, fine-grained information about the lineage database tuples can be captured

and used to analyze query results [144]. For more general tasks, the granularity of provenance

varies from a listing of all low-level system/kernel calls [49, 107] to abstracted workflow descrip-

tions [81, 145, 153]. Note that low-level capture is more general but requires significant work to

obtain a high-level description. More abstract provenance can be more easier understood but may

lack some of the details.

Another classification for provenance information involves the type of information being col-

lected. Prospective provenance captures the specification of a computational task (i.e., a script or

workflow)—it corresponds to the steps that need to be followed (or a recipe) to generate a data

product or class of data products. Retrospective provenance captures the steps that were executed

as well as information about the execution environment used to derive a specific data product—a

detailed log of the execution of a computational task. Note that retrospective provenance can be

captured for any task regardless of whether that task has prospective provenance. For example,

information like which processes were run, who ran them, and how long they took, can be captured

without knowing the sequence of steps ahead of runtime.

Provenance can also contain user-defined information, documentation that cannot be automat-

ically captured but records important decisions and notes. These data are often captured in the

form of annotations. Annotations can be added at different levels of granularity and associated with

components of both prospective and retrospective provenance.

To investigate the capabilities of various systems, relationships between them, and models

for storage, challenges were proposed and accomplished by a set of teams. The first challenge

highlighted different methods for capturing and querying provenance information [121]. The second

investigated interoperability of provenance models [122], and the third challenge focused on using

the Open Provenance Model (OPM) as a model for exchanging provenance between systems [123].

As a very general model, OPM allows a variety of types of provenance information to be recorded

without enforcing many constraints [105].

2.2 Scientific Workflow Systems
Computational tasks can be represented using a variety of mechanisms including computer

programs, scripts, and workflows. They can also be constructed interactively using specialized

tools (e.g., ParaView [82] for scientific visualization, GenePattern [54] for biomedical research) that

often have their own internal format to represent a task. Some complex computational tasks require

that different tools be weaved together, including loosely-coupled resources, specialized libraries,
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distributed computing infrastructure, and Web services. For example, to analyze the results of a CT

scan, it may be necessary to preprocess the data with different parameters, visualize each result, and

compare them. To ensure reproducibility of the entire task, it is beneficial to have a description that

captures these steps and the different parameter values used.

Workflow and workflow-based systems have recently grown in popularity within the scientific

community as a means to assemble complex processes [40, 46, 81, 104, 114, 138, 145, 149, 153,

156]. Not only do they support the automation of repetitive tasks, but they can also systematically

capture provenance information for the derived data products [39]. Most workflow systems support

provenance capture, although each adopts its own data and storage models [39, 47]. These range

from specialized Semantic Web languages (e.g., RDF and OWL) and XML dialects that are stored

as files in the file system, to tables stored in relational databases.

A workflow describes a set of computations as well as an order for these computations. To

simplify the presentation, we focus on dataflows; but note that our approach is applicable to more

general workflow models. In a dataflow, computational flow is dictated by the data requirements of

each computation. A dataflow is represented as a directed acyclic graph where nodes are the compu-

tational modules and edges denote the data dependencies as connections between the modules—an

edge connects the output port of a module to an input port of another. Often, a module has a set

of associated parameters that can control the specifics of one computation. Some workflows also

utilize subworkflows where a single module is itself implemented by an underlying workflow.

Because workflows abstract computation, there must be an association between the module

instances in a workflow and the underlying execution environment. This link is managed by the

module registry which maps module identifiers to their implementations. For convenience and

maintenance, related modules are often grouped together in packages. Thus, the module identifier

may consist of package identifier, a module name, an optional namespace, and information about the

version of the implementation. Version information can serve to inform us when implementations

or interfaces in the environment change, and is part of provenance information.

Consider, for example, the VisTrails system [153]. In VisTrails, each module corresponds

to a Python class that derives from a predefined base class. Users define custom behaviors by

implementing a small set of methods. These, in turn, might run some code in a third-party library

or invoke a remote procedure call via a Web service. The Python class also explicitly describes the

interface of the module: the set of allowed input and output connections, given by the module’s

ports. A VisTrails package consists of a set of Python classes.

One of the benefits of workflow systems is that they lend themselves to visual programming

environments. Those browsing a collection of workflows should be able to gain an idea of the

computation from a depiction of the general structure without reading a long code listing. Connec-
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tions show relationships between modules without the need to trace variable names, and parameter

settings can be located with the modules they affect. This enables users to more quickly set

parameter values, add computational modules, or delete extraneous analyses.

2.3 VisTrails
VisTrails (http://www.vistrails.org) is an open-source system that supports data exploration and

visualization. It combines and substantially extends useful features of scientific workflow and

visualization systems. Similar to scientific workflow systems [81, 117, 145, 156], VisTrails allows

the specification of computational processes which integrate existing applications, loosely-coupled

resources, and libraries according to a set of rules; and similar to visualization systems [71, 82,

91, 154], VisTrails makes advanced scientific and information visualization techniques available to

users, allowing them to explore and compare different visual representations of their data. As a

result, users can create complex workflows that encompass important steps of scientific discovery,

from data gathering and manipulation, to complex analyses and visualizations, all integrated in one

system.

A distinguishing feature of VisTrails is a comprehensive provenance infrastructure that trans-

parently captures and maintains detailed history information about the steps followed and data

derived in the course of an exploratory task [48]. Whereas workflows have been traditionally used

to automate repetitive tasks, for applications that are exploratory in nature, such as simulations,

data analysis, and visualization, very little is repeated—change is the norm. As a user generates

and evaluates hypotheses about data under study, a series of different, albeit related, workflows

are created as they are adjusted in an iterative process. VisTrails was designed to manage these

rapidly-evolving workflows: it maintains provenance of data products (e.g., visualizations, plots) of

the workflows that derive these products, and their executions. The system also provides annotation

capabilities that allow users to enrich the automatically captured provenance.

Besides enabling reproducible results, VisTrails leverages provenance information through a

series of operations and intuitive user interfaces that help users to collaboratively analyze data.

Notably, the system supports reflective reasoning by storing temporary results, by providing users

the ability to examine the actions that led to a result and to follow chains of reasoning backward

and forward [113]. Users can navigate workflow versions in an intuitive way, undo changes but

not lose any results, visually compare multiple workflows, and show their results side-by-side in a

visualization spreadsheet [17, 48, 135].

Because the need for data analysis and visualization is pervasive across disciplines, VisTrails

was designed with usability and extensibility in mind. VisTrails addresses important usability

issues that have hampered a wider adoption of workflow and visualization systems. To cater
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to a broader set of users, including many who do not have programming expertise, it provides

a series of operations and user interfaces that simplify workflow design and use, including the

ability to create and refine workflows by analogy, to query workflows by example, and to suggest

workflow completions as users interactively construct their workflows using a recommendation

system [85, 130]. VisTrails is also linked to a new framework that allows the creation of custom

applications that can be more easily deployed to (nonexpert) end users [127, 128]. The extensibility

of VisTrails comes from an infrastructure that makes it simple for users to integrate tools and

libraries, as well as to quickly prototype new functions. This has been instrumental to enable the

use of the system in a wide range of application areas, including environmental sciences [16, 70],

psychiatry [10], astronomy [147], cosmology [9] , high-energy physics [42], quantum physics [7],

and molecular modeling [64].



CHAPTER 3

VISCOMPLETE: DATA-DRIVEN SUGGESTIONS

FOR VISUALIZATION SYSTEMS

3.1 Introduction
Data exploration through visualization is an effective means to understand and obtain insights

from large collections of data. Not surprisingly, visualization has grown into a mature area with

an established research agenda [109], and a number of software systems have been developed that

support the creation of complex visualizations [30, 71, 82, 83, 101, 114, 153, 154]. However, a

wider adoption of visualization systems has been greatly hampered due to the fact that these systems

are notoriously hard to use, in particular, for users who are not visualization experts.

Even for systems that have sophisticated visual programming interfaces, such as DX, AVS, and

SCIRun, the path from the raw data to insightful visualizations is laborious and error-prone. Visual

programming interfaces expose computational components as modules and allow the creation of

complex visualization pipelines which combine these modules in a dataflow, where connections

between modules express the flow of data through the pipeline. They have been shown to be

useful for comparative visualization and efficient exploration of parameter spaces [17]. Through the

use of a simple programming model (i.e., dataflows) and by providing built-in constraint checking

mechanisms (e.g., that disallow a connection between incompatible module ports), they ease the

creation of pipelines. Notwithstanding, without detailed knowledge of the underlying computational

components, it is difficult to understand what series of modules and connections ought to be added

to obtain a desired result. In essence, there is no “roadmap”; systems provide very little feedback to

help the user figure out which modules can or should be added to the pipeline. A novice user (i.e.,

an experienced programmer that is unfamiliar with the modules and the dataflow of the system),

or even an advanced user performing a new task, often resorts to manually searching for existing

pipelines to use as examples. These examples are then adapted and iteratively refined until a solution

is found. Unfortunately, this manual, time-consuming process is the current standard for creating

visualizations rather than the exception.

Recent work has shown that provenance information (the metadata required for reproducibility)

can be used to simplify the process of pipeline creation by allowing pipelines to be refined and

queried by example [130]. For example, a pipeline refinement can act as an analogy template for
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creating new visualizations. This is a powerful tool and can be helpful in situations when the user

knows in advance what they want the end result to be. However, during pipeline creation, it is not

always the case that the user has an analogy template readily available for the visualization that is

desired. In these cases, the user is relegated to manually searching for examples.

In this chapter, we present VisComplete, a system that aids users in the process of creating

visualizations by using a database of previously created visualization pipelines. The system learns

common paths used in existing pipelines and predicts a set of likely module sequences that can

be presented to the user as suggestions during the design process. The quality and nature of the

suggestions depend on the data from which they are derived. Whereas in a single-user environment,

suggestions are derived based on pipelines created by a specific user, in a multi-user environment,

the “wisdom of the crowds” can be leveraged to derive a richer set of suggestions that includes

examples with which the user is not familiar. User collaboration and social data reuse has proven

to be a powerful mechanism in various domains, such as recommendation systems in commercial

settings (e.g., Amazon, e-Bay, Netflix), knowledge sharing on open Web sites (e.g., Wikipedia),

image labeling for computer vision (e.g., ESPGame), and visualization creation (e.g., ManyEyes).

The underlying theme shared by these systems is that they use information provided by many

users to solve problems that would be difficult otherwise. We apply a similar concept to pipeline

creation: pipelines created by many users enable the creation of visualizations by consensus. For

the user, VisComplete acts as an auto-complete mechanism for pipelines, suggesting modules and

connections in a manner similar to a Web browser suggesting URLs. The completions are presented

graphically in a way that allows the user to easily explore and accept suggestions or disregard them

and continue working as they were. Figure 3.1 shows an example of VisComplete incorporated

into a visual programming interface and Figure 3.2 shows some example completions for a single

module.

We propose a recommendation system that leverages information in a collection of pipelines

to provide advice to users of visualization systems and aid them in the construction of pipelines.

By modeling pipelines as graphs, we develop an algorithm for predicting likely completions that

searches for common subgraphs in the collection. We also present an interface that displays the

recommended completions in an intuitive way. Our preliminary experiments show that VisComplete

has the potential to reduce the effort and time required to construct visualizations. We found that

the suggestions derived by VisComplete could have reduced the number of operations performed by

users to construct pipelines by an average of over 50%. Note that although in this chapter we focus

on the use of VisComplete for visualization pipelines, the techniques we present can be applied to

general workflows.
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The rest of this chapter is organized as follows. In Section 3.2, we discuss related work.

In Section 3.3, we present the underlying formalism for generating pipeline suggestions, and in

Section 3.4, we describe a practical implementation that has been integrated into the VisTrails

system [153]. We then detail the use cases we envision in Section 3.5, report our experiments

and results in Section 3.6, and provide a discussion of our algorithm in Section 3.7. We conclude in

Section 3.8, where we outline directions for future work.

3.2 Related Work
Visualization systems have been successfully used to bring powerful visualization techniques to

a wide audience. Seminal workflow-based visualization systems, such as AVS Explorer [154], Iris

Explorer [111], and Visualization Data Explorer [71], have paved the way for more recent systems

designed using an object-oriented approach such as SciRun [114] for computational steering and

the Visualization Toolkit (VTK) [83] for visualization. Systems that incorporate standard point-

and-click interfaces and operate on data at a larger scale, such as VisIt [30] and ParaView [82],

still use workflows as their underlying execution engine. Development in workflow systems for

visualization is ongoing, as seen in projects such as MeVisLab [102] for medical visualization and

VisTrails [153] for incorporating existing visualization libraries with other tools in a provenance

capturing framework. Our completion strategy can be combined with and enhance workflow and

workflow-based visualization systems.

Recommendation systems have been used in different settings. Like VisComplete, these are

based on methods that predict users’ actions based solely on the history of their previous interac-

tions [68]. Examples include Unix command-line prediction [87], prediction of Web requests [50,

112], and autocompletion systems such as IntelliSense [103]. Senay and Ignatius have proposed

incorporating expert knowledge into a set of rules that allow automated suggestions for visualization

construction [132], while Gilson et al. incorporate RDF-based ontologies into an information

visualization tool [55]. However, these approaches necessarily require an expert that can encode

the necessary knowledge into a rule set or an ontology.

Fu et al. [50] applied association rule mining [3] to analyze Web navigation logs and discover

pages that co-occur with high frequency in navigation paths followed by different users. This

information is then used to suggest potentially interesting pages to users. VisComplete also derives

predictions based on user-derived data and does so in an automated fashion, without the need for

explicit user feedback. However, the data it considers are fundamentally different from Web logs:

VisComplete bases its predictions on a collection of graphs and it leverages the graph structure to

make these predictions. Because association rule mining computes rules over sets of elements, it

does not capture relationships (other than co-occurrence) amongst these elements.
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In graphics and visualization, recommendation systems have been proposed to simplify the

creation of images and visualizations. Design Galleries [97] were introduced to allow users to

explore the space of rendering parameters by suggesting a set of automatically generated thumb-

nails. Igarashi and Hughes [72] proposed a system for creating 3D line drawings that uses rules

to suggest possible completions of 3D objects. Suggestions have also been used for view point

selection in volume rendering. Bordoloi and Shen [158] and Takahashi et al. [143] present methods

that analyze the volume from various view points to suggest the view that best shows the features

within the volume. Like these systems, we provide the user with prioritized suggestions that the

user may choose to utilize. However, our suggestions are data-driven and based on examples of

previous interactions.

An emerging trend in image processing is to enhance images based on a database of existing

images. Hays and Efros [61] recently presented a system for filling in missing regions of an

image by searching a database for similar images. Along similar lines, Lalonde et al. [90] recently

introduced Photo Clip Art, a method for intelligently inserting clip art objects from a database to

an existing image. Properties of the objects are learned from the database so that they may be

sized and oriented automatically, depending on where they are inserted into the image. The use

of databases for completion has also been used for 3D modeling. Tsang et al. [151] proposed

a modeling technique that utilizes previously created geometry stored in a database of shapes to

suggest completions of objects. Like these methods, our completions are computed by learning from

a database to find similarities. But instead of images, our technique relies on workflow specifications

to derive predictions.

Another important trend is that of social visualization. Web-based systems such as VisPortal [19,

76] provide the means for collaborative visualization from disjoint locations. Web sites such as

Sens.us [63], Swivel [141], and ManyEyes [157] allow many users to create, share, and discuss

visualizations. One key feature of these systems is that they leverage the knowledge of a large

group of people to effectively understand disparate data. Similarly, VisComplete uses a collection

of pipelines possibly created by many users to derive suggestions.

3.3 Generating Data-driven Suggestions
VisComplete suggests partial completions (i.e., a set of structural changes) for pipelines as they

are being created by a user. These suggestions are derived using structural information obtained

from a collection G of already-completed pipelines.

Pipelines are specified as graphs, where nodes represent modules (or processes) and edges

determine how data flows through the modules. More formally, a pipeline specification is a directed

acyclic graphGpM,Cq, whereM consists of a set of modules andC is a set of connections between
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modules inM . A module is a complex object which contains a set of input and output ports through

which data flows in and out of the module. A connection between two modulesma andmb connects

an output port of ma to an input port of mb.

3.3.1 Problem Definition
The problem of deriving pipeline completions can be defined as follows. Given a partial graph

G, we wish to find a set of completions CpGq that reflect the structures that exist in a collection of

completed graphs. A completion of G, Gc, is a supergraph of G.

Our solution to this problem consists of two main steps. First, we preprocess the collection of

pipelines G and create Gpath, a compact representation of G that summarizes relationships between

common structures (i.e., sequences of modules) in the collection (Section 3.3.2). Given a partial

pipeline p, completions are generated by querying Gpath to identify modules and connections that

have been used in conjunction with p in the collection (Section 3.3.3).

3.3.2 Mining Pipelines
To derive completions, we need to identify graph fragments that co-occur in the collection of

pipelines G. Intuitively, if a certain fragment always appears connected to a second fragment in our

collection, we ought to predict one of those fragments when we see the other.

Because we are dealing with directed acyclic graphs, we can identify potential completions for

a vertex v in a pipeline by associating subgraphs downstream from v with those that are upstream.

A subgraph S is downstream (upstream) of a vertex v if for every v1 P S, there exists a path

from v to v1 (v1 to v). In many cases where we wish to complete a graph, we will know either

the downstream or upstream structure and wish to complete the opposite direction. Note that this

problem is symmetric: we can change one problem to the other by simply reversing the direction of

the edges.

However, due to the (very) large number of possible subgraphs in G, generating predictions

based on subgraphs can be prohibitively expensive. Thus, instead of subgraphs, we use paths, i.e.,

a linear sequence of connected modules. Specifically, we compute the frequencies for each path in

G. Completions are then determined by finding which path extensions are likely given the existing

paths.

To efficiently derive completions from a collection of pipelines G, we begin by generating a

summary of all paths contained in the pipelines. Because completions are derived for a specific

vertex v in a partial pipeline (we call this vertex the completion anchor), we extract all possible

paths that end or begin with v and associate them with the vertices that are directly connected

downstream or upstream of v. Note that this leads to many fewer entries than the alternative of
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extracting all possible subgraph pairs. And as we discuss in Section 3.6, paths are effective and lead

to good predictions.

More concretely, we extract all possible paths of length N , and split them into a path of length

N � 1 and a single vertex. Note that we do this in both forward and reverse directions with respect

to the directed edges. This allows us to offer completions for pipeline pieces when they are built

top-down and bottom-up. The path summary Gpath is stored as a set of (path, vertex) pairs sorted by

the number of occurrences in the database and indexed by the last vertex of the path (the anchor).

Since predictions begin at the anchor vertex, indexing the path summary by this vertex leads to

faster access to the predictions.

As an example of the path summary generation, consider the graph shown in Figure 3.3. We

have the following upstream paths ending with D: A Ñ C Ñ D, B Ñ C Ñ D, C Ñ D, and

D. In addition, we also have the following downstream vertices: E and F . The set of correlations

between the upstream paths and downstream vertices is shown in Figure 3.3. As we compute these

correlations for all starting vertices over all graphs, some paths will have higher frequencies than

others. The frequency (or support) for the paths is used for ranking purposes: predictions derived

from paths with higher frequency are ranked higher.

Besides paths, we also extract additional information that aid in the construction of completions.

Because we wish to predict full pipeline structures, not just paths, we compute statistics for the in-

and out-degrees of each vertex type. This information is important in determining where to extend

a completion at each iteration (see Figure 3.4). We also extract the frequency of connection types

for each pair of modules. Since two modules can be connected through different pairs of ports, this

information allows us to predict the most frequent connection type.

A

C

B

D

E F

path vertex
AÑ C Ñ D E
AÑ C Ñ D F
B Ñ C Ñ D E
B Ñ C Ñ D F
C Ñ D E
C Ñ D F
D E
D F

Figure 3.3: Deriving a path summary for the vertex D.
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3.3.3 Generating Predictions
Predicting a completion given the path summary and an anchor module v is simple: given the

set of paths associated with v, we identify the vertices that are most likely to follow these paths. As

shown in Algorithm 1, we iteratively develop our list of predictions by adding new vertices using

this criteria.

Algorithm 1: Generate Predictions
Input: A set of paths P
Output: A set of workflow completions P
GENERATEPREDICTIONS(P )
(1) possibles Ð FIRSTPREDICTIONpP q
(2) P Ð r s
(3) while |possibles| ¡ 0
(4) do pÐ REMOVEFIRSTppossiblesq
(5) newPossibles Ð REFINEppq
(6) if |newPossibles| � 0
(7) then P Ð P � p
(8) else possibles Ð possibles� newPossibles

At each step, we refine existing predictions by generating new predictions that add a new vertex

based on the path summary information. Note that because there can be more than one possible new

vertex, we may add more than one new prediction for each existing prediction. Figure 3.4 illustrates

two steps in the prediction process.

To initialize the list of predictions, we use the specified anchor modules (provided as input). At

this point, each prediction is simply a base prediction that describes the anchor modules and possibly

how they connect to the pipeline. After initialization, we iteratively refine the list of predictions by

adding to each suggestion. Because there are a large number of predictions, we need some criteria

to order them so that users can easily locate useful results. We introduce confidence to measure the

goodness of the predictions.

Given the set of upstream (or downstream depending on which direction we are currently

predicting) paths, the confidence of a single vertex cpvq is the measure of how likely that vertex

is, given the upstream paths. To compute the confidence of a single vertex, we need to take into

account the information given by all upstream paths. For this reason, the values in Gpath are not

normalized; we use the exact counts. Then, as illustrated by Figure 3.5, we combine the counts

from each path. This means we do not need any weighting based on the frequency of paths; the

formula takes this into account automatically. Specifically,

cpvq �

°
PPupstreampvq countpv | P q°
PPupstreampvq countpP q
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Then, the confidence of a graph G is the product of the confidences of each of its vertices:

cpGq �
¹
vPG

cpvq

While each vertex confidence is not entirely independent, this measure gives a reasonable approx-

imation for the total confidence of the graph. Because we perform our predictions iteratively, we

calculate the confidence of the new prediction pi�1 as the product of the confidence of the old

prediction pi and the confidence of the new vertex v:

cppi�1q � cppiq � cpvq

For computational stability, our implementation uses log-confidences so the products are actually

sums.

Because we wish to derive predictions that are not just paths, our refinement step begins by

identifying the vertex in the current prediction from which we wish to extend our prediction. Recall

that we computed the average in- and out-degree for each vertex type in the mining step. Then, for

each vertex, we can compute the difference between the average degree for its type and its current

degree for the current prediction direction. We choose to extend completions at vertices where the

current degree is much smaller than the average degree. We also incorporate this measure into our

vertex confidence so that predictions that contain vertices with too many edges are ranked lower:

cdpvq � cpvq � degree-differencepvq

We stop iteratively refining our predictions after a given number of steps or when no new

predictions are generated. At this point, we sort all of the suggestions by confidence and return

them. If we have too many suggestions, we can choose to prune our set of predictions at each step

by eliminating those which fall below a certain threshold.

3.3.4 Biasing the Predictions
The prediction mechanism described above relies primarily on the frequency of paths to rank

the predictions. There are, however, other factors that can be used to influence the ranking. For

example, if a user has been working on volume rendering pipelines, completions that emphasize

modules related to that technique could be ranked higher than those dealing with other techniques.

In addition, some users will prefer certain completions over others because they more closely

mirror their own work or their own pipeline structures. Again, it makes sense to bias completions

toward user preferences. We can adapt our algorithm to include such bias by incorporating a

weighting factor in the confidence computation. Specifically, we adjust our counts by weighting

the contribution of each path according to a pipeline importance factor determined by a user’s

preferences.
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3.4 Implementation
Our implementation is split into three specific steps: determining when completion should be

invoked, computing the set of possible completions, and presenting these suggestions to the user.

Computing the possible completions requires the machinery developed in the previous section. The

other steps are essential to make the approach usable. The interface, in particular, plays a significant

role in allowing users to make use of suggestions while also being able to quickly dismiss them

when they are not desired.

3.4.1 Triggering a Completion
We want to provide an environment where suggestions are offered automatically but do not

interfere with a user’s normal work patterns. There are two circumstances in pipeline creation

where it makes sense to automatically trigger a completion: when a user adds a new module and

when a user adds a new connection. In each of these cases, we are given new information about the

pipeline structure that can be used to narrow down possible completions. Because users may also

wish to invoke completion without modifying the pipeline, we also provide an explicit command to

start the completion process.

In each of the triggering situations, we begin the suggestion process by identifying the modules

that serve as anchors for the completions. For new connections, we use both of the newly connected

modules, and for a user-requested completion, we use the selected module(s). However, when a user

adds a new module, it is not connected to the rest of the existing pipeline. Thus, it can be difficult to

offer meaningful suggestions since we have no surrounding structure to leverage. We address this

issue by first finding the most probable connection to the existing pipeline, and then continue with

the completion process.

Finding the initial connection for an added module may be difficult when there are multiple

modules in the existing pipeline than can be connected to the new module. However, because visual

programming interfaces allow users to drag and place new modules in the pipeline, we can use the

initial position of the module to help infer a likely connection. To accomplish this, we compute the

user’s layout direction based on the existing pipeline, and locate the module that is nearest to the

new module and can be connected to it.

3.4.2 Computing the Suggestions
As outlined in the previous section, we compute possible completions that emanate from a set of

anchor modules in the existing pipeline using path summaries derived from a database of pipelines,

and rank them by their confidence values. Depending on the anchor modules, a very large set of

completions can be derived and a user is unlikely to examine a long list of suggestions. Therefore,
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we prune our predictions to avoid rare cases. This both speeds up computation and reduces the

likelihood that we provide meaningless suggestions to the user. Specifically, because our predictions

are refined iteratively, we prune a prediction if its confidence is significantly lower than its parent’s

confidence. Currently, this is implemented as a constant threshold, but we can use knowledge of the

current distribution or iteration to improve our pruning.

VisComplete provides the user with suggestions that assist in the creation of the pipeline struc-

ture. Parameters are also essential components in visualizations, but because the choice of pa-

rameters is frequently data-dependent, we do not integrate parameter selection with our technique.

Instead, we focus on helping users complete pipelines, and direct them to existing techniques [17,

77, 78, 96] to explore the parameter space. Note that it might be beneficial to extend VisComplete

to identify commonly used parameters that a user might consider exploring, but we leave this for

future work.

3.4.3 The Suggestion Interface
In concert with our goal of unobtrusiveness, we provide an intuitive and efficient interface

that enables users to explore the space of possible completions. Auto-complete interfaces for

text generally show a set of possible completions in a one-dimensional list that is refined as the

user types. For pipelines, this task is more difficult because it is not feasible to show multiple

completions at once, as this would result in visual clutter. The complexity of deriving the completion

is also greater. For this reason, our interface is two-dimensional: users can select from a list of full

completions and then increase or decrease the extent of the completion.

Current text completion interfaces defer to the user by showing completions but allowing the

user to continue to type if he does not wish to use the completions. We strive for similar behavior

by automatically showing a completion along with a simple navigation panel when a completion is

triggered. The user can choose to interact with the completion interface or disregard it completely

by continuing to work, which will cause the completion interface to automatically disappear. The

navigation interface contains a set of arrows for selecting different completions (left and right) and

depths of the current completion (up and down). In addition, the rank of the current completion is

displayed to assist in the navigation and accept and cancel buttons are provided (see Figure 3.1(c)).

All of these completion actions, along with the ability to start a new completion with a selected

module, are also available in a menu and as shortcut keys.

The suggested completions appear in the interface as semitransparent modules and connections,

so that they are easy to distinguish from the existing pipeline components. The suggested modules

are also arranged in an intuitive way using a set of simple heuristics that respect the layout of the

current pipeline. The first new suggested module is always placed near the anchor module. The
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offset of the new module from the anchor module is determined by averaging the direction and

distance of each module in the existing pipeline. The offset for each additional suggested module

is calculated by applying this same rule to the module to which it is appended. Branches in the

suggested completion are simply offset by a constant factor. These heuristics keep the spacing

uniform and can handle upstream or downstream completions whether pipelines are built top-down

or left-right.

3.5 Use Cases
We envision VisComplete being used in different ways to simplify the task of pipeline construc-

tion. In what follows, we discuss use cases which consider different types of tasks and different

user experience levels. The types of tasks performed by a user can range from the very repetitive

to the unique. Obviously, if the user performs tasks that are very similar to those in the database of

pipelines, the completions that are suggested are very full—almost the entire pipeline can be created

using one or two modules (see Figure 3.2 for examples). On the other hand, if the task that is being

performed is not often repeated and nothing similar in the database can be found, VisComplete will

only be able to assist with smaller portions of the pipeline at a time. This can still aid the user by

showing the possible directions to proceed with pipeline construction, albeit at a smaller scale.

The experience level of users that could take advantage of VisComplete also varies. For a

novice user, VisComplete replaces the process of searching for and tweaking an example that will

perform their desired visualization. For example, a user who is new to VTK and desires to compute

an isosurface of a volume might consult documentation to determine that a “vtkContourFilter”

module is necessary and then search online for an example pipeline using this module. After

downloading the example, they may be able to manipulate it to produce the desired visualization.

Using VisComplete, this process is simplified— the user needs only to start the pipeline by adding

a “vtkContourFilter” module and their pipeline will be constructed for them (see Figure 3.1). Mul-

tiple possible completions can easily be explored and unlike examples downloaded from the Web,

VisComplete can customize the suggestions by providing completions that more closely reflect a

specific user’s previous or more current work.

For experienced users, VisComplete still offers substantial benefits. Because experts may not

wish to see full pipelines as completions, the default depth of the completions can be adjusted

as a preference so that only minor modifications are suggested at each step. Thus, at the smallest

completion scale, a user can leverage just the initial connection completion to automatically connect

new modules to their pipeline. The user could also choose to ignore suggested completions as they

add modules until the pipeline is specific enough to shrink the number of suggestions. Unlike the

novice user who may iterate through many suggestions at each step, the experienced user will likely
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choose to ignore the suggestions until they provide the desired completion on the first try.

3.6 Evaluation
3.6.1 Data and Validation Process

To evaluate the effectiveness of our completion technique, we used a set containing 2875 visual-

ization pipelines along with logs of the actions used to construct each pipeline. These pipelines were

constructed by 30 students during a scientific visualization course.1 Throughout the semester, the

students were assigned five different tasks and carried them out using the VisTrails system, which

captures detailed provenance of the pipeline design process: the series of the actions a user followed

to create and refine a set of related pipelines [48].

The first four tasks were straightforward and required little experimentation, but the final task

was open-ended; users were given a dataset without any restrictions on the use of available vi-

sualization techniques. As these users learned about various techniques over the semester, their

proficiency in the area of visualization presumably progressed from a novice level toward the expert

level.

To predict the performance gains VisComplete might attain, we created user models based on

the provenance logs captured by VisTrails. User modeling has been used in the HCI community

for many years [23, 24], and we employed a low-level model for our evaluation. Specifically, we

assumed that at each step of the pipeline construction process, a VisComplete user would either

modify the pipeline according to the current action from the log or select a completion that adds a

part of the pipeline they would eventually need. We assumed that a user would examine at most ten

completions and could select a subgraph of any of these suggestions.

Because VisComplete requires a collection of pipelines to derive suggestions, we divided our

dataset into training and test sets. The training sets were used to construct the path summaries while

the test sets were used with the user models to measure performance.

We note that this model presumes a user’s foreknowledge of the completed pipeline, and this

certainly is not always the case. Still, we believe this simple model approximates user behavior

well enough to gauge performance. We also assumed a greedy approach in our model; a user would

always take the largest completion that matched their final pipeline. Note that this might not always

yield the best performance because the quality of the suggestions may improve as the pipeline is

further specified.

1http://www.vistrails.org/index.php/SciVisFall2007
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3.6.2 Results
Figure 3.6 shows one of the test pipelines with the components that VisComplete could have

completed highlighted along with its resulting visualization. To evaluate the situation where a set of

users create pipelines that all tend to follow a similar template, we performed a leave-one-out test for

each task in our dataset. Figure 3.7 shows that our suggestion algorithm could have eliminated over

50%, on average, of the pipeline construction operations for each task. Because Task 1 was more

structured than the other tasks, it achieved a higher percentage of reduction. Because Task 4 was

more open-ended, although the average percentage is also high, the results show a wider variation

(between 30% and 75%). This indicates that the completion interface can be faster and more

intuitive than manually choosing a template.

Because it is much more likely that our collection will contain pipelines from a variety of tasks,

we also evaluated two cases that examined the type of knowledge captured by the pipelines. Since

Task 5 was more open-ended and completed after the four other tasks, we expected that most users

would be proficient using the tool and closer to the expert user described in Section 3.5. We ran

the completion results using Tasks 1 through 4 as the training data (2250 pipelines) and Task 5 (625

pipelines) as the test data to represent a case where novice users are helping expert users, but we

also ran this test in reverse to determine if pipelines from expert users can aid beginners. Figure 3.8

shows that both tests achieved similar results; this implies that the variety of pipelines from the four

novice tasks balanced the knowledge captured in the expert pipelines.

Our testing assumed that users would examine up to ten full completions before quitting. In

reality, it is likely that users would give up even quicker. To evaluate how many predictions a user

might need to examine before finding the desired completion, we recorded the index of the chosen

completion in our tests. Figure 3.9 shows that the the chosen completion was almost always among

the first four. Note that we excluded completions that only specified the connection between the new

module and the existing pipeline because these trivial completions are possible at each prediction

index.

Our results show that VisComplete can significantly reduce the number of operations required

during pipeline construction. In addition, the completion percentages might be higher if our tech-

nique were available to the users because it would likely change user’s work patterns. For example, a

user might select a completion that contains most of the structure they require plus some extraneous

components and then delete or replace the extra pieces. Such a completion would almost certainly

save the user time but was not captured with our user model. Finally, the parameters (e.g., pruning

threshold, degree weighting) for the completion algorithms were not tuned. We plan to evaluate

these settings to possibly improve our results.

The completion examples shown in the figures of this chapter, with the exception of Figure 3.6,
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Figure 3.7: Box plot of the percentages of operations that could be completed per task (higher is
better). The statistics were generated for each user by taking them out of the training data.

Figure 3.8: Box plot of the percentages of operations that could be completed given two types of
tasks, novice and expert. The statistics were generated by evaluating the novice tasks using the
expert tasks as training data (novice) and by evaluating the expert tasks using the novice tasks as
training data (expert).
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Figure 3.9: Box plot of the average prediction index that was used for the completions in Figure 3.7
(lower is better). These statistics provide a measure of how many suggestions the user would have
to examine before the correct one was found.

used the entire collection of pipelines to generate predictions. Figure 3.6 used only the pipelines

from Tasks 1–4.

3.7 Discussion
To our knowledge, VisComplete is the first approach for automatically suggesting pipeline com-

pletions using a database of existing pipelines. As large volumes of data continue to be generated

and stored and as analyses and visualizations grow in complexity, the creation of new content by

consensus and the ability to learn by example are essential to enable a broader use of data analysis

and visualization tools.

The major difference between our automatic pipeline completion technique and the related work

on creating pipelines by analogy [130] is that instead of using a single, known sequence of pipeline

actions, our method uses an entire database of pipelines. Thus, instead of completing a pipeline

based on a single example, VisComplete uses many examples. A second important difference is that

instead of predicting a new set of actions, our method currently predicts new structure regardless

of the ordering of the additions. This also means that VisComplete only adds to the structure while

analogies will delete from the structure as well. By incorporating more provenance information,

as in analogies, VisComplete might be able to leverage more information about the order in which
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additions to a pipeline are made. This could improve the quality of the suggested completions.

We note that there will be situations where data about the types of completions that should occur

are not available. Also, some suggestions might not correspond to the user’s desires. If there are

no completions, VisComplete will not derive any suggestions. If there are completions that do not

help, the user can dismiss them by either continuing their normal work or by explicitly canceling

completion. Currently, we determine the completions in an offline step (by precomputing the path

summary, Section 3.3). We could update the path summary as new pipelines are added to the

repository, incorporating new pipelines as they are created. In addition, we could learn from user

feedback by, for example, allowing users to remove suggestions that they do not want to see again.

Completions could be further refined by assigning greater weight to those that more closely mirror

the current user’s actions, even if they are not the most likely in the database.

One important aspect of our technique is that it leverages the visual programming environment

available in many visualization systems. In fact, it would be difficult to offer suggestions without

a visual environment in which to display the structural changes. In addition, the information for

the completions comes from the fact that we have structural pipelines from previous work. Without

an interface to construct pipeline structures, it would be more difficult to process the data used

to generate completions. However, we should note that turnkey applications that are based on

workflow systems, such as ParaView [82], may also be able to take advantage of completions in

a more limited way by providing a more intelligent set of default settings for the user during their

explorations.

3.8 Summary
We have described VisComplete, a new method for aiding in the design of visualization pipelines

that leverages a database of existing pipelines. We have demonstrated that suitable pipeline frag-

ments can be computed from the database and used to complete new pipelines in real-time. Fur-

thermore, we have shown how these completions can be presented to the user in an intuitive way

that can potentially reduce the time required to create pipelines. Our results indicate that substantial

effort can be saved using this method for both novice and expert users.

There are several areas of future work that we would like to pursue. As described above, we

would like to update the database of pipelines incrementally, thus allowing the completions to be

refined based on current information and feedback from the user. We plan to refine the quality of the

results by formally investigating the confidence measure and its parameters. We would also like to

explore suggesting finished pipelines from the database in addition to the constructed completions

we currently generate. For finished pipelines, we could display not only the completed pipeline

structure but also a thumbnail of the result from an execution of that pipeline.



CHAPTER 4

EFFICIENT EVALUATION OF EXPLORATORY

QUERIES OVER PROVENANCE

COLLECTIONS

4.1 Introduction
Increasingly, scientific exploration requires advanced computing capabilities to help researchers

obtain insights into large datasets. The processes required to analyze and visualize data are often

defined as workflows, which are iteratively refined as researchers formulate and test hypotheses.

To manage these complex analyses, including the intermediate and final data products, workflow

systems have been developed and track the provenance of the data products as well as of the

workflow evolution [39, 47].

As the volume of provenance captured by these systems grows and is shared among users, new

opportunities are created for knowledge reuse. Different kinds of queries can be posed against

provenance [121]. Since workflow provenance can be represented as a graph [39], queries that

seek the detailed derivation history of a given data product require that the provenance graph be

recursively traversed (backwards), starting from the node that represents the data product. Another

useful class of queries involve exploring the structure of the workflows that derive the data products.

The workflows (and workflow traces) shared in provenance repositories expose users to examples

of (sophisticated) uses of tools and libraries [33, 110]. By querying this information, users can

leverage the collective wisdom it encodes. Not only can users find workflows that are relevant

for a particular task and learn to assemble new workflows by example [18, 130, 131], but recom-

mendation systems can be built to leverage this information to guide users in the workflow design

process [85]. This is especially important given the fact that, despite the growing popularity of

workflow systems, constructing workflows is often a challenging and time-consuming task. Detailed

knowledge of the underlying computational components is necessary to determine what modules

and connections ought to be added to obtain a desired result.

While there has been work on speeding up recursive queries over provenance graphs [65],

the problem of evaluating structural queries has been largely overlooked. In this paper, we study

the problem of efficiently evaluating structural queries that are exploratory in nature. Exploratory
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queries are naturally expressed as simple graphs that may contain wildcards in constrast to standard

containment queries like the one shown in Figure 4.1. For example, Figure 4.2 shows an exploratory

query posed by a scientist interested in habitat modeling reports that were generated using the

RandomForest model with a climate predictor layer. This query can be quickly defined without

the need to understand exactly how the different components are connected. Queries with wildcards

are useful to search for workflows (or subworkflows) that contain a given structural pattern, but

can also be used and to identify possible directions for completing an unfinished workflow. For

example, when a workflow designer is faced with a known input and desired output, it is helpful

to identify different subworkflows that can connect the source and sink nodes of the the graph (see

Section 4.5).

Although there has been substantial work on graph indexing techniques to speed up the evalu-

ation of fully-specified structural queries [133, 166, 168], the same cannot be said of the problem

of efficiently evaluating exploratory queries: Existing approaches have focused on connected-graph

queries, not queries that are disconnected or contain wildcards. In addition, while the filtering

step in these indexing schemes significantly reduces the number of required (and costly) subgraph

isomorphism checks, vague queries often have a large number of answers, all of which must be

verified through subgraph isomorphism. FG-Index introduced a verification-free indexing scheme

to address this issue [29], but this comes at a cost: when the number of frequent subgraphs is large,

the index may become prohibitively large.

We propose a flexible, two-level framework to support exploratory queries over provenance

collections. Building on graph indexing techniques, we add 2-component frequent subgraphs to the

index to support vague queries like those with wildcards and summary graphs to limit the time spent

verifying candidate graphs after the filtering step. By augmenting the collection with summary

graphs before constructing a discriminative index, we can process queries by verifying summary

graphs first, reducing the total number of subgraph isomorphism checks required. We implemented

a prototype mechanism and evaluated it on two large collections of provenance information.

This chapter is organized as follows. We review workflow definitions as well as graph termi-

nology in Section 4.2 before introducing our indexing framework in Section 4.3. In Section 4.4,

we detail our implementation, and Section 4.5 describes applying the framework to workflow

completions. We evaluate our framework using provenance data from visualization and Yahoo!

Pipes workflows in Section 4.6. We discuss extensions and limitations in Section 4.7 and review

related work in Section 4.8 before concluding in Section 4.9.
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4.2 Background
Before presenting our indexing framework for exploratory queries over provenance collections,

we will review terminology and definitions. Specifically, we wish to abstract these constructs to

graphs in order to leverage and extend existing graph indexing techniques. We first review the

correspondence between provenance and workflows, then define queries over workflow collections,

and finally abstract this to graphs.

4.2.1 Provenance and Workflows
Provenance information is represented as a directed acyclic graph (DAG) encoding dependen-

cies among computational steps. Similarly, workflows can also be represented as a graph specifying

the order of computation, and most scientific workflows are dataflows which are also DAGs. Fur-

thermore, when provenance is generated during the execution of a workflow, the provenance graph

directly reflects the structure of the workflow. Thus, a query over provenance graphs (or parts

of that query) can often be translated into a query over workflows. In many cases, the workflow

specification is shared among several provenance traces derived from multiple executions of similar

workflows. In addition, the workflow graph can be much more compact than the provenance graph,

especially for workflows that include looping constructs. Thus, while our indexing framework can

be directly applied to provenance graphs, it is usually more efficient to index the workflows behind

the provenance graphs.

A workflow is a set of steps usually associated with some partial order. The steps followed can

be controlled by their order, a set of logical constraints, or dictated by human input. A dataflow is

a special kind of workflow that is a DAG.1 In a dataflow, each node performs a computation and

edges define the flow of data from the outputs of one node to the inputs of another [92]. While

general workflows may contain cycles and explicit control constructs [1], their provenance can be

represented as DAG—with loops unrolled and branches selected.

Formally, a workflow w is a set of computational modules linked by connections that define the

flow of data from one module to another. This is often represented as a DAG whose vertices are

modules and edges are connections. Each vertex and edge is distinguished with the type of module

or connection it represents. For example, the center module in Figure 4.3 has the type RunModels,

and the type of connection from it to the BuildMDS module is defined by the ports used to connect

the modules.

1The dataflow model is the most prevalent model supported by scientific workflow systems.
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FieldData StaticPredictor ClimatePredictor

BuildMDS

RunModels

MAXENT RandomForest

BuildMaps

BuildReport

Figure 4.3: A representative workflow from a collection of workflows used for habitat modeling.

4.2.2 Queries Over Provenance Collections
A provenance collection consists of a set of provenance records. The collection may contain

records generated from multiple executions of a single workflow, from a variety of workflows

created as part of a collaborative scientific project, or from an entire database of workflows built

by members of a scientific research group over a period of many years. Note that large, distributed

collections implicitly contain a wealth of scientific information, cataloging different strategies,

experimental approaches, and results. As described earlier, because provenance records often

contain (or link to) the specifications of the workflows that were run, these collections often contain

an embedded collection of workflows.

Some queries can be posed against a single workflow, others involve the differences between

two workflows, but many are best answered by examining an entire collection. If a user wishes to

know exactly which predictors in the workflow shown in Figure 4.3 affect the maps generated in the

report, they need only analyze that single workflow. Another important type of query is identifying

differences between pairs of workflows [15]. However, users are often interested in searching a

collection of workflows to find those that exhibit specific behaviors. For example, a user may wish
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to locate all workflows that run using a RandomForest module, a climate predictor, and that

generate a report. We focus on this type of query. More formally, given a workflow collectionW

and a query q, we wish to find the subsetWq �W such that every w PWq satisfies q.

Like others [18, 85], we posit that a query can be represented as a workflow. The most basic

type of workflow query is containment. Formally, a workflow containment query q is a workflow

specification, and a workflow w P W satisfies q if there exists an injective function f that maps

modules in q to modules in w such that


 typepmq � typepfpmqq, m P q, fpmq P w, and


 cpm1,m2q P q ùñ Dc1pfpm1q, fpm2qq P w and typepcq � typepc1q

where cpm1,m2q is a connection from modulem1 to modulem2. Thus, the query is satisfied when a

workflow contains the query workflow. This type of query can be used when looking for a particular

region of functionality; for example, searching for all workflows that run a predictor and resamples

its results.2

The problem with these containment queries is that the user must know exactly what to look

for—the exact module types and connectivity. We suggest a more powerful form of workflow

queries where the query allows wildcards for module or connection types. This relaxation allow

queries to specify existence of paths in addition to direct connections, and existence of a module

rather than a specific module type. More formally, an exploratory workflow query is a partial

workflow q, a workflow where modules and connections can have the wildcard type � meaning

any type of module or connectivity is allowed. Then, a workflow w satisfies the exploratory query

q if there exists an injective function f such that


 typepmq � � or typepmq � typepfpmqq


 typepcpm1,m2qq � � ùñ D pathpfpm1q, fpm2qq P w


 typepcq � � ùñ typepcq � typepfpcqq

where fpcq � fpcpm1,m2qq � c1pfpm1q, fpm2qq. Note that exploratory queries offer far greater

flexibility; users can query a collection without worrying about steps that are not important to their

search. For example, a user may wish to find all workflows that use a RandomForest module

and eventually output an HTML report that includes information from that model; whether or not

BuildMap is used is not relevant to the user. In an exploratory query, wildcards can be used to

indicate that a path must connect the two modules but with no restrictions on what modules that

path connects. See Figures 4.1 and 4.2 for an example of the difference between containment and

exploratory queries.

2Note that workflow queries may also include information about parameters: these can also be specified as part of the
workflow.
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4.2.3 Graphs and Isomorphisms
Because we wish to make use of existing graph indexing approaches, we propose a translation

from workflow queries to queries over collections of graphs. Workflows can be naturally represented

as labeled graphs whose vertices and edges are labeled by the module or connection type. Formally,

a workflow w can be represented by the labeled graph GpV,Eq where each module in w is repre-

sented by a vertex in V and each connection is an edge in E. In addition, the labeling functions,

LV pvq and LEpeq are defined as the types of the modules and connections, respectively. Then, a

basic workflow query can be immediately translated into a subgraph isomorphism problem, and

exploratory workflow queries can be translated to an extension of subgraph isomorphism involving

wildcards.

Two graphs G and H are isomorphic if there exists a bijective function f : V pGq Ñ V pHq

such that for every edge pvi, vjq P EpGq, there exists an edge pfpviq, fpvjqq P EpHq and vice

versa. If G and H are labeled graphs, then f must also preserve labels: LV pviq � LV pfpviqq and

LEppvi, vjqq � LEppfpviq, fpvjqqq. If we relax f to be an injective function, then G is subgraph

isomorphic to H , G � H , again with the same restrictions for labeled graphs.

Much of the existing graph indexing work has focused on speeding up graph containment

queries: given a query graph Q, find all graphs G in the collection for which Q � G. This type of

query is analogous to our workflow containment query, and thus these approaches do not support

exploratory queries with wildcards. To extend these techniques, we must first extend the definition

of subgraph isomorphism to incorporate wildcards.

A wildcard graph G� is a labeled graph where any edge can have a special � label that denotes

a path (not necessarily a single connection) between two vertices. Then G� is wildcard subgraph

isomorphic toH ifG��te | LEpeq � �, e P EpG�qu (G� excluding all wildcard edges) is subgraph

isomorphic to H and for each wildcard edge pvi, vjq, there exists a path from fpviq to fpvjq such

that no internal vertex in this path is in fpV pG�qq. Note that the restriction on the path ensures that

a query graph where vertices are specified and not identified as path of a path cannot be used in a

wildcard path.

4.3 Indexing Framework
With the abstraction of provenance and workflow queries over provenance collections to graph

queries, we will propose extensions to existing graph indexing frameworks to support exploratory

queries. The inherent graph structure in provenance queries means they are subject to theoreti-

cal constraints on subgraph isomorphism which is known to be NP-Complete [31]. Thus, doing

a subgraph isomorphism check for each graph in the collection will not scale. We propose a

two-level framework that extends existing graph indexing techniques by incorporating summary
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graphs that capture verification-free subgraph isomorphisms and discriminative features defined

over the extended provenance collection. Our goal is to reduce the number of total subgraph

isomorphism checks while at the same time allowing less-specific, and thus more exploratory,

queries. The framework is rooted in the observation that even if we cannot resolve a query without

any verification as in [29], we can reduce the number of subgraph isomorphism computations by

finding a subset of the result set with limited verification.

4.3.1 Standard Graph Indexing
Standard graph indexing seeks to make subgraph containment queries over collections of graphs

more efficient by limiting the number of subgraph isomorphism checks. Indexing strategies have

primarily fallen into two categories: feature-based methods (see e.g., [133, 166, 168]) and hierar-

chical organization [62, 162]. We focus on feature-based methods because for exploratory searches,

users are often querying for specific (and often disconnected) features.

Feature-based graph indexing identifies features that aid in distinguishing graphs in a collection

from each other. Each feature is linked to the graphs that contain it, and all features are organized

in a hierarchy according to feature size. Queries are evaluated by identifying a set of features

contained by the query and computing the intersection of the graphs associated with each feature.

A graph must contain the same set of features as the query, but this is not sufficient as the features

do not necessarily uniquely identify a graph. Thus, we must check whether each candidate graph

is subgraph-isomorphic to the query. The fewer isomorphisms we compute, the faster the query

execution. Thus, we wish to find a set of features that minimizes the size of the candidate set.

4.3.1.1 Identifying Features
The first ingredient in graph indexing is identifying features that will help to differentiate the

graphs in our collection. To minimize the size of the index, we wish to find a set of features that

serves to filter the collection into small subsets of graphs such that the features are not redundant.

Formally, given a graph collection G, a subgraph H is frequent with respect to a threshold T if

| suppHq| ¥ T where the support of a subgraph H is

suppHq � tG | H � G P Gu

Note that if a query graph contains a given frequent subgraph H , we can immediately exclude all

graphs in G that are not in suppHq.

For a frequent subgraph H , any subgraph of H is also frequent because any graph that contains

H must also contain all subgraphs ofH . This means that there may exist a large number of frequent

subgraphs when a dataset has a large pattern that occurs frequently. More generally, when frequent
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subgraphs have similar support values, they serve to prune nearly the same set of graphs. We desire

to select a smaller set of frequent subgraphs that still provides good pruning power. This implies

that selected feature subgraphs should not significantly overlap. Given the collection G and a set of

subgraphs F , a subgraph F is discriminative if

suppF q " XF 1PF ,F 1�F suppF 1q

Figure 4.4 shows a set of frequent subgraphs, their respective supports, and the size of the intersec-

tion of the supports of their subgraphs. Note that F2 and F3 are well indexed by F4, F5, and F6 and

thus are not discriminative.

4.3.1.2 Index Construction and Query Processing
After identifying the discriminative features, we build an index by organizing the features into

a hierarchy to facilitate apriori pruning. Note that this hierarchy may contain features that are

not discriminative in order to simplify traversals during query processing. Because each feature is

linked to a list of graphs that contain the feature, we can easily prune our search space for each

feature in the query. A query is processed by starting with individual vertices and building features

with increasing size by traversing the hierarchical index. Once we have the maximal features from

the query, we intersect the lists of graphs associated with each of the features. The intersection of

these graph lists forms the candidate set of graphs that may satisfy the query. Because we do not

know if the candidates actually match the query, we must then verify each candidate by computing

a subgraph isomorphism. Note that because subgraph isomorphism can be costly, it is important to

have features which prune a large portion of the collection.

4.3.2 Wildcard Graph Indexing
Standard graph indexing techniques present two major issues when dealing with exploratory

provenance queries. The first is that they usually assume that queries are connected graphs which

is not necessarily the case when dealing with workflows. For example, suppose that a user wishes

to find a workflow that uses a particular data source and produces a figure in a specific output

format. In this case, the user does not care what the internals of the workflow are, so the standard

containment query does not apply. A second issue is that answering queries with a large number of

satisfying workflows may result in many subgraph isomorphism calculations. A vague query like

one to find a common subworkflow might produce many candidates after filtering, all of which need

to be verified. We introduce 2-component frequent subgraphs and summary graphs to address these

issues.
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DISCRIMINATIVE FEATURES

A

C

B

A

C

A

B
C

BA

F1 F2 F3

F4 F5

F6

| suppF1q| � 10, | suppF2q| � 32, | suppF3q| � 35,

| suppF4q| � 70, | suppF5q| � 54, | suppF6q| � 49

| suppF4q X suppF6q| � 36, | suppF4q X suppF5q| � 39,

| suppF2q X suppF3q| � 28

Figure 4.4: Because the graphs identified by a feature may also be identified by subgraphs of that
feature, we choose discriminative features to be those whose subgraphs collectively identify many
more graphs. For example, F1 is selected because the graphs identified by the combination of F2

and F3 is 28 " 10.

4.3.2.1 2-Component Frequent Subgraphs
Because exploratory queries frequently contain only pieces of a graph, we propose an indexing

strategy that considers disconnected frequent subgraphs. Most existing frequent subgraph mining

algorithms can be extended to also consider disconnected subgraphs. The problem with doing

so is that the number of frequent subgraphs jumps exponentially. Any frequent subgraph with n

vertices has on the order of 2n possible disconnected frequent subgraphs that are also frequent.

We can classify these disconnected subgraphs by the number of components. An m-component

subgraph is a subgraph whose vertices can be partitioned into no fewer than m sets such that there

does not exist any path from a vertex in one set to a vertex in another set. Including 2-component

subgraphs in our set of frequent subgraphs only increases the number of frequent subgraphs by a

quadratic amount. In addition, a frequent subgraph with more than n components contains Opn2q

2-component subgraphs so we still have a large number of features to help prune the search space.

Figure 4.5 shows an example where the two-component subgraph F1 filters many more graphs than

F2 and F3. This usually occurs when the query identifies components as nonoverlapping, but many

of the graphs indexed by the single-component features have them overlapping.

4.3.2.2 Summary Subgraphs
While frequent subgraphs prune the search space and help quickly locate graphs that may satisfy

the query, we still need to check every graph that remains after pruning. This verification step

involves the computation of a subgraph isomorphism, and this can be even more costly when
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2-COMPONENT FEATURE
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F1

F2

F3

C
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| suppF1q| � 22, | suppF2q| � 62,

| suppF3q| � 57, | suppF2q X suppF3q| � 50

Figure 4.5: While the features F2 and F3 occur together often, they are usually disjoint as defined
by the two-component feature F1: | suppF1q| ! | suppF2q X suppF3q|.

wildcards are involved. Cheng et al. proposed FG-Index as a way to eliminate the verification

step by noting that when the query is itself a frequent subgraph, the indexed graphs automatically

satisfy the query [29]. While these verification-free answers are ideal, indexing all of the frequent

subgraphs—not only discriminative ones—can lead to prohibitive index sizes.

We propose summary subgraphs as a scalable way to limit the number of verification steps.

A summary subgraph F is linked to a subset of the graph collection where each graph G is a

supergraph of F . Then, if a summary subgraph satisfies the query, we know that all of the graphs

the summary subgraph indexes also satisfy the query. In addition, we will only include subgraphs

that do not have immediate supergraphs that index a similar number of graphs. See Figure 4.6 for

an example showing which subgraphs are selected as summary features. Formally, a subgraph F is

a summary subgraph in a set of graphs F if for all F 1 P F , F 1 � F :

suppF q ! suppF 1q

A summary subgraph is analogous to the δ-tolerance closed frequent subgraph [29], but we use

them differently. When a query graph H is found to be a subgraph of a summary subgraph G,

we know that all of the graphs that G indexes also satisfy H . Thus, if this single verification of

H � G succeeds, we avoid verifying all of the graphs G indexes. Note that H may satisfy other

graphs; we leave the remaining graphs to either other summary graphs or basic verification using

subgraph isomorphism. However, because mining features are required for feature-based indexing

techniques, finding summary subgraphs takes minimal computation.
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| suppF1q| � 52, | suppF2q| � 62,

| suppF3q| � 57, | suppF4q| � 60

| suppF1q X suppF2q| � 50, | suppF1q X suppF3q| � 51,

| suppF1q X suppF4q| � 50

Figure 4.6: Because each subgraph of a frequent subgraph is also frequent, we choose summary
features to be those whose supergraphs have much smaller frequency.

4.3.2.3 Index Construction and Query Processing
Our index is composed of both summary and discriminative features. Both summary and dis-

criminative features link to supergraphs of themselves that exist in the graph database, as illustrated

in Figure 4.7. Because we need to identify the summary subgraphs during query processing just like

any other candidate graph, our discriminative features will index to those graphs as well as those

in the graph database. Additionally, after identifying the summary subgraphs, any graph indexing

scheme can be applied to this extended graph database. Index construction begins by mining a set

of connected and 2-component frequent subgraphs. Then, we identify the summary graphs and add

them to the collection. Next, we create an index over the augmented collection; because we have

already mined features, it is more efficient to use a feature-based scheme. As described earlier,

discriminative features can be quickly extracted to index these graphs.

Query processing is similar to standard graph indexing schemes, except that we use 2-compon-

ent frequent subgraphs to better filter candidates and shortcut the verification process using summary

subgraphs. When pruning candidate graphs, we are able to use 2-component frequent subgraphs

as features. In addition, our verification step begins by checking all summary graphs first, then
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INDEX WORKFLOW DB

SUMMARY
FEATURES

DISCRIMINATIVE
FEATURES

...

...
...

Figure 4.7: Our index has two tiers, the summary features which summarize frequent features and
provide verification-free answers, and the discriminative features which point to both the original
workflow database and the summary features. Note that for this illustration, many items have been
omitted from the figure; in practice, each workflow is indexed by at least one discriminative feature.

verifying graphs that remain unverified by the summary graphs.

4.3.2.4 Verification
Given the summary graphs and discriminative index, our query processing proceeds like stan-

dard graph indexing with the exception that we choose to verify summary graphs before any of the

graphs from our collection. As noted earlier, whenever a summary graph S satisfies the query graph,

we immediately know that any graph indexed by S also satisfies the query graph. This means that

we do not have to individually verify that entire subset of graphs. Note that if S does not satisfy

the query, we cannot exclude the graphs indexed by S because summary graphs are inclusive rather

than exclusive. However, we expect that frequent graphs will be summarized, and a query that has

a candidate summary graph that does not verify will either be indexed by another summary graph

or be infrequent.

4.4 Implementation
Our implementation of the index construction, query processing, and index maintenance is

described in this section. Note that we do much of our processing by levels of the subgraph

hierarchy.
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4.4.1 Index Construction
As described earlier, there are two distinct steps in our index construction: summary graph se-

lection and constructing an index for the collection augmented with the summary graphs. Summary

graph selection requires frequent subgraph mining, and we also implement our discriminative index

using frequent subgraphs. For that reason, we mine features from the entire collection and use those

features for both steps. After mining, we choose summary graphs and construct a discriminative

subgraph hierarchy over the augmented collection. See Figure 4.8 for an overview of the process.

INPUT WORKFLOWS
1. MINE FEATURES

ALL FEATURES

2. SELECT SUMMARY
FEATURES

3. SELECT DISCRIMINATIVE
FEATURES

SUMMARY FEATURES

DISCRIMINATIVE FEATURES

4. BUILD INDEX

INDEX

Figure 4.8: The construction of our index involves feature mining, followed by the identification of
summary features, which are used to determine discriminative features and build the index.
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4.4.1.1 Mining Frequent Subgraphs
Among existing subgraph mining algorithms, we have chosen to use the open-source imple-

mentation of gSpan [164] from Jahn and Kramer [74]. Because summary graph and discriminative

feature selection involve comparing a graph against its super- or subgraphs, we maintain a directed

acyclic graph L to manage these relationships. An immediate subgraph of a graph G is a subgraph

G1 where G1 is missing exactly one of the edges from G (it may also be missing a vertex if the edge

connects to a degree-one vertex). Then, as we mine features, we maintain links from every graph

to its immediate subgraphs in L. This will help us process graphs in levels where each level has all

graphs with a set number of edges.

4.4.1.2 Generating 2-component Frequent Subgraphs
To mine 2-component subgraphs, we can either modify an existing algorithm like gSpan [164]

or the Frequent Subgraph Miner [89] or process the set of connected frequent subgraphs and gen-

erate the 2-component subgraphs. For gSpan, the depth-first search can be amended to include a

component number so that mining will consider disconnected subgraphs [165]. However, if we

already have the set of connected frequent subgraphs, we can generate the 2-component frequent

subgraphs by examining all pairs of frequent subgraphs, and checking whether the intersection of

graphs matching both subgraphs contain them disjointly.

Given our subgraph relationship graph L, we can build 2-component frequent subgraphs (2CF-

SGs) by checking pairs of subgraphs level-by-level up from single-vertex pairs. If any pair of

subgraphs is not frequent, we need not continue to check supergraphs of that combination. Also,

note that as we compute these 2CFSGs, we will update L to include the new subgraphs as well. The

entire process is detailed in Algorithm 2.

4.4.1.3 Selecting Summary Graphs
To select summary graphs, we follow the principles outlined in Section 4.3.2, but again work on

a level-by-level basis, in order to more easily determine whether a subgraph should be selected or

not. We maintain the set of supergraphs for each subgraph in parent level, and work top-down. Then

at any level, we can look up exactly what the cumulative supergraph support is without traversing

the entire supergraph hierarchy. Algorithm 3 details this process.

4.4.1.4 Building the Discriminative Index
After selecting summary graphs, we build a discriminative index over the graph collection

augmented with the summary graphs. As noted earlier, determining discriminative subgraphs is

similar to selecting summary graphs except that we are concerned with exclusion here in contrast to
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Algorithm 2: Mine Frequent Subgraphs
Input: A collection of workflows G and a threshold T
Output: A set F of frequent subgraphs ofW
MINESUBGRAPHS(G)
(1) F Ð Run gSpanpG, T q
(2) Add single-vertex features to F
(3) pairs Ð all pairs of single-vertices from F
(4) while pairs � H:
(5) foreach G1, G2 in pairs:
(6) matches Ð suppG1q X suppG2q
(7) if |matches|   T
(8) continue
(9) G1 Ð GpG1, G2q
(10) if |tG | VERIFYpG1, Gqu|   T
(11) continue
(12) F Ð F �G1

(13) G�
2 Ð IMMEDIATESUPERGRAPHSpG2q

(14) foreach S2 P G
�
2 :

(15) pairs Ð pairs� pG1, S2q
(16) G�

1 Ð IMMEDIATESUPERGRAPHSpG1q
(17) foreach S1 P G

�
1 :

(18) pairs Ð pairs� pS1, G2q

Algorithm 3: Select Summary Graphs
Input: A set F of frequent subgraphs ofW
Output: A subset of summary subgraphs S
SELECTSUMMARYSUBGRAPHS(F)
(1) Sort F according to the number of edges in decreasing order
(2) foreach G P F :
(3) G� Ð IMMEDIATESUPERGRAPHSpGq
(4) if G� � H or | YG1PG� supportspG1q| ¡ T
(5) S Ð S �G
(6) supportspGq Ð suppGq
(7) else
(8) supportspGq Ð | YG1PG� supportspG1q|

summary graphs which emphasize inclusion. Recall a subgraph is discriminative when its subgraphs

that are also discriminative filter many fewer graphs. Thus, we work on a level-by-level basis, but

work from the bottom-up instead of top-down as we do with the summary graphs. Algorithm 4

formally expresses this idea.

4.4.2 Query Processing
Given a workflow query q in graph form, we break the graph q into features. Note that these

features may be 2CFSGs, so we begin with single-vertex features and grow them into progressively
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Algorithm 4: Build Index
Input: A collection of workflowsW and summary graphs S
Output: An index T for the collection
BUILDINDEX(W , S)
(1) G ÐW Y S
(2) Sort G according to the number of edges in increasing order
(3) foreach G P G
(4) G� Ð IMMEDIATESUBGRAPHSpGq
(5) if G� � H or | XG1PG� supportspG1q| ¡ T
(6) T Ð T �G
(7) supportspGq Ð suppGq
(8) else
(9) supportspGq Ð XG1PG�supportspG1q

larger (and possibly disconnected) features according to the tree we maintain as part of the discrim-

inative index. When we have determined the maximal features, we compute the intersection of the

sets of graphs linked to these features. Note that the resulting set of candidates F� may contain

graphs from the collection and summary graphs.

Next, we must verify the set of candidates. Recall that if a summary graph S satisfies the query,

we immediately know that all of the graphs that S represents also satisfy the query. Thus, we

may be able to avoid some individual verifications by checking summary graphs first. However,

if a summary graph does not satisfy the query, we cannot assume that the graphs it indexes do

not satisfy the query; another summary graph may verify them or we may have to check them

individually. Algorithm 5 details this process. For workflow queries that do not involve wildcards,

these verification steps are just subgraph isomorphism checks. However, wildcard queries require

an extension of subgraph isomorphism. Figure 4.9 illustrates the entire process.

4.4.2.1 Wildcard Query Verification
Because wildcard queries are essentially disconnected graphs with special wildcard edges, we

can delete the wildcard edges and run the query over the disconnected graphs. However, during

verification, we need to evaluate whether the wildcard edges are satisfied by the candidate graph:

we need to check the wildcard subgraph isomorphism problem defined in Section 4.2. Since we

have chosen to mandate that paths between the two vertices on each side of the wildcard edge

must not contain vertices already matched to the query graph, we cannot evaluate this query using

standard transitive closure. Instead, we do this evaluation with a standard connectivity search on

the candidate graph by excluding any vertices already matched, using a depth-first search. Note that

this requires computing the matching generated from a subgraph isomorphism, and checking other

subgraph isomorphism answers if a suitable answer has not been found.
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Figure 4.9: Query processing is faster because the discriminative index limits the number of
candidates and summary graphs limit the number of computationally-expensive verifications.
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Algorithm 5: Process Query
Input: Query workflow Q, index T , collection of summary graphs S, collection of workflowsW
Output: A subset A ofW that satisfy Q
PROCESSQUERY(Q, T , S,W)
(1) AÐW
(2) features Ð single-vertex features of Q
(3) foreach F P features
(4) if F P T
(5) features Ð features �
(6) IMMEDIATESUPERGRAPHSpF,Qq
(7) AÐ AX T pF q
(8) Sort A so that all G P S are first
(9) foreach G P A
(10) if VERIFYpQ,Gq
(11) if G P S
(12) AÐ A� SpGq
(13) else
(14) AÐ A�G
(15) AÐ A� S

4.4.3 Index Maintenance
Because selecting frequent features requires mining, we cannot expect to regenerate the entire

index on the fly. Note, however, that both levels of the index can be updated to include new graphs

using existing summary and discriminative features. Unfortunately, it is difficult to discover new

frequent subgraphs after index creation as this requires recomputing the mining. As has been

discussed in other work [166], we can wait until a certain number of graphs have been added or

deleted and then recreate the index. In addition, we will always index base features like single

vertices or edges to ensure that new graphs will appear in search results. Thus, while the quality of

the index may degrade until it is recreated, it should not degrade too quickly. We may also choose

to recreate the discriminative index without updating the summary subgraphs, or we can recalculate

both levels of the index.

4.5 Workflow Completions
We can leverage exploratory workflow queries to suggest workflow completions, i.e., how a

partial workflow might be filled in. Similar to how textual completion works for programming

environments [103] or search fields [57], workflow completion seeks to provide suggestions to

users as they construct workflows. For example, in Figure 4.10, we show possible completions for

a modeling workflow. These completions are derived from an existing provenance collection and

aggregate workflow query results in order to rank putative completions. In [85], we showed that

using automatically generated completions, the effort to create workflows is substantially reduced.
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In our experiments, we observed a reduction of over 50% in the the number of operations performed

by users to construct workflows.

Formally, a workflow completion of a partial workflow w is a (nonpartial) workflow w1 such

that the workflow query represented by w is satisfied by w1. Thus, each wildcard module is

matched to some module in the completion and each wildcard connection maps to some path in

the completion. Note that a completion need not do more than satisfy each wildcard constraint

and match non-wildcard modules and connections. Thus, completions may be simple, just filling

in the minimum structure (see Figure 4.10(a)), or more complex, adding additional branches (see

Figure 4.10(b)). Also, since a completion is the result of a workflow query, improvements in the

efficiency of workflow queries translate directly to improvements in workflow completion.

4.5.1 Implementing Workflow Completions
We can augment our indexing framework to support workflow completions by capturing the

paths that satisfy the connectivity constraints in wildcard queries. During wildcard query verifica-

tion, we can capture these paths and suggest them as completion paths. Note that we can expand

a completion path to include modules and connections attached to the path. However, we always

add only vertices and edges that do not appear in the query graph (i.e., the existing workflow). This

ensures that the user does not see suggestions that reflect the workflow pieces they have already

constructed.

Ideally, completions should be ranked based on their importance. If one completion occurs in

hundreds of workflows and another occurs only once, we would like to present the more prevalent

one first. Note that a match to a summary graph guarantees that a completion there occurs fre-

quently. Thus, after verifying only the summary graphs, we might immediately present the user

with suggestions for completing a workflow. We can continue to generate suggestions from the

other graphs in the background, but allow the user to see the initial suggestions quickly.

4.6 Evaluation
4.6.1 Theoretical Costs

The total cost of a workflow query q using a standard graph index is

Cpqq � Cf � |Ipqq|Cv

where Cf is the filtering cost, Cv is the cost of verification, and Ipqq is the set of candidate graphs

from the index given the query q. Our improved index splits subgraph isomorphism checks into

two classes; we pay more up front in the hope of reducing the total number of verifications. Let
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SpI 1pqqq denote the set of summary graphs identified by the index for a query q and suppS�q denote

the workflows indexed by the subset that satisfies q. Then, the total cost is:

Cpqq � Cf � |SpI 1pqqq|Cv � |I 1pqq � suppS�pI 1pqqqq|Cv

Note that when suppS�q is large, we avoid many verification steps as a single summary graph veri-

fication check suffices. In general, we seek to minimize |I 1pQq| while at the same time maximizing

| suppS�q|. The worst case is when the index identifies a set of summary graphs, none of which

satisfy the query (| suppS�q| � 0); we perform extra verifications but because they are all negative,

we do not gain anything. However, these cases are rare as we expect frequent queries from users,

and any candidate sets for nonfrequent queries should be limited by the discriminative features. In

most cases, the summary graphs will provide fewer verification checks and thus faster query times.

4.6.2 Data Sets
We evaluated our techniques using two provenance collections. The first comes from a set

of visualization workflows and the second from Yahoo! Pipes workflows [163]—both are sets of

dataflows. The collection of 6,117 visualization workflows was generated over two years by 60

different users. The users were assigned specific tasks and generated workflows to solve these

problems. As such, we expect some overlap in the overall structure of the workflows, although

there should be some variation throughout. There were 150 different types of modules involved in

these workflows. The second collection is a set of 40,505 Yahoo! Pipes workflows used to construct

Web mashups. Here, the number of module types used was only 54, and users tended to follow

very similar patterns in workflow development. As such, there were few frequent patterns but many

occurrences of them.

We ran queries selected at random from the entire set of mined frequent subgraphs for these data

sets. In order to test the effectiveness of the summary subgraphs and the addition of 2-component

frequent subgraphs, we performed tests with both features enabled (S+2C), only summary graphs

enabled (S), and both features disabled (Orig.). Note that when both are disabled, the framework

is similar to gIndex [166]. For the Yahoo! Pipes data with features that occurred at least 500 times

and the summary and discriminative thresholds also held at 500, we were able to compute answers

to queries with an average of over 700 candidate graphs with only 20 isomorphism checks. For the

visualization workflows, with the same parameters all at 200, we were able to compute answers to

queries with an average of over 380 candidate graphs with only 64 checks.

Our prototype uses a sqlite3 database and python code to construct the index and perform

queries. Results for tests of the visualization dataset are shown in Figure 4.11a; note that for queries

with few results, our technique performs slightly more verifications than the number of results,
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but for queries with many results, the summary graphs help dramatically reduce the number of

verifications. Figure 4.11b shows similar results for queries of frequent subgraphs in the pipes

dataset.

We also performed tests with a range of thresholds for summary graph selection and discrim-

inative feature selection. As expected, smaller thresholds produced better results in both cases.

Figure 4.12a shows that decreasing the discriminative threshold significantly decreases the number

of isomorphisms. Examining Table 4.1, we see that the number of graphs in the index does

not increase significantly either. Figure 4.12b shows that decreasing the summary threshold also

decreases the number of isomorphisms, although here we do not see as pronounced an effect. This

can be explained by the fact that frequent subgraphs with no supergraphs are always included. Thus,

the internal nodes, where the threshold matters, play a less significant role.

Figure 4.13 shows that the number of edges involved in the query has an effect on the mean ratio

of the isomorphisms computed; smaller graphs are more often summarized which is to be expected.

The subtraction of 2-connected features, however, does not follow the same pattern. In addition,

the original feature-based strategy does not have a ratio of one because the summary graphs are

computed as candidates but not verified.

4.7 Discussion
4.7.1 Subworkflows

Many workflow systems offer operations to abstract parts of a workflow into subworkflow

or compound modules, whose computation is the execution of another workflow. Note that a

workflow can be expanded (or refined [18]) by replacing its subworkflow modules with the actual

specifications for the subworkflows. If we add the restriction that subworkflows cannot be included

circularly, we can always expand both query workflows and workflows in the collection. When

indexing, we always index the fully-expanded workflow, and fully-expand a query before evaluating

it. Note that in some cases, it may be worthwhile to also index unexpanded workflows, specifically

when a subworkflow is very common, because it will reduce the time involved in mining.

4.7.2 Scalability
Since a given frequent subgraph has n connected subgraphs of its own, it may have Opn2q

2-component subgraphs. Thus, the number of 2-component frequent subgraphs can quickly become

unreasonable. Note that a large pattern will generate many frequent subgraphs, but because most

of them are summarized by the pattern, it is not necessary to mine all of them. If a 2-component

subgraph has a supergraph that is a summary graph, and the difference in their supports is minimal,

we need not worry about it or its supergraphs. A test using the visualization dataset confirmed
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Figure 4.11: Comparison of the number of subgraph isomorphism verifications required for queries
with different numbers of results across different indexing schemes. For both the visualization
workflows (a) and the Yahoo! Pipes workflows (b), we used the proposed scheme having both
summary features and 2-component subgraphs (S+2C), a scheme using only summary features (S),
and the original feature-based indexing scheme (Orig.). The actual number of results is plotted as a
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the proposed scheme (Cands.).
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that with 25,708 frequent connected subgraphs, we would have 304,626 frequent 2-component

subgraphs, but running with the maximal heuristic, we can reduce this to 14,025 2-component

subgraphs.

4.7.3 Parameters
Although our focus in this work is on structural queries, we can also integrate parameters and

connection types into our approach. Connection types are edge labels, and we easily integrate this

information into existing algorithms. We could encode parameter information as part of the module

type and use the existing algorithms as well, but because parameters are more likely to vary across

workflows, this will likely lead to a much larger index. Instead, we propose that parameters be

indexed separately and queries processed by joining results from the parameter index with those

from the structural index. This also allows for queries that involve comparisons of parameters (e.g.,

temperature   98.6); an exact structural index where parameter values are baked into module types

would not be very effective.

4.8 Related Work
Although there has been work on frameworks and interfaces for querying workflow collec-

tions [18, 130] and for using these collections to derive recommendations for users as they design

workflows [85], not much attention has been given to performing these tasks efficiently. To the

best of our knowledge, ours is the first proposal for an index structure that supports the efficient

evaluation of exploratory queries over collections of workflows.

There is a substantial body of work on techniques for indexing graph databases to speed up

subgraph queries. Much of that work has focused on mining and utilizing frequent features that

serve to differentiate graphs. Index features range from single vertices and edges to paths and

graphs. Zhao et al. [168] provide a discussion and empirical analysis of the role and granularity of

paths, trees, and non-tree subgraphs. GraphGrep [133] uses paths as index elements, gIndex [166]

uses discriminative subgraphs, and Tree + ∆ [168] uses selective trees along with graphs generated

on-demand. These techniques work in two separate steps. First, there is a filtering step that uses the

index to prune graphs that do not match the query by intersecting the matches for each feature to

generate a set of candidate graphs. Then, in the verification step, each candidate graph is checked

via a subgraph isomorphism calculation against the input query. The goal of the pruning step is to

minimize the number of subgraph isomorphism checks required to evaluate the query. Note that

because of these checks, the query time scales according to the number of results. Chen et al. have

attacked the problem of searching collections of large graphs by using randomized summaries [25];

note that their summaries each characterize a single graph while our summary features index multi-
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ple graphs.

FG-Index [29] improves on the feature-based techniques by avoiding the expensive verifica-

tion step when a query exactly matches an indexed feature. The FG-Index contains entries for

all frequent subgraphs in a tree structure with an edge-set lookup. This was later extended to

FG*-Index [28] which incorporated a feature-based lookup as well as on-demand indexing. The

size of the FG-Index is dependent on the number of frequent subgraphs; thus, if a collection has

a frequent subgraph G with 20 edges, all subgraphs of G (a set with close to 220 elements) will

also be frequent. Although it is inefficient to keep all such subgraphs indexed, by indexing only the

largest subgraph, we can still quickly return answers for queries that are subgraphs of the “large”

subgraphs.

Wildcard queries are also supported by XML query languages. A number of approaches have

been proposed for XML indexing to efficiently support wildcard queries that have path expressions

involving ancestor and descendant axes. These range from encoding parent-child and ancestor-

descendant relationships via numbering schemes [94] and using structure-encoded sequences for

documents [159] to indexing a subset of the data paths in an XML document [26], However, these

techniques are specifically designed for tree models and cannot be directly applied to graphs.

4.9 Summary
We have presented a new indexing strategy to support exploratory queries over provenance

collections. The proposed two-level indexing framework combines the pruning power of discrim-

inative features of graphs with verification-free answers from indexed frequent subgraphs. Our

results show that the addition of summary graphs and 2-component subgraphs significantly reduces

the number of verification steps for queries that have many results. In fact, for the Yahoo! Pipes

dataset, this number was nearly constant even as the number of results increased. Our framework is

also flexible: the two enhancements are naturally orthogonal, and we can integrate either with other

existing graph indexing schemes. In addition, we are able to apply our framework to suggestions

for workflow completions. As the amount of provenance data continues to grow, understanding and

using this information requires efficient support for the exploratory queries that users are interested

in.



CHAPTER 5

VISUAL SUMMARIES FOR GRAPH

COLLECTIONS

5.1 Introduction
From molecular structures to social networks and workflows, graph collections are widely

available. While visualizing a single graph has been an important step in understanding these data,

given large graph collections, it becomes crucial to analyze the differences and similarities in the

collection. The questions of how a graph differs from some norm or where edges or nodes change

across time are more important than being able to view each graph individually. We introduce

summary graphs to synthesize collections of graphs to a single, interactive visualization. See

Figure 5.1 for an example summary graph.

There are a variety of domains where graphs are common, and being able to better understand

relationships between graphs is important. Molecules are well-known structures that can be repre-

sented as graphs, and understanding structural differences can help inform physical or biological

processes. More recently, there has been a great deal of interest in social networks, and one

might consider analyzing groups of users across different networks by comparing relationships.

Metabolic pathways, the chemical interactions between enzymes and compounds in a cell, are also

represented as networks, and pathways in different organisms often vary, allowing researchers to

construct phylogenies using information about these differences. With structured computations

like visualization pipelines or workflows, we also have a graph structure that can be analyzed for

differences.

Graphs are usually best understood via visual encodings, and there has been significant work

in algorithms to lay out and draw them. However, most of this work has focused on single graphs.

There are also algorithms to calculate distances between graphs or find maximal common sub-

graphs. Here, most of this work has focused on pairwise comparisons of graphs. With more than two

graphs, understanding the similarities and differences can be a challenge with pairwise techniques.

In addition, these comparisons tend to be strict, with little flexibility when vertices or edges are not

exactly equal. The ability to gather a slightly “fuzzy” mapping between graphs is important when

summarization is the goal.

One of the major challenges in understanding relationships between graphs is that there is no
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known computationally efficient method for comparing them. Testing whether one graph is an exact

subgraph of another (subgraph isomorphism) is NP-Complete, and relaxing constraints to allow

for greater freedom in any matching leads to even more possibilities. Unfortunately, exhaustive

algorithms tend to take too long because of the number of possible alignments, and heuristic

algorithms cannot be guaranteed to produce a good result. However, in many cases, a collection of

graphs contains significant overlap between individual graphs and locating possible matches is less

daunting than the general problem. We present a set of methods that are effective at matching pairs

of graphs by solving the assignment problem on a matrix that encodes cost estimates for matching

vertices. By first diffusing vertex similarities across a product graph, we can also integrate some

global connectivity information.

Given approaches for comparing pairs of graphs, we can build a summary graph using hierar-

chical agglomeration. From two graphs, we can construct a simple summary by combining matched

vertices and edges and connecting unmatched pieces of each graph. We recursively combine initial

and intermediate graphs until we end up with a single summary. Note that it may become apparent

that certain graphs do not share many (if any) similarities with the rest of the collection, and those

might be disregarded. An initial clustering step can help organize a set of graphs into logical

collections where summary graphs are appropriate.

Visualizing this computed summary graph should allow users to explore the similarities and

differences between graphs. As such, it is important to be able to recognize which pieces are unique

to a subset of graphs or common to most graphs. For large collections where a general understanding

is desired, we use lightness to indicate the relative occurrences of graph elements. By highlighting

a single graph with color in the context of the summary, one can understand how that graph relates

to the collection. Projecting a selected subset of graphs and using color to differentiate them allows

one to see how their specific relationship mirrors or differs from the summary. See Figure 5.2 for

an example of how color is used in a summary graph.

Finally, while our computed summaries usually offer a good initial picture of the collection, we

provide tools to allow users to interactively explore and update the summary graph. By ordering

matches according to a confidence measure, a user can control how much summarization occurs.

At a lower-level, users can select vertices and break or join them according to their wishes. Thus,

blemishes in an initial configuration can be quickly remedied. At the same time, this guidance can

be used to rerun the summarization process with a user’s preferences. In addition, these operations

are animated so a user can see exactly where nodes are split or joined as the layout is updated. This

is useful when navigating the amount of summarization.

In this chapter, we formally define summary graphs and show how they can be constructed

and visualized. Their construction is aided by an extension to an existing matching algorithm that
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produces concise, inexact matchings. In addition, we present operations for interactively editing

summary graphs as well as different modes for analyzing these visualizations. Finally, we present

applications that demonstrate the utility of our technique.

We begin by reviewing related work, and then build the definitions and computational machinery

for computing matches between pairs of graphs in Section 5.3. In Section 5.4, we formally define

a summary graph and detail how to construct one from a graph collection. Next, we describe how

we visualize and interact with summaries in Section 5.5. In Section 5.6, we provide case studies for

uses of summary graphs, and we conclude in Section 5.7 with a discussion of both shortcomings

and possible extensions.

5.2 Related Work
There has been substantial work in the area of graph visualization, ranging from layout algo-

rithms to methods for visualizing large graphs to interacting with graphs. However, the problem of

visualizing multiple graphs in a single view has been largely overlooked. Herman et al. provide a

good summary of the early work on graph visualization and navigation [66].

There has been work on comparing and visualizing two or more trees at once. Furnas and Zacks

suggested Multitrees as a way to integrate sets of hierarchical information [51]. The InfoVis 2003

Contest generated significant work in tree comparison [119]. Much of it was rooted in work done

for consensus trees used for phylogenies in the biological community [2]. Munzer et al.’s TreeJuxta-

poser tackled the problem of comparing large trees using focus+context and visibility criteria [108].

Tu and Shen showed how to encode changes in treemaps [152], and Graham and Kennedy used

directed acyclic graphs to agglomerate multiple trees [58]. They also provide a comprehensive

survey of work in the area of visualizing multiple trees [59]. Isenberg and Carpendale explored how

collaborators can share comparison information [73]. There has been some work to compare pairs

of graphs visually, including the visual diff for comparing two workflows by Freire et al. [48]. The

difference between pairs provenance graphs was considered by Bao et al. [14].

In contrast with the approach described in this chapter that aims to summarize a collection of

graphs, much of the work on graph summarization has focused on single, large graphs. Such graphs

can be clustered or summarized with regions collapsed into smaller entities (e.g., [44]). Other

approaches have used topology [12] and interaction [52, 155] to better navigate graphs. In addition,

edges can be bundled, allowing users to better identify connectivity when graphs have large numbers

of edges [34, 69]. Level-of-detail can also be used to more efficiently navigate large graphs [13].

There are also techniques for multivariate graphs that focus on relationships between nodes [160].

We note that while our focus is on combining graphs into a single visualization, as summary graphs

are graphs, this work can also be applied to them.
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Also related to our work are techniques for computing matches between graphs. The diffusion

matching we present is an extension of the similarity flooding work by Melnik et al. [100] and the

analogy matching from Scheidegger et al. [130]. Our work, however, uses a different formation

that is rooted in the concepts of graph edit distance. Riesen and Bunke suggest an approximation

for graph edit distance that uses a solution to the assignment problem [124], and Zeng et al. use a

similar formulation for graph searching [167]. We also use a solution to the assignment problem to

solve our final matrix after performing a diffusion step. Heymans and Singh use another variant to

compare metabolic pathways to generate phylogenetic trees [67].

5.3 Graph Matching
Generating a summary graph requires that common substructures in a given collection of graphs

be merged. Our algorithm for constructing summary graphs depends on pairwise merges, and graph

matching plays an important role in determining these merges. We are not, however, concerned

with the strict, exact matching that is often considered in graph theory. Rather, we wish to find the

best inexact matches so as to maintain a compact set of vertices and edges. When two graphs have

nodes that are exactly the same and their neighborhoods are similar, it makes sense to match them.

However, there are often nodes that, while not equal, are also very similar. This similarity may

be due to the fact that they are known to be related or because they are used in similar contexts in

their respective graphs. For example, in chemistry, it is known that sodium and potassium are very

similar atoms as they appear in the same group in the periodic table. However, while sulfur and

nitrogen are less similar, if they are bonded to similar neighborhoods, it may still be reasonable to

match them.

Graph edit distance is a measure of graph similarity, and its delineation between substituting,

adding, and deleting components provides a framework for identifying when a merge is appropriate.

However, computing graph distance can be slow and approximations do not take into account

global connectivity. Similarity flooding uses a Markov chain on a product of two graphs to diffuse

similarities and determine matches with the influence of connectivity information [100]. We propose

extensions to similarity flooding that incorporate concepts from edit distance approximations and

provide information to consider when vertices are best left unmatched. We begin by defining graphs,

graph matchings, and the quality of a match. After reviewing graph edit distance and similarity

flooding, we present our enhanced matching algorithm.

5.3.1 Definitions
A graph G � pV,Eq is a set of vertices V and set of edges E where each edge e � pv1, v2q P E

connects two vertices v1, v2 P V . In an undirected graph, each edge is specified by an unordered
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pair of vertices, and in a directed graph, the edges are specified by ordered pairs of vertices. Note

that an undirected graph can be transformed into an equivalent directed graph by creating a pair of

edges, one in each direction, for each edge. Because our graph comparisons rely on information

contained at vertices or on edges, we define labels for each. A labeled graph is thus a graph with

labeling functions LV : V Ñ L and LE : E Ñ L where L is a finite set of labels.

5.3.1.1 Matching
There are several ways to define a matching between two graphs, ranging from exact equality

to any one-to-one mapping between the two. Graph isomorphism involves finding a mapping from

one graph to the other such that each vertex and edge is matched, meaning each pair of labels

corresponds and the vertices of each edge also match. Subgraph isomorphism allows for an injective

map from a smaller graph to a larger one where the larger graph is allowed to have unmatched

vertices and edges. The decision version of the subgraph isomorphism problem has been shown to

be NP-Complete [31], making an efficient exact solution to this problem unlikely. Also note that

both of these problems consider exact matches on vertex and edge labels. We would like to allow

more flexibility by also matching vertices and edges that have similar, but not equivalent, labels.

Furthermore, we also wish to permit unmatched vertices in both graphs as some nodes are best

unmatched.

More formally, a graph isomorphism between two graphs G � pV,Eq and G1 � pV 1, E1q is a

bijection h between their vertices V and V 1 such that for each edge e � pv1, v2q P E, there exists

an edge e1 � pv11, v
1
2q P E

1 such that hpv1q � v11 and hpv2q � v12. For labeled graphs, we also have

the restriction that LV pvq � LV 1phpvqq and LEppv1, v2qq � LE1pphpv1q, hpv2qqq. We wish to allow

any mapping, regardless of whether it matches all vertices or if there are label mismatches. Thus, a

graph matching for two graphs G and G1 is any map h : V Ñ V 1. Note that this definition allows

a wide variety of matchings, ranging from an empty map to a full isomorphism. Since there can be

multiple valid graph isomorphisms for two graphs, there are many more of these general matchings.

Because of the number of possible matchings, we have some qualitative measure to evaluate

their utility. Any such measure is based on functions that define the similarity between nodes

and edges. These functions may be, most strictly, based only on the data represented by the

node or edge, but this is often relaxed to allow a comparison of neighborhood structure. Such

generalized scoring functions allow improved measures of similarity in a more global setting.

Formally, a vertex similarity function SV can be defined for two graphs G � pV,E, LV , LEq and

G1 � pV 1, E1, LV 1 , LE1q as SV : V � V 1 Ñ R. An edge similarity function SE can be similarly

defined. Strict similarity functions may be defined without considering the vertices themselves, only

the labels. Note that a similarity function can also be represented inversely as cost; components with
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high similarity have low cost.

Using these measures, which may be domain-specific, we can define the score of a graph

matching. Given G1 � pV1, E1q, G2 � pV2, E2q, SV , and SE , we define the score of a graph

matching h as

scorephq �
¸
vPV1

SV pv, hpvqq �
¸
ePE1

SEpe, hpeqq

Then, a maximal graph matching is a graph matching h where scorephq is maximized. Note that

there cannot be any claim of uniqueness; for example, a graph with any symmetry will usually have

at least two matchings that attain the same, maximal score.

5.3.1.2 Graph Edit Distance
While similarity functions can help guide users to the best correspondence between a pair of

graphs, note that for functions that define strictly positive scores, it is always best to match as many

vertices and edges as possible. Allowing negative scores or using thresholding [100] can aid in

discarding poor matches, but note that it can be instructive to have some measure of when it is best

not to match nodes. Graph edit distance establishes a cost for transforming one graph into another.

Such a transformation consists of three types of operations: substitutions, additions, and deletions.

This allows a direct comparison between the cost of substituting a vertex in one graph for another

versus the cost of removing the vertex and adding the other. In the context of graph matching, this

means we can identify when to leave vertices or edges unmatched. We will show that we can use a

solution to graph edit distance to construct a maximal graph matching.

Formally, given two graphs G1pV1, E1q and G2pV2, E2q and cost functions Cva : V2 Ñ R,

Cvd : V1 Ñ R, Cvs : V1 � V2 Ñ R, Cea : E2 Ñ R, Ced : E1 Ñ R, Ces : E1 �E2 Ñ R, the graph

edit distance between G1 and G2 is

min
Va,Vd,Vs,Ea,Ed,Es

¸
vPVa

Cvapvq �
¸
vPVd

Cvdpvq �
¸
vPVs

Cvspvq�

�
¸
ePEa

Ceapeq �
¸
ePEd

Cedpeq �
¸
ePEs

Cespeq

The solution to this minimization is not straightforward because the selection of which vertices are

substituted affects the selection of edge actions. Thus, Ea, Ed, and Es are not independent of Va,

Vd, and Vs.

However, note that if, during the computation of graph edit distance, we track the composition

of Va, Vd, Vs, Ea, Ed, Es, we can construct a graph matching. Vs andEs define exactly which nodes

and edges, respectively, should be matched. Note that this does not match our original definition of

maximal because we now have some measure of when components should be left unmatched. This
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suggests an extension to our similarity functions: expand the domain to include unmatched entities.

Let ε represent leaving a vertex unpaired. Then, our vertex similarity function becomes

SV : V1 Y tεu � V2 Y tεu Ñ R

and the edge similarity function can be extended in the same manner. Note that Spε, εq does not

play a role in the computation. Then, vertex additions are scored by Spε, v2q and vertex deletions

by Spv1, εq. This allows us to directly compare Spv1, v2q with Spv1, εq � Spε, v2q.

5.3.2 Computing Graph Edit Distance
Graph edit distance is also NP-Complete so an efficient solution for it is unlikely [167]. In

practice, for small graphs, A� can be used to evaluate the entire space of possible solutions. For

larger graphs, we can use heuristics that rely on estimates to prune the search space.

5.3.2.1 A� Search
To compute graph edit distance, we can explore the space of all possible vertex matchings, since

they will induce edge costs [124]. Note that for any vertex matching, we can choose substitution or

an add/delete pair based on which operation(s) have a lower cost. Then, we can iteratively compute

the cost of a node as the cost of its parent plus the cost of matching the two vertices indicated by the

node. This cost includes both the node similarity and the costs of the induced edge operations. The

number of leaves in this search tree is n!{pn�mq! for m   n, meaning that there is an exponential

number of cost computations.

Because of the high computational cost, it is impractical to compute the full A� tree for anything

other than small graphs. As with other search algorithms, we can use pruning strategies to help cut

down these costs. The key ingredient is being able to determine which branches are promising,

usually accomplished by estimating the remaining cost down the tree. Given such a heuristic, we

can evaluate all active nodes by estimating the remaining cost, and keep only the top (or top-k in

beam search). This reduces the number of computations to k per level, for a total of k �mintm,nu,

which will clearly be faster.

5.3.2.2 Edit Distance and the Assignment Problem
For these algorithms to be practical, we must have a reasonable estimate for graph edit distance.

If we discard costs for edges, we only need consider the assignment of vertices. For the substitution

costs for vertices in two graphs G1 and G2, we have the following matrix:
�
����

s00 s01 � � � s0n
s10 s11 � � � s1n

...
...

. . .
...

sm0 sm1 � � � smn

�
���
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where sij is the cost of substituting vj P G2 for vi P G1. Because each node can be matched

to at most one other node, we can select at most one entry from each row and at most one from

each column but want minimal cost. Furthermore, a full assignment for an m � n matrix requires

that we have all rows in columns in the smaller dimension covered. This is exactly the assignment

problem [22], and it has a polynomial time solution via the Hungarian algorithm [88].

One issue is that we would like to include the add and delete costs as well. Riesen and Bunke

proposed a matrix that encodes these costs and still allows for a solution via the Hungarian algo-

rithm [124]. The matrix has four blocks

�
��������������

s00 s01 � � � s0n a0 8 � � � 8
s10 s11 � � � s1n 8 a1 � � � 8

...
...

. . .
...

...
...

. . .
...

sm0 sm1 � � � smn 8 8 � � � am

d0 8 � � � 8 0 0 � � � 0
8 d1 � � � 8 0 0 � � � 0
...

...
. . .

...
...

...
. . .

...
8 8 � � � dn 0 0 � � � 0

�
�������������


(5.1)

where the upper-left block contains all substitution costs (sij), the lower-left and upper-right blocks

contain add/delete costs (ak and d`), and the lower-right block is free. The trade-off between

substitution and addition/deletion is enforced by setting off-diagonal entries in the upper-right and

lower-left blocks to 8, meaning that the assignment must, for each left column, either select a

substitution or a deletion, and for each upper row, either select a substitution or an addition. Because

we must assign each row/column (we can pad to a square matrix for rectangular matrices), we can

obtain a minimal cost for vertex operations.

5.3.2.3 Including Neighborhood Information
While we can efficiently solve the vertex assignment problem given vertex similarity functions,

such a solution does not take into account any edge information. This is problematic, as Figure 5.3b

shows, because connectivity is a major component of a graph; otherwise we are simply matching

sets of vertices. Connectivity can also influence when vertices should be matched. For example,

when evaluating whether a vertex in one graph matches one in another, it is reasonable to consider

a correspondence if all of the neighbors in the first graph correspond to the neighbors in the second

graph.

However, note that for our vertex assignment matrix, there is no restriction that the costs must

correspond to the vertex similarity function. We can choose to define the entries in the cost matrix

as a combination of the vertex similarity cost and an estimate of the cost involved in matching
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neighborhoods. Instead, we can add the costs for matching adjacent edges of each pair of ver-

tices [124]. For such a pair, the best correspondence for edges can also be solved via a solution

to the assignment problem for the edge sets. Note that this will produce a locally optimal cost,

and because the constraints are not global, the local costs cannot usually be reconciled. An edge

correspondence for one pair of vertices may pair two edges differently than a similar correspondence

for an adjacent pair of vertices. Figure 5.3c shows that the detected asymmetry between the A and

E nodes does not propagate to correctly pair the C vertices.

5.3.3 Diffusion Matching
In order to incorporate global connectivity into the vertex assignment matrix, we need greater

diffusion of similarity. An iterative refinement like similarity flooding [100] allows individual

similarities to influence the entire graph. This refinement works by constructing a product graph

whose vertices are all pairs of nodes from the original graphs and whose edges indicate correlations

between pairs. One issue with the original approach is that it uses thresholding to determine when

nodes should be unmatched; we improve this by integrating both the assignment matrix solution

from graph edit distance and skip nodes, additional vertices added to the product graph that track

scores for keeping vertices unmatched.

5.3.3.1 Similarity Flooding
To begin, we create a product graph so that we can diffuse costs between vertex pairs using

the combined connectivity. Given graphs G1pV1, E1q and G2pV2, E2q, the direct product graph

G�pV �, E�q � G1 �G2 where V � � V1 � V2 and

E� � tppu1, u2q, pv1, v2qq | pu1, v1q P E1, pu2, v2q P E2u

Note that this graph differs from the Cartesian product defined in other settings (e.g., [75]), where we

have a union of edge sets instead of an intersection; diffusion should only occur when an edge exists

in both graphs. Also, for directed graphs, we must preserve order so we will not create a product

edge from the simple edges pu1, v1q to pu2, v2q if pu1, u2q P E1 and pv2, v1q P E2. That said, these

edges are undirected; paired edges indicate a connection between vertices and the direction of that

edge is irrelevant for diffusion.

Then, for each edge e� P G�, we need to assign a diffusion score S� that represents how well-

linked the new product vertices are. More accurately, we need to decide how costs should propagate

from a product vertex to its neighbors. We can calculate this from some combination of SV and

SE . When edges are dissimilar, SE is small, and we do not wish to propagate as much similarity

between the connected nodes. From these scores, we construct an adjacency matrix ApG�q for the
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Figure 5.3: A comparison of graph-matching algorithms when run on the same two starting graphs,
shown in (a); mismatched vertices and edges in (b) and (c) are highlighted. A vertex-only
matching (b) has issues with mismatched edges (e.g., the two Bob nodes from the red graph
match the Bob and Robert nodes from the blue graph equally well). A neighborhood matching
will correct some errors because it takes into account neighboring nodes, but it will not propagate
this information to other nodes. For example, the neighborhoods of the two Cynthia/Cindy nodes
in each graph (one neighborhood from each graph is highlighted in (a)) will match equally well
and may cause an edge mismatch as shown in (c). Global methods, like A� search and diffusion
matching seek to resolve such problems, leading to matchings without mismatched edges (d).
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product graph. Each entry pi, jq corresponds to a pair of paired vertices, pps, tq, pu, vqq, and we

assign its value to the diffusion score S�pps, tq, pu, vqq. We normalize A so that the sum of each

row is one; when a row is all-zero, we can factor that row out.

For each vertex v� � pv1, v2q P G
�, we can define a similarity score via SV pv1, v2q. Computing

this for each pair, we end up with a vector c which is again normalized. This will allow us to infuse

each step of the diffusion with vertex scores. Let πk measure the pairwise similarity and α be a

parameter that controls the amount of diffusion versus initial similarity. Then, we have the following

formula from [130]:

πk�1 � αApGqπk � p1� αqcpGq �Mπk

which corresponds to the power method for eigenvector computation, according to the structure

of M . Thus, this iterative process will converge to π8 which corresponds to the similarities after

diffusion.

The output similarity vector πk can be reshaped to a vertex assignment matrix, and we can

proceed in a similar fashion to that outlined for graph edit distance. Note that because of the diffu-

sion, this matrix contains scores that better incorporate connectivity information. Figure 5.3d shows

that this approach allows us to compute a better match than a vertex-only or neighborhood-based

matching.

5.3.3.2 Scoring Unmatched Nodes
In the usual product graph employed in similarity flooding, we have no way to determine if

a node would be best unmatched. Thus, if we use the output vertex assignment matrix directly,

we will attempt to pair all vertices. We can prune all matches that fall below a certain threshold or

relative threshold [100], but note that we have no score on which to base this decision. Our approach

extends the original product graph with skip nodes, nodes that represent unpaired vertices from the

original graphs. They can be integrated into the normal diffusion scheme, and their final scores can

be used to decide whether a substitution is more optimal.

We construct an augmented product graph Ĝ from G1 and G2 which is a product graph with

additional vertices pv, εq, v P V1 and pε, vq, v P V2, and additional directed edges


 ppu1, u2q, pv1, εqq, u1, v1 P V1, u2 P V2 Y ε, pu1, v1q P E1


 ppu1, u2q, pε, v2qq, u1 P V1 Y ε, u2, v2 P V2, pu2, v2q P E2


 ppu1, εq, pv1, v2qq, u1, v1 P V1, u2 P V2, pu1, v1q P E1


 ppε, u2q, pv1, v2qq, u1 P V1, u2, v2 P V2.pu2, v2q P E2

Note that we do not add pε, εq, and edges between skip nodes are relegated to those from the same

original graph that are connected. In addition, edges to and from a skip node to the original graph

are allowed when there are edges in a graph with the specified vertex. Note that the direction of the
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edges is important when determining the adjacency matrix A. We can use information about other

edges on the way into a skip node, but the probability of taking a possible edge back to the original

product graph must be uniform.

Given our augmented similarity functions S�V and S�E , we can determine initial scores for un-

matched vertices and construct a slightly larger adjacency matrix. The augmented vertex similarity

function allows us to bias particular nodes to stay unmatched. For example, for molecules, we

might define the similarity of hydrogen (usually a node with a single edge) with ε to be higher so

that we end up merging too many nodes. Both our adjacency matrix A and similarity vector c are

of larger dimension to accommodate the new nodes and connections, but our computation proceeds

as before, producing a new vertex similarity matrix. Now, however, we can solve the assignment

problem on the matrix shown in Equation 5.1 since we have scores for keeping vertices unmatched.

Finally, because this is still essentially a matrix of vertex similiarities, we can incorporate the same

neighborhood information used in graph edit distance to amplify vertex similarities.

5.4 Summary Graphs
A summary graph for a collection of graphs is a graph where each vertex (or edge) represents

one or more vertices (or edges) from the graphs it summarizes. More formally, given a collection

of graphs tG1 � pV1, E1q, . . . , Gn � pVn, Enqu, a summary graph G � pV, Eq is a graph such that

there exists a surjective map M : YiPr1,nsVi Ñ V where


 For each v P Vi, there exists a vertex v� P V such that Mpvq � v�.


 For each e � pv1, v2q P Ei, there exists an edge e� � pv�1 , v
�
2 q P E such that Mpv1q � v�1

and Mpv2q � v�2 .


 For each v� P V , there exists vi P Vi such that Mpv�q � v.


 For each pv�1 , v
�
2 q P E , there exists v1 P Vi, v2 P Vi such that pv1, v2q P Ei.

As with graph matchings, there are many M which satisfy the criteria, and therefore, there are

many summary graphs for a given collection. For example, M might map every vertex to a distinct

vertex in the summary graph, generating a summary graph that is the union of the individual graphs

from the collection. Thus, while we can be assured of the existence of a summary graph for any

collection, it is important that we have a method to compare and evaluate these summaries.

A summary graph of two graphs can be generated from a graph matching in a straightforward

manner. If nodes are matched, we create a new compound node; if not, we create individual nodes

representing the unmatched nodes. More formally, given a graph matching h : V Ñ V 1 for graphs

G,G1, we can create a summary graph G by defining the surjective map M : V Y V 1 Ñ V as
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Mpvq �

$'&
'%

pv, hpvqq v P V and v is in the domain of h
v v P V when v is not in the domain of h
v v P V 1 and v is not in the range of h

With a higher-dimensional matching relation, we could compute a summary graph from it in a

similar manner.

As mentioned earlier, the ability to measure the quality of a summary graph is important for gen-

erating meaningful and succinct summary graphs. We extend the notion of similarity (Section 5.3)

to define a maximal summary graph. However, we must first extend our similarity functions to

compare more than two simple vertices or edges. We define a compound vertex as a vertex in a

summary graph that represents one or more vertices (each of which may also be compound) from

the graphsx being summarized. A compound edge is similarly defined as representing one or more

edges from the graph collection.

5.4.1 Compound Similarity Scoring
With only two graphs, the initial similarity of two vertices is obtained via our user-defined

similarity function. However, when the two vertices being compared are from summary graphs, this

similarity can be computed in various ways. Formally, we have the node similarity function S�v , and

two compound vertices v and v1, each from different intermediate summary graphs. We know that v

and v1 both represent a nonempty set of vertices from the initial graph collections: v � pvi1 , . . . vimq

and v1 � pvj1 , . . . vjnq. Note that m need not be equal to n. We wish to define SV : V Ñ R, and we

can choose to compute the overall similarity as an average of all pairs, the sum of similarities for

the best matches, or even the single best similarity. Because this may again be domain-specific, we

allow users to define the combination method. In general, an overall average would seem to make

the most sense as we are effectively determining the similarity of an entire set of vertices.

5.4.2 Construction
Solutions to the assignment problem become NP-Hard in dimensions higher than two [22].

Thus, extended graph matching approaches to compute the best matching for n graphs become

impractical. Instead, we use hierarchical agglomeration to build the summary graph using a series

of pairwise matchings. At each step, we combine two graphs by computing their matching and build

a summary graph according to the matching. Recall that hierarchical clustering requires similarities

for each pair of graphs. Because computing matchings for all pairs is inefficient, we use heuristics

based on feature vectors of the node data to order the agglomeration. Given this ordering, we

compute each of the matchings in the hierarchy to construct a summary graph. Note that for some

collections, combining all graphs may not be desirable if the clusters are far apart.
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A summary graph contains data from all of the graphs it represents, and its vertex and edge

similarities are a combination of the comparisons of the individual data elements using the combined

similarity scoring. Each time we merge two graphs, we create a new graph with compound vertices

and edges. Each label becomes a combination of the labels from the individual vertices; note that

we can eliminate duplicates for succinctness. From the map M for vertices, we infer the edges

based on those correspondences; when two pairs of vertices are matched and there is an edge in

both of the input graphs, we create an edge in the summary graph.

From the assignment matrix, we can generate a node ordering for each match. In order to

generate a global sequence of node merges, we use the graph ordering in combination with the node

orderings for each graph merge. Note that each node merge is pairwise so it may take multiple

merges to create the final summary vertex. Thus, we must enforce a tree ordering so that, even if

the score for merging a node is maximal, we delay adding it until its dependent merges have been

accomplished. From only this tree, we can generate any level of summarization. As detailed in

Section 5.5.2, this feature is useful for interacting with the summary graph.

5.5 Visualizing and Interacting with Graph Summaries
While constructing a summary graph is the initial step toward understanding a collection of

graphs, visualizing and interacting with this new summary is critical to obtaining insight. We built

the GraphSum system to help users explore summary graphs. There are a variety of visual cues that

we can use to represent features of a summary graph with respect to the graph collection. From

node labels to edge thickness, we can both capture common information and unique features. At the

same time, the ability for users to interact with and edit the summaries is also important. Beginning

with layout and initial display, we have developed a variety of tools that allow users to interactively

compare and edit summary graphs.

5.5.1 Layout and Display
One key concern when generating a summary graph is the layout of the result. This graph is

a combination of graphs from the input collection that may or may not have existing layouts. We

use the dot and neato algorithms from the graphviz library [53] to layout directed and undirected

graphs, respectively. We try to preserve layouts by incorporating existing position information,

although since the algorithms we use are not intended for dynamic layouts, the layouts will change.

We use animation to show how these changes occur.

Recall that a node of a summary graph can represent nodes from one or more of the input graphs.

Each of these nodes can have a separate label, although there is often overlap in the set of labels. We

can use both the cardinality and labels of the nodes represented to render a summary node. When
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displaying a node, we can use saturation or lightness to indicate the number of nodes summarized.

When a summary node represents nodes with different labels, we can also display each label. Color

can be used to indicate which nodes match graphs from the initial collection.

As with summary nodes, a summary edge can encode an edge from one or more input graphs.

Here, the thickness or opacity/saturation of the edge can be used to indicate how many graphs in

which the edge appears. In addition, edge labels can be used as text or to generate styled edges (e.g.,

via colors) linked to a legend. Some styles might be extended to encode the contents of a summary

edge.

Of course, when there exist domain-specific techniques for visualizing graphs, it is useful to

utilize them by extending the original technique to capture summary information. At the same time,

a summary graph could violate constraints of the technique; the summary “operation” is not closed.

For example, a summary graph of a set of planar graphs may not itself be planar. Thus, any layout

or rendering that depends on planarity could not be extended to work in general.

5.5.2 Controlling the Amount of Summarization
Recall that the key method for condensing graphs is merging nodes and edges when they match.

Thus, in order to control the amount of summarization, we can manipulate the number of merges

that take place. Because we have a measure of the similarity between nodes, we can order merges

according to this measure. For a single merge step, this is straightforward. However, we would

like to be able to explore and control the node merges over the entire hierarchy. Although we

have scores for the merges at each step, in this situation, we have an added constraint: merging a

previously merged node with another node cannot be allowed if the first merge has not occurred. For

this reason, we must construct an ordering that takes both measures into account; we cannot simply

order by count. From this ordering, we allow the user to control the amount of summarization via

a linear control. The user selects the index of the order, and we construct the summary graph based

on all of the merges. See Figure 5.4 for an example of this control.

To construct the global order, we need the forest that corresponds to all merges that we allow

from our summary graph construction. Each node in the forest is a node resulting from a merge

of two nodes. Then, for each node, we have a weight that corresponds to the measure of similarity

from the matching. A node is a leaf if it is a merge of two nodes from the initial graphs. To compute

the order, we use an iterative algorithm with a priority queue. The queue is seeded with all of the

leaves of the tree and ordered by the similarity measure. At each step, the highest scoring node

is removed from the queue, added to the final order, and if all siblings of the selected node have

already been added to the final order, the parent node is inserted to the priority queue. For example,

the summary graph shown in Figure 5.5 is summarized by the global order tree shown in Figure 5.6.
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Figure 5.4: The settings for GraphSum allows users to control summarization, adjust vertex and
edge coloring, and toggle the display of individual graphs.

5.5.3 Color
Color provides a significant visual cue, and we take advantage of it to compress the information

from many graphs into our more compact summary graph. We can highlight both nodes and edges

by a representative color for the original graph to which they belong. However, as Figure 5.7a

shows, too much color can over-saturate the visualization and provide a more complex display to

understand. Using a threshold to determine when color should be used, we can highlight unique

differences, as shown in Figure 5.2b which only uses color when the feature is seen in the selected

original graphs. Users can also focus on these graphs specifically by hiding other graphs (Fig-

ure 5.7c). The threshold and selection controls are available via the settings interface shown in

Figure 5.4.

5.5.4 Manipulating the Summary Graph
Because we are using a heuristic approach to compute the summary graphs, we cannot expect

that summary graphs will always conform to a user’s preference. For this reason, we provide the

ability to control parameters including the amount of compacting the algorithm does and the amount

to which vertex degree should influence diffusion. In addition, we provide the ability to explicitly

define which nodes should be joined or split. We provide three operations for users to manipulate

nodes:

1. Break. Split each selected vertex by creating two new compound vertices that split the data

from the vertex.
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2. Join. Join the selected vertices by creating a new compound vertex that combines the data

from each selected vertex.

3. Reinforce. Does not change the current graph but specifies that the selected vertices should

remained merged in further operations.

Note that because of the diffusion, rerunning the algorithm conditioned to the nodes that were

selected means that every blemish need not be corrected. Often joining or splitting single nodes can

help influence the other desired results. An example is shown in Figure 5.8.

An initial approach for controlling merges can be accomplished by manipulating the order of

summarization. If we remove a merge, we effectively split the node. If we choose to join two nodes,

we can introduce a new join. Note that for both of these operations, we have constraints on the insert

into the order from the tree; we cannot introduce a merge before the nodes to be merged have been

merged. However, we do not have any measure on the quality of the merge. We currently introduce

the merge into the order at the currently selected level of summarization. Another option might be

to take the score of such a merge from the computed scores.

We use animation to point users to the specific changes. Specifically, when changing the amount

of summarization, the animation can highlight the splits or merges. In addition, it can help provide

continuity when the layout of the graphs changes. For nodes that are not split or merged, we use

linear interpolation between a node’s old location and its new location. When a node is split, we

show the new nodes as they move from the original position to their new positions. When a node

is joined, we show the old nodes as they move from their original positions to their new common

position.

5.6 Case Studies
5.6.1 Metabolic Pathways

In biology, the pathways that drive life by chemical processes are important components in our

understanding of cells. During each process, compounds (metabolites) are processed into other

compounds via different enzymes and substrates. Even for the same process (e.g., glycolysis or

the citric acid cycle), the components involved can vary across organisms. Understanding these

differences can help in comparing organisms, especially with respect to their evolutionary history.

Each pathway can be abstracted to only the orders of different enzymes to simplify this process [67].

Enzymes can be identified by their EC numbers, four-number tuples separated by dots, which are

organized hierarchically [161]. Thus, the similarity between enzymes can be determined based on

how many numbers match (e.g., 1.2.3.4 and 1.2.3.5 are quite similar while 4.3.2.1 and 4.5.6.7 are

close to completely different).

In our examples, we used the Kyoto Encyclopedia of Genes and Genomes (KEGG) database
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which provides a vast array of information on metabolic pathways in addition to other genetic

data [80]. Specifically, they store known pathway information for many different organisms. We

used data from the Citric Acid Cycle for eight organisms, ranging from bacteria to humans, to

generate a graph summary. After recovering the enzymes and their relationships, we looked up

the EC numbers, again using KEGG, to generate labelled graphs. Figure 5.2 shows an example of

a resulting summary graph. Note that complex organisms share most enzyme relationships, while

simpler organisms like yeast and E. coli have many differences from the common components in the

summary. This visualization has the potential to help scientists determine evolutionary relationships,

including full phylogenies, via greater information than a single number that measures similarity as

in [67].

5.6.2 Visualization Pipelines
For programs that have a modular structure, it is often useful to visually examine this structure.

Visualization pipelines or workflows are a good example of structured programs: they are defined

as graphs, where modules correspond to computational functions and edges represent how data

flow through the modules. Given a collection of visualization pipelines, being able to summarize

them can help users better understand existing approaches. For example, one can examine different

contexts where volume rendering is used, and even contrast these against other techniques such

as isosurface extraction. An important application in this context is in teaching. Given that we

can summarize a set of pipelines that are produced by different students as a solution to some

visualization assignment, we can derive both a “consensus” solution as well as identify the unique

differences in individual solutions.

We investigated a set of visualization pipelines built with the VTK [83] modules in the Vis-

Trails system [153]. The pipelines were built by students to accomplish a well-defined homework

task, so we can expect significant overlap in their solutions. However, we would also expect that

some students will use different approaches to obtain their results. In order to compare modules

(our vertices), we used the VTK inheritance hierarchy and module interfaces to estimate similarity.

For example, vtkStructuredPointsReader and vtkDataSetReader both inherit from

vtkDataReader and share similar ports so they have a greater similarity than vtkActor and

vtkMapper, which do not share a common base class. Figure 5.5 shows a summary graph for eight

different visualization workflows. We can see that most students followed the same core structure,

but the filters used varied and some added additional features. The summary graph combines similar

modules like vtkActor and vtkLODActor to condense the number of nodes, but with color, we

can see which student(s) used the LOD version.
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5.6.3 Molecular Structures
Understanding the differences between molecules can be important in a variety of fields from

pharmaceuticals to physics. Molecules are composed of atoms and the chemical bonds between

them. With similarity graphs, we can understand the similarities and differences in families of

molecules. One application of this is searching for substructures that may be important in combating

diseases. For example, knowing that a certain class of molecules shows an ability to resist or attack

viruses or bacteria can aid researchers searching for clues to produce vaccines or drugs.

We examined the NIH’s AIDS Antiviral Screen dataset of chemical structures for compounds

that have been checked for evidence of anti-HIV activity.1 The dataset contains the molecular

description of 42,390 such compounds, including all atoms and bonds. Note that unlike metabolic

pathways and visualization pipelines, molecules are undirected graphs. This allowed us to test

the impact of directed edges on our algorithm; note that this allows more alignments. In order

to search for similar molecules, we used a feature vector containing the atom counts. From this

rough clustering, we were able to test groups of similar molecules by building summary graphs.

Our similarity function for nodes ranked exact matches highest, but also ranked atoms in the same

group in the periodic table higher than those in other groups. Some groups produced poor results

because the connectivity structure was very different despite a similarity in atom counts, which was

not unexpected. Figure 5.1 shows an example of one of the summary graphs obtained.

5.7 Discussion
Like any graph visualization, a summary works best in conditions where the graphs that are

involved are somewhat compact and sparse, allowing a user to see node labels and individual

edges. There are methods to draw more compact representations of graphs by condensing regions of

graphs, and those same techniques can be utilized for summary graphs as well. In addition, specific

regions of the summary may correspond to a specific subset of the collection, and we can use this

information to guide this condensation.

5.7.1 Overlaps
A second condition that can be used to evaluate the utility of the summary is the amount of

overlap between the set of input graphs. Intuitively, graphs that are very dissimilar cannot be nicely

summarized and much of their display will be independent. Those which contain large proportions

of similar nodes are more likely to produce more informative summaries. We propose a measure

of the amount of overlap in a graph collection in a pairwise manner. Recall that for each pair of

1http://dtp.nci.nih.gov/docs/aids/aids_data.html
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graphs, we can compute the overall score between two graphs. From the entire hierarchy, we can

compute an overall score that represents an overlap between graphs. The higher the overlap score,

the better the summarization. This overlap score can also be used to determine whether adding a

given graph to an existing summary is worthwhile.

One method for dealing with a collection where the overall overlap is low is to separate it into

smaller subcollections and then construct summaries. Clustering could be used for the initial binning

and the summaries created for each cluster. Note that there is little to be gained from a summary of

two graphs that have a very small overlap, so it makes sense to construct separate overlaps.

5.7.2 Multi-Edge Graphs
For graphs that allow multiple edges defined between the same vertices (and in the same di-

rection for directed graphs), we can extend our definition of summary graph to allow multiple

edges between nodes. Note that most generally, we can allow arbitrarily many edges between

pairs of vertices of the summary graphs as we do not place any restrictions on how vertices must be

summarized. To accomplish this, we can solve an assignment problem for matching edges between

graphs; when edges correspond, we can merge them; when they do not, we leave them separate.

In some cases, to reduce clutter, it may be reasonable to force edges to always match, meaning the

number of edges between two vertices in the summary graph will not exceed the largest cardinality

of edges between individual vertices in the original graphs.

5.7.3 Scoring
The scoring of nodes (and edges) plays an important role in the quality of the summary graphs.

If the scoring functions are poor, we cannot expect that the summary graphs will be well-collected.

The default score is one of equality of the data contained in the nodes. However, there are many

cases where this scoring can be improved to take into account known similarities. For example, it

is known that atoms in the same group (family) share similar properties and should be considered

more similar than two atoms from different groups. Such information can be encoded into a node

similarity function for atoms.

5.7.4 How Much Summarization?
Note that the maximal summary graph need not reflect the best visual summary. Consider a

dangling node that attaches to different nodes on each graph. While we can merge that node to

create a more succinct display, it may be more intuitive for a user to see these nodes separately.



CHAPTER 6

SUPPORTING REPRODUCIBLE AND

REUSABLE PUBLICATIONS

6.1 Bridging Workflow and Data Provenance
Using Strong Links

As the volume of data generated by scientific experiments and analyses grows, it has become

increasingly important to capture the connection between the derived data and the processes as well

as parameters used to derive the data. Not surprisingly, the ability to capture the provenance of data

products has been a major drive for a wide adoption of scientific workflow systems [38, 39, 47]. By

tracking workflow execution, it is possible to determine how an output is derived, be it a data file,

an image, or an interactive visualization.

However, the common practice of connecting workflows and data products through file names

has important limitations. Consider, for example, a workflow that runs a simulation and outputs a file

with a visualization of the simulation results. If the workflow outputs an image file to the filesystem,

any future run will overwrite that image file. If different parameters are used, or the simulation code

is improved and the updated workflow is run, the original image is lost. If that image file were

managed with a version control system, the user could retrieve the old version from the repository.

However, if the user reverts the output image to the original version, how does she know how it

was created? Since there is no explicit link between the workflow instance (i.e., the workflow

specification, parameters, and input files) and the different versions of its output, determining their

provenance is challenging. If we examine the provenance logs for the workflow runs, we will see

that there are two runs that create the specified image file, one with the older simulation routine and

the second with the newer one. We may be able to check timestamps in order to guess, but this is

far from ideal. This problem is compounded when computations take place in multiple systems,

and recording the complete provenance requires tying together multiple workflows through their

outputs and inputs. As files are overwritten, renamed, or moved, provenance information may be

lost or become invalid. As a result, maintaining an accurate provenance graph which ties processes

and the data they manipulate requires a time-consuming and error-prone process.

While version control systems effectively track changes to files, such systems can only deter-

mine that changes have occurred, not how they came about. Provenance-enabled workflow systems,
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on the other hand, are able to capture how changes came about but do not provide a systematic

mechanism for maintaining data provenance in a persistent fashion, i.e., given a file it may not

be possible to determine which workflow instance generated it. We posit that a tighter integration

between scientific workflows and file management is necessary to enable the systematic maintenance

of data provenance.

In this section, we propose a new framework which, by coupling workflow provenance with

the versioning of data produced and consumed by workflows, captures the actual changes to data

as well as detailed information about how those changes came about. A persistent store for the

data ensures that old inputs and results can be retrieved, and we can tie each version of a result

to the provenance that details how the result was generated. We introduce the notion of a strong

link which reliably captures the connection between a workflow instance and data it derives, and

describe an algorithm for generating these links. Instead of relying on the user or ad-hoc approaches

to automatically derive file names, strong links are identifiers derived from the file content, the

workflow specification, and any parameters. As a result, they accurately and reliably tie a given

workflow instance and its input and derived data.

Besides simplifying the process of maintaining data provenance, this approach has several

benefits. By automatically capturing versions of data, it seamlessly supports exploratory tasks

without requiring users to curate the data (e.g., managing the file names). It also provides a general

mechanism for the persistent caching of both intermediate and final results—this is in contrast to

previous approaches which supported only in-memory caching [8, 17]. The caching mechanism

can be used not only to speed up workflow execution, but also to support check-pointing for

long-running computations. In addition, the use of a managed data repository allows the creation

of workflows that are location agnostic: unlike workflows that point to files in the filesystem, work-

flows can be shared and run in multiple environments unchanged. Last but not least, our approach

is general and can be combined with existing workflow systems. We describe our implementation

in the VisTrails system and present a case-study, where the persistent data provenance infrastructure

was deployed in a real application: managing data products in the context of the ALPS project [5].1

We begin by introducing our persistence scheme in Section 6.1.1, and then show how it can

be applied to support data provenance in Section 6.1.2. In Section 6.1.3, we describe how our

approach can be used to extend workflow caching strategies and for publishing scientific results.

In Section 6.1.4, we describe how managed repositories can be shared among multiple users for

both data access and caching. We describe an implementation of our scheme in Section 6.1.5, and

describe its use in the ALPS project in Section 6.1.6. We highlight related work in Section 6.1.7

1http://alps.comp-phys.org
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before concluding with future directions in Section 6.1.8.

6.1.1 Persisting Data Provenance Links
By integrating file management and version control with workflows, we aim to maintain stronger

provenance by referencing data in a versioned, managed repository instead of via file paths (see

Figure 6.1). This repository stores input, output, and intermediate data products, and can be used

to facilitate caching and data sharing.2 Similar to version control systems, this repository stores

multiple versions of files, but to connect to workflow provenance information, it also contains

metadata that represent identity and annotations.

Our approach to this problem is user-driven. As a user designs a workflow, she can specify

which results (or input data) should be persisted in the repository. As we describe in Section 6.1.5, a

possible implementation is to provide special workflow modules that can be connected to the output

ports of modules whose results should be persisted. When users run workflows using data from

the repository, we can ensure that future provenance queries can not only identify the data involved

in the computations but also retrieve the actual data. In addition, given provenance of a workflow

execution, we can reproduce it using the exact versions of the data used in the original execution.

In these provenance applications, there is no need to archive data according to specific path-name

conventions or remember to keep each separate version of the input data. Also, the automatic

and transparent identification and versioning require little user involvement in maintaining these

stronger links.

In what follows, we start by describing a scheme to derive reliable and representative ids for

linking data products and their provenance. We also present the file-management infrastructure and

the attributes we maintain in the managed repository, the differences in our storage depending on

the role of the data, and how data should be updated and stored. Note that while we discuss file

management, the techniques described can be easily extended to directories as well.

6.1.1.1 Deriving Strong Links
Our approach to deriving strong links was inspired by the in-memory caching mechanism

proposed by Bavoil et al. [17] and the content hashing used in version control systems including

git [56]. We use the signatures of workflows to identify intermediate and output data derived by

the workflows, and content hashing to identify input data.

The central idea of caching in workflow systems is that any self-contained piece of a computa-

tion can be reused if the computation is deterministic and its structure, input data, and parameters do

2In the remainder of the text, we use the terms “repository” and “managed store” interchangeably.
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not change. For dataflows, we can formalize this concept by defining the upstream subworkflow of

a module m in a workflow W as the subgraph induced by all modules u PW for which there exists

a path from u to m in W (including m itself). Note that the existence of such a path implies that

the results of u may have an effect on the computation of m. Then, if any module or connection in

the upstream workflow of m changes, we must recompute m. Conversely, if the upstream workflow

does not change, we need not recompute m, and can reuse results from a previous execution. Thus,

for any other workflow W 1 that contains an upstream subworkflow U that also exists in W , we can

reuse the intermediate results of U from W in W 1.

Caching thus requires the identification of equivalent subworkflows. This would be expensive if

we needed to perform graph matching, but we instead use a recursive serialization of the upstream

workflow that allows us to quickly check the cache. We define the default label of a module m,

`pmq, as the serialization of its type and parameter values ordered by parameter name. Note that

individual module types can override this default label to better capture module state; for example,

a module linked to a specific file would define its label based on the contents of the file—if that

file changes, the label changes. Similarly, the label of a connection c, `pcq, is the serialization of

the types of the ports it connects. Then, a canonical serialization of the upstream subworkflow of a

module m is defined recursively as

Spmq � `pmq �
 

c P UCpmq
Spsourcepcqq � `pcq

where UCpmq is the set of upstream connections into m sorted by `pcq, source returns the source

(upstream) module of the given connection, and
�

is concatenation. The upstream signature is the

SHA1 hash of this serialization.

Figure 6.2 shows an example workflow and the serialization of the upstream subworkflow of

the ReadCensusField module. Note that the upstream subworkflow will not always be a tree,

but the recursive serialization always branches like it is. This allows two topologically different

upstream subworkflows to have the same signature, but when this happens, the computations must

be identical. For example, consider a subworkflow with a single module m that connects upstream

to two other modules. Whether those two modules connect upstream to a single module n or to

two identical modules that both do the same computation as n will not affect the downstream

computation of m. In addition, by using memoization, we can keep this computation efficient

despite the added branching.

For input files, we define the signature as the hash of its contents. Then, if the file’s contents

change, its signature changes even though its path or other identifying information may not. Note

that we store the content hash separately as well so a file that is the output of one workflow and
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the input of another can be identified in both ways. Thus, the signature provides a strong link that

contains a precise and accurate representation of the workflow fragment that derived a given result.

As we describe in Section 6.1.2, we use this signature as the means to link a data product to the

computation that derived it.

6.1.1.2 File Management
We are concerned with three roles for files in workflows: inputs, outputs, and intermediate data.

Note that a single file may fill different roles depending on the workflow in which it is used; an

output from one workflow may be used as the input to another. Thus, the distinction between roles

does not affect the use of data in any situation, but rather determines what metadata can be captured,

stored, and utilized. An output file can store information about the process that created its contents

but an input file selected from the filesystem cannot. Similarly, an intermediate file need not be

annotated at all if it is used for caching, but files that are to be used again should be named and

tagged to allow users to query for them.

Each file in the repository is uniquely identified by a combination of an id and a version string,

and annotated with user-defined and workflow-generated information including its signature and

content hash. By allowing a collection of files to share the same id, a reference to that id can

be configured to always retrieve the latest version. This is helpful to a user who wishes to run a

workflow with the latest version of a data set but does not wish to manually configure which is the

latest version. On the other hand, reproducing a workflow execution exactly requires a particular

version of the data, and thus identifying data by both the id and version guarantees that the exact

data will be retrieved.

6.1.1.2.1 Input files. An input file must reference an existing file, whether it is already in

the managed store or only in the local system. Upon selection, we either use the existing identifier

(from the store), or create a new unique identifier for the data. Note that we can detect whether the

contents of a file already exist in the repository by computing the hash and checking for that hash

in the repository. By default, changing the contents of the file creates a new version while changing

the selected file creates a new id and version. Users can configure this behavior if necessary.

6.1.1.2.2 Output files. The main difference between output and input files is that input files

are not affected by changes in the rest of the workflow. For outputs, any changes to the part of the

workflow that is upstream of the output file may affect its contents. In addition, it is less clear when

an output is a new entity and when it is a new version of an existing entity. When only parameters

change, the output is likely a tweaked version of the original, but when the input files are switched,

the output is more likely new. By default, we create new versions for each execution but allow users

to change this behavior in order to version the outputs. Like inputs, output files can be both stored
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in the persistent store for future reference and use and saved to a local file for immediate use or

inspection.

6.1.1.2.3 Intermediate files. An intermediate file is exactly the same as an output file except

that it is not a sink of the workflow; execution continues after the file is serialized and the contents

are used in further calculations. Such files can be used as checkpoints for debugging, but they

can also be used to cache computational results in order to speed further analyses. Note that

an intermediate file need not be manually annotated or named; it is defined by its signature–the

serialization of the upstream subworkflow.

6.1.1.2.4 Customization. It may be necessary for users to configure the behavior of the

persistence of files in the store in order to link similar files or maintain separate identities for data

products. By selecting an existing reference and linking it to a local file, a user can tie the reference

to a new local file. In addition, users can decide whether files are only persisted in the managed

store or if they are also saved to local files. If they use a local file, they can configure whether the

contents of the file should take precedence or whether a new version should always be obtained

from the repository. Similarly, if the local file contents change, a user can choose whether those

changes should always be persisted to the managed store.

6.1.2 Linking Provenance
Below we discuss how we exploit the strong provenance links to answer important queries. We

also suggest how stronger links from data to provenance can be accomplished. With the advent of

extensible file formats (e.g., HDF53), it is possible to include direct links to provenance or even

the provenance itself with the data. Finally, we present an application of the improved results from

provenance queries in publishing scientific results.

6.1.2.1 Algorithms for Querying Linked Provenance
Perhaps the most basic provenance query is one that retrieves the lineage of a data product,

specifically what input data and computations contributed to the result [121]. With only the prove-

nance of the execution, a user may find the path to an input but even if a file still exists at that

location, there is no guarantee it has not been modified. To protect against such problems, users

store the exact data used with the provenance, manually archive all of the data, or add archival as

part of the workflow process [106]. With our file management scheme, we can store the id, version,

and content hash of any input as part of the provenance. Then, for lineage queries, we can return

references that can be accessed from the provenance store using the id and version and verified using

3http://www.hdfgroup.org/HDF5
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the content hash. Most workflow systems that support provenance capture also provide support for

determining lineage queries [121].

Note that the content hash also gives us a way to locate the provenance of files that are un-

managed and may have been moved to a different location or had their names changed. We begin

by hashing the contents of the file, then query the managed store for this content hash. The resulting

entries have ids and versions for which we can then search our provenance. Because the provenance

contains these stronger references, we can also identify and return the input data via the managed

store. An outline of this algorithm is shown in Figure 6.3.

Because we abstract workflows from a specific filesystem, the provenance of the workflow

executions can be tied directly to the exact inputs and outputs. This ensures better reproducibility

because the exact content can be retrieved; with links to the file names, we have no guarantee that

the files at those locations were unchanged. To reproduce a workflow execution, we retrieve the

workflow specification and execute it using the data pointed to by the managed file references.

Recall, however, that some workflow specifications may include only data identifiers and not the

versions of the data used. This allows a user to rerun a workflow with the latest data which is

not what we desire for reproduction. Thus, we need to examine the provenance for the execution,

retrieve the exact version specified by the provenance and modify the specification.

Another provenance query that our strong links solves is the lineage of data when the input

of one workflow is the output of another. In the Second Provenance Challenge [122], teams were

asked to answer provenance queries from outputs that were the result of running data through three

consecutive workflows. One issue was the identification of data as they were transferred from the

new lename.dat

HASH
CONTENTS

QUERY
FILE STORE

OBTAIN
FILE REFERENCE

12ab3-45ef2...

QUERY
PROVENANCE

OBTAIN
INPUT REFS

0ab678cd...

12ab3-45ef2...

QUERY
FILE STORE

12ab3-45ef2...

12ab3-45ef2...
OBTAIN

INPUT FILES
input les

P

Figure 6.3: Given a file which has been moved and renamed, we can use the managed file store and
provenance to first locate the managed copy, and we can locate the original input files as well.
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output of one workflow to the input of another. With the managed store, we allow users to designate

inputs as the output of another workflow by assigning them the same id. Thus, when the first

workflow changes, the second workflow will incorporate the changed results. Even if users do not

use the same identifiers, we can perform provenance queries using the content hashes to link data

across different workflows.

6.1.2.2 Embedding Provenance with Data
We have demonstrated methods to find the provenance of data by searching a provenance store

for the hash of a given file. However, such methods depend on access to the provenance store.

An alternative approach is to embed provenance with the data itself. With many file formats

including HDF5 supporting annotations, it is possible to embed provenance information or links

to provenance with the data. In directories of data, we can add an additional file that contains the

same information. Then, verifying data or regenerating a data product can be accomplished by

examining the provenance stored with the data.

We have developed a schema that allows a user to either link to or directly encode provenance

information in a file. Information represented in this schema can be serialized to XML and embed-

ded in an existing file or saved to a separate file. Figure 6.4 shows an example of a workflow using

this schema. While a provenance link can refer to a local file, we provide support for accessing a

central repository of provenance information. With a central repository, if the file is transferred to a

different user or machine, the link remains valid. With a local reference, it will be more difficult to

link back to provenance information.

6.1.3 Using Strong Links

6.1.3.1 Caching
Caching the intermediate results of workflow computations is useful to avoid redundant com-

putations. If a user executes a workflow, we can reuse any intermediate results from that first

execution in future executions [17]. Using our file management for intermediate files, we are able

to add support for caching files to existing in-memory caching which means that cached data can

be persisted across sessions. With this extension, we can also consider how to share cached data

between different users as well. We begin by reviewing the in-memory workflow caching algorithm

and then introduce an extension for caching across sessions using the managed file store.

6.1.3.1.1 In-memory caching. Using the upstream signatures, we build a cache by labeling

each intermediate result with its upstream signature. Dataflow computation proceeds in a bottom-up

fashion; a sink (a module with no outgoing connections) requests data from all of its inputs which

may in turn request data from their inputs and so on. Our caching algorithm works by hijacking this
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request for data and checking if the upstream subworkflow has already been calculated, returning

the result from the cache when it exists instead of doing the computations.

Before executing any workflow, we compute the upstream signatures for each module in the

workflow. Note that the recursive computation of all signatures is easily memoized. During work-

flow execution, before a module is set to execute, we check if that module’s upstream signature

exists in the cache. If it does, we return the result from the cache. If not, we proceed with the

computation, and after the module finishes executing, we store the results of the computation in the

cache labeled by the upstream signature.

There are some modules that may not perform deterministic calculations. We allow the module

developer to designate such modules as noncacheable. After a workflow with one or more such

modules executes, we immediately remove all modules downstream of such a module from the

cache.

6.1.3.1.2 Persistent caching. We can extend the in-memory caching techniques to persist

results to disk, allowing users to cache results across sessions or share intermediate results. Note

that we need a serialization of the results of any module type in order to mirror the entire in-memory

cache. In addition, saving every intermediate result to disk can needlessly slow down computation.

For these reasons, we have developed persistent caching as a user-driven technique for intermediate

files. We allow the user to connect a new module to the workflow that designates that the upstream

subworkflow of the module should be cached. For non-cached computation, this module receives a

file and passes it downstream. However, when the module finds that the signature associated with a

needed file exists in the cache, it retrieves the linked file without doing the upstream calculations.

This allows any module with serializable results to be persisted in a disk-based cache, but we

can improve this process using the file management scheme described in Section 6.1.1.2. Using this

scheme, additions to the cache are managed as intermediate files and cache lookup is a simple query

to the store. In addition, users need not identify or in any way configure the intermediate files used

for caching; the store assigns identity and stores signature information automatically. When the

upstream workflow of the caching module changes, the cache lookup fails, and the store adds a new

version of the intermediate file. Thus, a user does not lose any intermediate results when exploring

different workflow configurations.

6.1.3.2 Publishing
When publishing scientific results, it is important to describe the lineage of a result. Providing

data sets and computer code allows scientists to verify and reproduce published results and to

conduct alternate analyses. In the past years, interest in this subject has increased in different

communities which led to different approaches for publishing scientific results (see [45] for an
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overview). Our schema for embedding provenance with data can be combined with these ap-

proaches. In particular, it simplifies the process of packaging workflows and results for publication.

In addition, we have also implemented a solution that allows users to create documents whose digital

artifacts (e.g., figures) include a deep caption: detailed provenance information which contains the

specification of the computational process (or workflow) and associated parameters used to produce

the artifact [126].

6.1.4 Sharing Data
We have shown that maintaining workflow data in a managed store allows us to quickly locate

existing data, store accurate provenance, and cache intermediate results across sessions. Additional

benefits can be gained from having multiple users share the repository. For example, if one user

has run a time-intensive step of a calculation, making that result available to other users allows

them to proceed with later steps without each recomputing the same result. Similarly, if one

user has already added a specific file to the store, other users with access to that store can access

the data without locating and copying the same data. Below, we describe both centralized and

decentralized approaches for sharing managed data across systems, and note that the advantages

and disadvantages mirror those encountered with version control systems.

6.1.4.1 Centralized Storage
With a central store, users may either read and write directly to a common repository or transfer

data between a local repository and a central repository. If users have access to a common disk, it

may be possible to simply store all managed files and metadata in a single store on that disk. Then,

all users will access the same repository and automatically have access to each other’s input, output,

and intermediate files. However, this solution may become impractical for large numbers of users.

A second problem is that whenever users do not have access to that disk, they are unable to access

their managed data.

When a central store is added to individual local repositories, a user will always have access

to the local repository but can also retrieve from and add to a central repository. This allows a

set of geographically distant users to share common data. In addition, it allows users to maintain

and access local data even when disconnected from the central store. However, we maintain an

extra copy of the data in this case, and there may be overhead in transferring files, especially if the

distance from the central store is far. In addition, it requires building and maintaining infrastructure.
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6.1.4.2 Decentralized Storage
In a decentralized approach, users would advertise their data and allow other users to transfer

data directly from their repository. A search for a particular piece of data by, for example, name

or signature, would query individual systems instead of one store. If the desired file is found, it is

transferred directly from the source location to the requesting user. Thus, unlike with the central

store, data are only transferred when they are needed. Combined with P2P approaches, the transfer

may be distributed over several machines. However, if a particular machine is offline, the data

generated on that machine may not be available.

A hybrid approach that supports a central table of files but decentralized storage would allow

users to locate files even if they were not currently accessible. Users would not push data to or pull

files from the repository but rather register the available files as they are added and whenever those

data are requested, directly transfer it to the requesting machine.

6.1.5 Implementation
We added file management to the VisTrails system [153] by introducing a new package that

included module types for input, output, and intermediate files and directories. The package also

includes code to set up the managed store as well as navigate and update it through configuration

dialogs. Our goal was to add this support in a way that changes little in workflow structure while

providing ways for users to directly locate and identify data during workflow construction. Thus,

users that normally only configure the path of an input file can do exactly the same for a managed

input file module. In addition, adding an output file has fewer requirements; a user only needs to

connect the data to be persisted to a managed output file module. The system generates unique

ids and signatures automatically. At the same time, we provide methods for annotating data and

configuring their storage and use.

The interface of our prototype implementation is shown in Figure 6.5. We define three new

module types for files: ManagedInputFile, ManagedOutputFile, and ManagedInter-

mediateFile and their equivalents for directories. As described in Section 6.1.1.2, all share a

common set of attributes and options. The key difference between inputs and outputs (or intermedi-

ates) is that outputs have a workflow-dependent signature. Thus, an input file needs to be manually

identified by the user while an output file can be totally identified by its upstream signature.

A user can select a file by either referencing an existing identifier or by creating a new reference.

When referencing a file that already exists in the managed store, the user can search the repository

for metadata including name, tags, user id, date added, or a specific id or version. When creating a

new reference, the user may provide a name and tagging information, and for input files, the local

file that contains those data.
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By default, an identifier for an input file changes when a new local path is selected but does

not change if the contents of the file change. In the second case, we maintain versions of the data,

but update the “current version” whenever the contents changes. Thus, any user that wishes to use

those data in another workflow will always get the latest data by referencing that identifier. Note

that users may choose to link data to an existing reference even if that reference was initially linked

to different data.

6.1.5.1 Storing Data
We use the git version control system [56] to manage files because it stores content inde-

pendent of filesystem structure, and an SQLite database4 to store its metadata. Thus, when the

managed store is initialized for the first time, we create a git repository along with a database

to store file information. While a reference is created and annotated during workflow design, the

data are not persisted until execution. Upon execution, we save the file in the repository with its

id (a UUID) as its name. We use git to add and commit the version of the file, and retrieve

the content hash (git uses SHA1) and the version id (a SHA1 hash of the commit). Then, we

update the database with the id, version, content hash, signature (if applicable), name, tags, user,

and modification date.

6.1.5.2 Finding Data
In order to locate existing data, we provide methods to match content hashes and signatures as

well as query the store for specific metadata like name or tag information. When a user selects a file,

we can check the repository to see if that content has already been added by querying the database

for the selected file’s hash. If it does exist, we can prompt the user to reuse the existing reference.

Additionally, when we execute a workflow, we can check to see if an intermediate file’s signature

matches one that already exists; if so, we can reuse that file instead of computing the upstream

workflow. Finally, the configuration for managed file selection includes a free-text query field for

the managed file database. A user can query for a specific name or tag to locate matching files that

can be used as references. This is accomplished by querying the SQLite database and retrieving

the matching id and, optionally, version.

4http://www.sqlite.org
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6.1.6 ALPS Case Study
We have used the file management solution implementation for VisTrails with the ALPS project5

(Algorithms and Libraries for Physics Simulations) [5]. ALPS is an open source software package

that makes modern, high-performance algorithms for the simulation of quantum systems available

to experimental and theoretical condensed-matter physicists. Typically, a simulation with ALPS

consists of three steps:


 Preparing the input files describing the model to be simulated.


 Simulating the model using one of the ALPS programs. Such a simulation can take be-

tween minutes on a laptop for very small test cases and weeks on large compute clusters or

supercomputers for demanding applications.


 Collaboratively evaluating the “raw” simulation output by exploring and analyzing the data,

comparing it to experimental data, and creating figures.

In one specific use case, we have simulated a quantum Heisenberg spin ladder, a model for

quasi-one-dimensional copper oxide materials where magnetic excitations are suppressed at low

temperature by an energy gap ∆ [37]. The purpose of the simulation is to determine this gap ∆

by calculating the magnetic susceptibility χ as a function of the temperature T and fitting it to

the expression χpT q � 1?
T

exp�∆{T [150]. We first use the “looper” program [146] of ALPS to

calculate χpT q and then use the exploration features of VisTrails to explore the data and find the

optimal range rTmin, Tmaxs for the nonlinear fit. The results of this exploration are shown in Figure

6.6.

Persistent caching and provenance adds a number of important advantages for the ALPS users:


 Caching persistent files on a shared filesystem means that after one physicist runs the sim-

ulation, her colleague can modify the evaluation part of the workflow and explore the data

without having to redo the time-intensive simulation.


 Identifying the cached files with the workflow signature avoids potentially critical mistakes

of using old simulation results when input parameters to the simulation change. In our

experience, simulations have often been recomputed only to ensure that the data have been

produced with the latest version of codes and input files.


 Embedding provenance information in the data and figures gives immediate access to the

provenance including any aspect of the simulation a physicist might wish to know. Since

most projects involve collaborations with other scientists—often at different institutions—

facilitating the exchange of data is very valuable. A common source of confusion is incom-

5http://alps.comp-phys.org/
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Figure 6.6: An ALPS workflow colored by execution status (a). Blue modules were not executed
since intermediate data existed in persistent storage; yellow modules were cached in memory; and
green modules were executed. The results of a parameter exploration of the fitting range (b).
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(b) Results

Figure 6.6: Continued.
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plete documentation of data sent to collaborators. Embedded provenance information has

been invaluable in making remote collaborations more efficient.


 Decoupling the executions of different parts of the workflows using persistent data enables

physicists to explore data without the need to always rerun the entire workflow—while still

having the workflow provenance accessible when needed.

In Figure 6.6, we show one ALPS workflow along with plots resulting from an exploration of

the fitting range parameter. The modules colored in blue, including the time-consuming simulation

module “AppLoop”, were not run when this workflow was executed to create the plots because

the output of the simulation had previously been persistently cached. Only the evaluation part

of the workflow was re-executed when the fit range rTmin, Tmaxs was modified. Note that the

SimulationID module is striped blue and yellow; this is because it has two outgoing connec-

tions, one used in a file stored in the persistent cache and the other as part of a computation using

the in-memory cache. Changing its value or structure would thus invalidate both cached results and

all others downstream.

6.1.7 Related Work
Data provenance consists of the trail of processing steps and inputs that led to the creations of

a given data object. Tracking changes to files and entire directory structures is well-studied, and

version control systems have been developed exactly for this purpose [36, 140]. However, such

systems can only determine that changes have occurred, not how they came about. More recently,

version control systems that focus on tracking content and directory structure separately have been

developed (see e.g., [56]). Such systems identify files with hashing, and if duplicate files exist, the

content is stored only once in the repository.

A number of workflow systems have been developed to help automate and manage complex

calculations. The structure and abstraction provided by such systems have made them appealing

to a wide assortment of scientific domains. Many of these systems [81, 145, 153] have included

provenance capture to document the process and data used to derive data products [38, 47]. Standard

provenance captured by these systems, however, is not sufficient to identify exactly which workflow

generated a specific file. In fact, in recent exercises to investigate requirements for querying and

integrating provenance information, the lack of effective means to identify intermediate and final

results of workflows has been identified as an important challenge in provenance management [105,

122, 123]

Techniques have been developed to track provenance in databases [27]. These track fine-grained

provenance, i.e., changes to individual data items. In contrast, our approach is targeted to (whole)

files. In future work, we plan to investigate how we can adapt our system to utilize database
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provenance given encapsulated changes.

There is a significant amount of work with workflows that access and maintain curated data.

In these cases, the provided ids or URIs are usually guaranteed to exist, and thus provenance

information with them. Plale et al. have examined the issues involved in maintaining and cataloging

large meteorological data, and noted the importance of allowing users to search and access this

data [120]. Simmhan et al. have proposed data valets as a workflow-based method for facilitating

the management of stores on the Cloud [136]. Note that if data for computations come from or are

persisted to a curated source, a separate managed store is not required to ensure access to those files.

However, maintaining local copies of these files does allow users to run workflows even when they

cannot connect to the store.

For curated scientific data, the identification of those data is important. There are standards

for such identification including LSID [125] and DOI [116]. Our primary goal is orthogonal to

these: we aim to maintain strong links between data and their provenance. We are not concerned

with registering ids for our local persistent stores and use UUIDs to identify data. Identifying

data by content hashes has been accomplished using the MD5 and SHA1 hashes. Hashing has

also been used in the context of secure provenance to maintain the confidentiality and integrity

of provenance [60]. We use hashing to both identify and search for content as well as compute

signatures for upstream subworkflows.

The problem with maintaining the data with workflows has been examined before. Some

systems have provided specific modules for file management as part of workflow execution [106].

For example, after generating a data product, the result is not only displayed but also archived in a

specific location or disk. This approach works well for static workflows, but for exploratory tasks,

archival is not often included. The cacher package for R6 provides a way to export verifiable

statistical analysis and data in a tamper-proof scheme that utilizes hashing [118].

While we developed our store to aid users who use local files as data sources, our discussion

of sharing the data in these stores overlaps many issues that have been considered. There already

exist a number of solutions for managing scientific data on the grid and in cloud environments.

GridFTP [6] and storage resource managers [134] have been developed to efficiently access data

sets by utilizing networked resources. Such solutions can help provide faster access to data and

infrastructure for transferring data across persistent stores.

6http://www.r-project.org



108

6.1.8 Summary
We have presented file management infrastructure that can be integrated with workflow systems

to provide strong links to data in provenance information. In addition, we have discussed how such

links can be used to solve provenance queries, facilitate persistent caching, and impact scientific

publishing. Finally, we have described our implementation of this system in VisTrails and its use in

the ALPS project.

One important aspect that we have not addressed is how the persistent store should be managed.

In theory, keeping all of the data manipulated by workflows would ensure full reproducibility,

but this is impractical for large amounts of data. In future work, we plan to investigate different

strategies for determining when data can be purged from the store; for example, cached data that

has not been annotated. While our current implementation supports a rich class of queries over

the information in the repository, we would also like to support queries that involve workflow

specification and the data involved—for example, finding a workflow with a ParseCensusData

module that accesses the census2010.dat file.

Another area for future study is the automatic identification of intermediate files for caching.

While users can identify important way points, it can be tedious to add such modules to a large

collection of workflows. By examining the timestamps of module execution in provenance, we may

be able to determine which steps are time-intensive and could benefit from caching. Also, the size

of the intermediate result may also be important; if a large file is generated by a time-intensive step,

but the next step strips unneeded information away, it may be more efficient to store the file after

the extra information has been removed.

6.2 The Provenance of Workflow Upgrades
As tools that capture and utilize provenance are accepted by the scientific community, they must

provide capabilities for supporting reproducibility as systems evolve. Like any information stored

or archived, it is important that provenance be usable both for reproducing prior work and migrating

that work to new environments. Just as word processing applications allow users to load old versions

of documents and convert them to newer versions and data processing libraries provide migration

paths for older formats, provenance-enabled tools should provide paths to upgrade information

to match newer software or systems. Furthermore, it is important to capture and understand the

changes that were made in order to run a previous computation in a new environment. One goal in

documenting provenance is that users can more easily verify and extend existing work. If a given

computation cannot be translated to newer systems or software versions, extensions become more

difficult.

Workflow systems have made significant strides in allowing users to quickly compose a variety



109

of tools while automatically capturing provenance information during workflow creation and ex-

ecution [39, 47]. Such systems enforce a structure on computations so that each workflow step is

easily identifiable. Unfortunately, while these systems provide interfaces to a variety of routines and

libraries, they are limited in their ability to upgrade workflows when the underlying routines or their

interfaces are updated. It is well-known that software tends to age [115]. As requirements change,

so do implementations and interfaces. This is more starkly obvious in the case of workflows, where

different software tools from a variety of different sources need to be orchestrated. Figure 6.7

shows an example of different modifications that can be applied to workflow modules, including

the addition of new parameters, the merger of two modules, and the replacement of the underlying

computation. Still, many workflow systems do store information about the versions of routines as

provenance. We seek to use this information to design schemes that allow users to migrate their

work as newer algorithms and systems are developed.

There are two major approaches when dealing with upgraded software components and the

documents or applications that utilize them. It is often important to maintain old versions of libraries

and routines for existing applications that rely on them. In this case, an upgrade to a library should

not replace the existing version but rather augment existing versions. Such an approach is common

in system libraries and Web services where deleting previous versions can render existing code

unexecutable. However, when we can safely upgrade the document or application to match the new

interfaces, we might modify the object to utilize the new version. This second approach is more

often used for documents than for existing applications or code, because there exists an application

that can upgrade old versions. While the first approach is important to ensure that the original work

can be replicated, because workflows are only loosely coupled to their implementations and live

in the context of a workflow system, this second approach is sensible for them. Furthermore, as

Figure 6.8 illustrates, by capturing the provenance of the upgrades, we know exactly what has been

changed from the original version and how it might be reverted.

In order to accomplish the goal of upgrading an existing workflow, we must solve the challenges

of detecting when upgrades are necessary and applicable, as well as dealing with routines (modules)

from disparate sources. Because workflow systems often store information about the modules

included in workflows, it is possible to detect when the current implementation of a module differs

from one that was previously used. However, since they come from different sources, each source

may define or release upgrades differently. Thus, we cannot hope to upgrade workflows atomically;

we need to consider specific concerns from each source. Finally, while some upgrades may be

automated or specified by a developer, others may require user intervention. When the user needs

to be in the loop, it is important to make the process less tedious and error-prone.
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We propose a routine for detecting when a workflow is incompatible with current installed

software and approaches for both automated and user-defined upgrades. Our automated algorithm

combines default routines for cases when only implementations changes with developer-defined

routines, and uses a piecewise algorithm to process all components from each package at once.

This allows complex upgrades, like replacing a subworkflow containing three modules with a single

module. For user-defined upgrades, we suggest how a user might define a single upgrade once

and apply it automatically to a collection of workflows. Finally, we discuss how upgrades should be

considered as an integral part of the information currently managed by provenance-enabled systems.

It is critical that we can determine what steps may have led to an upgraded workflow producing

different results from the original. We describe our implementation of this upgrade framework in

the VisTrails system [153].

6.2.1 Workflow Upgrades
6.2.1.0.1 Incompatible workflows. After a workflow is created, changes to the underlying

implementation of one or more of its modules may make the workflow incompatible. Figure 6.9

shows an incompatible and a valid version of a workflow. Because module registry information is

usually not serialized with each workflow, it can be difficult for users to define upgrades for obsolete

workflows. As shown in the figure, although we may lack the appropriate code to execute a module

or display the complete set of input and output interfaces for a module, we can display each module

with the subset of ports identified by connections in the workflow. This is useful to allow users to

edit incompatible workflows in order to make them compatible with their current environment.

6.2.1.0.2 Provenance of module implementation. Workflow systems offer mechanisms for

capturing provenance information both about the evolution of the workflow itself and each execution

of a workflow [47, 48, 129]. Information about the implementations used for each workflow module

may be stored together with either evolution or execution provenance (i.e.,, the execution log).

However, note that if the interface for a module changes, it will often require a change in the

workflow specification. Thus, while the execution provenance may contain information about the

versions used to achieve a result, any change in the interface of a module may make reproducibility

via execution provenance alone difficult. By storing information about the implementations (like

versions of each module) as evolution provenance, we can connect the original workflow to all

upgraded versions.

Workflow evolution can be captured via change-based provenance [48], where every modifi-

cation applied to a workflow is recorded. The set of changes is represented as a tree where nodes

correspond to workflow versions and an edge between two nodes corresponds to the difference

between the two corresponding workflow specifications.
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Any workflow instance can be reconstructed by applying the entire sequence of change oper-

ations from the root node to the current version. For upgrades, we can leverage this approach to

record the set of changes necessary to update an old workflow to a new version. Note that these

changes define the difference between the two versions, so our provenance will maintain an explicit

definition of the upgrade for reference and comparison.

6.2.1.1 Detecting the Need for Upgrades
To support upgrades, workflow systems must provide developers with facilities to develop and

maintain different versions of modules (and packages) as well as detect and process inconsistencies

when workflows created with older versions of modules are materialized. First, it is important

to have a mechanism for identifying a group of modules (e.g.,, using a group key), as well as a

version indicator or some other method like content-hashing that can be used to identify when

module implementations may have changed. Ideally, any version identifier of a module should

reflect the version of the code or underlying libraries. In fact, we may be able to aid developers by

signaling when their code has changed, alerting them to the need to change the version. Alternately,

developers might link version identifiers to revisions of their code as defined in a version control

system.

Second, we need to tackle the problem of identifying when and where upgrades might be neces-

sary. Upon opening a workflow, the system needs to check that the modules specified are consistent

with the implementation defined by the module registry. As discussed earlier, this usually involves

checking version identifiers but could also be based on actual code. If there are inconsistencies, we

need to identify the type of discrepancy; the workflow may specify an obsolete version of a module,

a newer version, or perhaps the module may not exist in the current registry. In all of these cases,

we need to reconcile the workflow to the current environment.

6.2.1.2 Processing Upgrades
We wish to allow developers to specify upgrade paths but also provide automated routines

when upgrades are trivial and allow users to override the specified paths. The package developer

can specify how a specific module is to be upgraded in all contexts. If that is not possible or

the information is not available for a given module, we can attempt to automatically upgrade a

module by replacing the old version with a new version of the same module. A third method for

upgrading a workflow is to display the obsolete modules and let the user replace them directly.

Our upgrade framework leverages all three approaches. It starts with developer-specified changes,

provides default, automated upgrades if the developer has not provided them, and allows the user to

choose to accept the upgrade, modify it, or design their own.
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6.2.1.2.3 Developer-defined upgrades. Because the modules of any workflow may origi-

nate from a number of different packages, we cannot assume that a global procedure can upgrade

the entire workflow. Instead, we allow developers to specify upgrade routines for each package.

Specifically, we allow them to write a method which accepts the workflow and the list of incompati-

ble modules. A module may be incompatible because it no longer exists in the package or its version

is different from the implementation currently in the registry. A developer needs to implement

solutions to handle both of these situations, but the system can provide utility routines to minimize

the effort necessary for some types of changes. In addition, there may be cases where the developer

wants to replace entire subworkflows with different ones. Changes in the specification of parameter

values may also require upgrade logic. For example, an old version of module may have taken the

color specification as four integers in the [0,255] range, but the new version requires floats in the

[0.0, 1.0] range. Such conversions can be developer-specified so that the a user need not modify

their workflows in order for them to work with new package versions. Note that developer-specified

upgrades may need to be aware of the initial version of a module. For example, if version 0.1 of a

module has a certain parameter, version 0.2 removes it, and version 1.0 adds it back, the upgrade

from 0.1 to 1.0 will be necessarily different than the upgrade from 0.2 to 1.0.

6.2.1.2.4 Automatic upgrades. We can attempt to automate upgrades by replacing the origi-

nal module with a new version of the same module. For any module that needs an upgrade, we check

the registry for a module that shares the same identifying information (excluding version) and use

that module instead. Note that it is necessary to recreate all incoming and outgoing connections

because the old module is deleted and a new module is added. If an upgraded module renames

or removes a port, it is not possible to complete the upgrade. We can either continue with other

upgrades and notify the user, or rollback all changes and alert the user. Also note that if two

connected modules both require upgrades, we will end up deleting and adding at least one of the

connections twice, once for the first module replacement and again for the second module upgrade.

Finally, we need to transfer parameters to the new version in a similar procedure as that used with

connections. See Figure 6.10 for an example of an automatic upgrade.

6.2.1.2.5 User-assisted upgrades. While we hope that automatic and developer-specified

upgrades will account for most of the cases, they may fail for complicated situations. In addition, a

developer may not specify all upgrade paths or a user may desire greater control over the changes.

In such a scenario, we need to display the old, incompatible pipeline, highlight modules that are

out-of-date, and allow the user to perform standard pipeline manipulations. One problem is that,

because we may not have access to the version of the package that was used to create the workflow,

we may not be able to display the module correctly for the user to interact with. With VisTrails,
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we can display the basic graph connectivity as shown in Figure 6.9, but we may not have entire

module specification. Our display is therefore a “recovery mode” where the workflow is shown but

cannot be executed or interacted with in the same way as a valid version. Once users replace all old

modules with current versions, they will able to execute the workflow and interact with it. We can

aid users by providing high-level actions that allow them to, for example, replace an incompatible

module with a new, valid one.

In addition, while users may be willing to perform one or two upgrades manually, it would

be helpful if we are able to aid users by automating future upgrades based on those they have

already defined. Workflow analogies provide this functionality by allowing users to select existing

actions including upgrades and apply them to other workflows [130]. Because analogies compute a

soft matching between starting workflows, they can be applied to a variety of different workflows.

Thus, for a large collection of workflows, a user may define a few upgrades and compute the rest

automatically using these analogies.

6.2.1.3 Provenance Concerns
Given a data product, we cannot hope to reproduce or extend the data product without knowing

its provenance—how it was generated. If our provenance information includes information about

the versions of the modules used, we can use that to drive upgrades. Note that without version

information, we may incorrectly determine which upgrades are necessary. Thus, the provenance of

the original workflow is important to define the upgrade.

At the same time, we wish to capture the provenance of the upgrades. When users either run

old versions of workflows or upgrade and modify these versions, it is important to track the changes

both in the execution provenance and in the workflow evolution provenance. By noting the specific

module versions used in the execution provenance, we can better support reproducibility. We need

to ensure that the versions recorded are exactly the versions executed, not allowing silent upgrades

to happen without being noted in the provenance. Similarly, whenever a user upgrades a workflow,

the changes that took place should be noted as evolution provenance so that subsequent changes

are captured correctly. See Figure 6.8 for an example of captured provenance information that is

relevant for upgrades.

As a workflow evolves over a number of years and is modified by a number of users, it is

important to track the provenance of this evolution. Upgrades may be critical changes in workflow

development and often occur when a new user starts to revise an existing result. By keeping track

of these actions, we may be able to identify how, for example, inconsistencies in results may have

arisen because of an upgrade. In addition, we do not lose links as workflows are refined. Without

upgrades, a user may create a (duplicate) workflow rather than reuse an existing one. If that occurs,
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we lose important provenance of the original workflow and related workflows.

6.2.2 Implementation
We have implemented the framework described in Section 6.2.1 in the VisTrails system. Below,

we describe this implementation.

In VisTrails, when a workflow is loaded (or materialized), it is validated against the current

environment: the classes defining the modules and the port types for each module. To detect whether

modules have changed, we begin by checking each module and ensuring the requested version

matches the registry version. Next, we check each connection to ensure that the ports they connect

are also valid. Finally, we check the parameter types to ensure they match those specified by the

implementation. If any mismatches are detected, we raise an exception that indicates what the

problem is and which part of the workflow it affects. Note that if one problem occurs, we can

immediately quit validation and inform the user, but if we wish to fix the problems, it is useful to

identify all issues. Thus, we collect all exceptions during validation, and pass them to a handler.

We attempt to process all upgrades at once, with the exception of subworkflows which are

processed recursively. To this end, we sort all requests by the packages that they affect, and attempt

to solve all issues one package at a time. This way, a package developer can write a handler to

process a group of upgrade requests instead of processing each request individually.

6.2.2.1 Replace, Remap, and Copy
Note that an upgrade that deletes an old module and adds a new version discards information

about existing connections, parameters, and annotations. In order to maintain this information as

well as its provenance, we extended VisTrails change-based provenance with a new change type

(or action) that replaces the original module, remaps the old information, and copies it to a new

version of the module. This ensure that we transfer all relevant information to the new version

and maintain its provenance. The new action extracts information about connections, parameters,

and annotations from the old module before replacing it, and then adds that information to the new

module. Note that, because interfaces may change, we allow the user to remap parameter, port, or

annotation names to match the new module’s interface.

6.2.2.2 Algorithm
Formally, our algorithm for workflow upgrades takes a list of detected inconsistencies between

a workflow and the module registry and produces a set of actions to revise the workflow. We

categorize inconsistencies as “missing”, “obsolete”, or “future” modules, and this information is

encoded in the exception allowing developers to tailor upgrade paths accordingly. We begin by
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sorting these errors by package identifier. Then for each package, we check if the package has

a handler for all types of upgrades. If it does, we call that handler. If not, we cannot hope to

reconcile “missing” modules. For obsolete modules, we can attempt to automatically reconcile

them by replacing them with newer versions. For future modules, we can attempt to downgrade

them automatically, but usually we raise this error to the user.

Automatic upgrades work module by module, and for each module, we first check to see if

an upgrade is possible before proceeding. An upgrade is possible if the module interface has not

changed from the version specified by the workflow and the version that exists on the system. We

check that by seeing if each connection and parameter setting can be trivially remapped. If they

can, we extract all of the connections and parameters before deleting all connections to the module

and the module itself. Then, we add the new version of the module and replace the connections and

parameters. All of these operations are encoded as a single action.

For developer-defined upgrades, we pass all of the information about inconsistencies as well as

the current state of the workflow to the package’s upgrade handler. The handler can make use of

several capabilities of the workflow system to minimize the amount of code. Specifically, we have a

remap function that allows a developer to specify how to replace a module when interface changes

are due to renaming. In addition, developers can replace entire pieces of a workflow, but doing so

might require locating subworkflows that match a given template. Many workflow systems already

have query capabilities, and these can be applied to facilitate these more complex upgrades. As with

automatic upgrades, these operations are encoded as a single action.

If automated and developer-defined upgrades cannot achieve a compatible workflow, a user can

define an upgrade path. Most of this process is manual and mirrors how a user might normally

update a workflow. Until the workflow is compatible with the current environment, the workflow

cannot be executed, giving users a well-defined goal. Upon achieving a valid workflow, we can save

the user’s actions and use workflow analogies [130] to help automate future upgrades.

6.2.2.3 Subworkflows
To handle subworkflows, both validation and upgrade handling are performed recursively. Thus,

we process any workflow by first recursing on any subworkflow modules, processing the underlying

workflows, and then continuing with the rest of the workflow. However, our upgrades must be

handled using an extra step; if we update a subworkflow, we must also update the module tied to that

subworkflow to reflect any changes. For example, a subworkflow may modify its external interface

by deleting inputs or outputs. Thus, we must upgrade a module after updating its underlying

subworkflow.
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6.2.2.4 Preferences
While upgrades are important, we wish to add them without interfering with a user’s normal

work. Besides the choice between upgrading or trying to load the exact workflow with older

package versions, a user may also wish to be notified of upgrades and persist their provenance

in different ways. Specifically, if old versions exist, a user may wish to always try use them,

automatically upgrade, or be prompted for a decision. If not, a user has a similar selection of

options: never upgrade, always upgrade, or be presented with the choice to upgrade. When a

user wants to upgrade, he may choose to persist the provenance of these upgrades immediately or

delay saving these changes until other changes occur. If a user is browsing workflows, it may be

reasonable to only persist upgrade provenance when the workflow is modified or run. This way,

a user can examine a workflow as it would appear after an upgrade, but the persistence of these

upgrades is delayed until something is changed or the workflow is executed. Users might also want

to have immediate upgrades where the upgrade provenance is persisted exactly when any workflow

is upgraded, even if the user is only viewing the workflow.

6.2.3 Discussion
While perfect reproducibility cannot be guaranteed without maintaining the exact system con-

figuration and libraries, we believe that workflow upgrades offer a sensible approach to manage

the migration from older workflows to new environments. Note that provenance allows us to

always revisit the original workflow, and we can run this version if we can reconstruct the same

environment. By storing the original implementations along with workflows, we may be able to

reproduce the original run, although changes in the system configuration may limit such runs.

Thus, coupling provenance with version control systems could ensure that we users can access

previous package implementations. However, when extending prior work in new environments,

upgrades also serve to convert older work to more efficient and extensive environments. In addition,

managing multiple software versions is a nontrivial task, and even with a modern OS package

management system, installing a given package in the presence of conflicts is actually known to be

NP-Complete [41]. Thus, we cannot expect in general to easily run arbitrarily old library versions.

Because workflows abstract the implementation from the computational structure, the results of

upgrades are more likely to be valid.

Some workflow systems use Web services or other computational modules that are managed

externally. In these cases, we may not know if the interface or implementation may have changed,

so it is harder to know when upgrades are necessary. However, the services may make version

information available or the workflow system may be able to detect a change in the interface [21].

In this case, we are not able to leverage developer-specified upgrade routines, but we should be able
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to accomplish automatic or user-specified upgrades.

When using change-based provenance to track upgrades, a user can see both the original evo-

lution as well as the upgrades and progress after the upgrades. See Figure 6.11 for an example.

It may be useful to upgrade an entire collection of related workflows while retaining the original

provenance of exploration, but adding the upgraded versions may lead to a complex interface. We

believe that restructuring the tree to display the original history but with links to the upgrades might

be useful. Finally, we emphasize that the change-based model for the workflows provenance in

VisTrails is an attractive medium in which to incorporate the upgrading data. Since the upgrades are

represented as actions, they are treated as first-class data in the system, and so the extensive process

provenance capabilities of VisTrails can be directly used. For example, upgrade actions can then be

used in queries or incorporated into statistical analyses [93, 129, 130].

6.2.4 Related Work
Workflow systems have recently emerged as an attractive alternative for representing and manag-

ing complex computational tasks. The goal behind these systems is to provide the utility of the shell

script in a more user-friendly, structured manner. Workflow systems incorporate comprehensive

metadata which, among other advantages, facilitates programming and distribution of results [95],

reproducibility [48], allows better execution monitoring [104], and provides potential efficiency

gains [17].

As the auditability and cost of generating results has increased, managing the provenance of

data products [137] and computational processes [48] has become very important. Together, these

ideas allow users to obtain a fairly comprehensive picture of the programs and data that were used to

generate final results. However, these descriptions are, in a sense, static. In general, the processes are

assumed to stay the same for the lifetime of the workflow, and, as we have argued before, longevity

necessarily introduces changing requirements and interfaces. Our approach serves to detect and

manage these changes to underlying implementations while still keeping the attractive features of

workflow systems described above.

It is well known that longevity introduces novel challenges for maintainability of software

systems, in particular in the presence of complicated dependencies [115]. There have been a

number of approaches to the problem of managing software upgrades, in particular, in understanding

and ensuring safety properties of dynamic updates in, for example, running code or persistent

stores [20, 43]. In small-scale environments, the solutions tend to involve the description (or

prediction) of desired properties to be maintained [98]. For deployments at the scale of entire insti-

tutions or large computer clusters, they tend to involve careful scheduling, and staged deployment

of upgrades [4, 32].



122

al
ia

se
s

vo
lu

m
e 

re
nd

er
in

g
bo

ne

bo
ne

_c
am

er
a

U
pg

ra
debo

ne
_c

am
er

a

vo
lu

m
e 

re
nd

er
in

g
bo

ne

al
ia

se
s

U
pg

ra
de

U
pg

ra
de

U
pg

ra
de

bo
ne

_c
am

er
abo

ne

al
ia

se
s

[o
ld

 b
on

e_
ca

m
er

a]

[o
ld

 b
on

e]
vo

lu
m

e 
re

nd
er

in
g

O
rig

in
al

U
pg

ra
de

d
R

et
ag

ge
d

Fi
gu

re
6.

11
:W

or
kfl

ow
E

vo
lu

tio
n

be
fo

re
an

d
af

te
ru

pg
ra

de
s

as
w

el
la

s
af

te
rr

et
ag

gi
ng

th
e

no
de

s.



123

Component-based software has evolved to separate different concerns in order to provide wide-

ranging functionality. While usually at a lower level than workflow systems, component objects

use well-defined interfaces and are substitutable [142]. For this reason, it is also important to track

the component evolution and versioning [139]. The term “dependency hell” was coined to describe

problems with compatibility when replacing components with new versions. McCamant and Ernst

describe methods to identify such incompatibilities [99] while Stuckenholz proposes “intelligent

component swapping” to update multiple components at once [139].

Web services are another kind of component-based architecture. Since the standards do not ad-

dress the evolution of Web services, developers must rely on design patterns and best practices [21].

Specifically, adding to an interface is possible, but changing or removing from that interface is

not. Andrikopoulos et al. formalize the concepts of service evolution [11]. There are a variety

of approaches that seek to develop mechanisms to version Web services including using a chain

of adapters [79] and hierarchical abstraction [148]. In order to publish such versions, services are

distinguished via namespaces or URLs. In contrast to much of the work for component upgrades,

our approach seeks to add capability by updating older workflows rather than only maintaining

backward compatibility.

In this chapter, we focus on the problem of providing a means of describing upgrade paths

so that a workflow can be automatically updated, its upgrade history appropriately recorded, and

its execution made sufficiently similar to the one before the upgrade. Such problems exist even

when lower-level upgrades are successfully deployed. In that sense, our mechanisms for coping

with upgrades are closer in spirit to mechanisms for automatically updating database queries after

relational schemas have changed [35].

6.2.5 Summary
We have proposed a framework for workflow upgrades and described its implementation in the

VisTrails system. Our framework handles three types of upgrades—automated, developer-specified,

and user-defined, and we have discussed how these can be supported in a systematic fashion. We

have also shown how the framework leverages provenance information to accomplish upgrades and

produces updated provenance detailing the changes introduced by the upgrades. Our implementa-

tion is currently available in nightly releases of VisTrails, and we are planning to incorporate it into

the next major release of VisTrails.

One area that we would like to explore further is the interface for involving the user in upgrades.

The “replace module” action allows users to specify how an upgrade is accomplished, and we

believe a user might drag a new module onto the incompatible module to replace it. At the same

time, if the routine specifications do not exactly match, the user should be able to specify the
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remapping, similar to the method available to developers in their code. We might extend this

functionality to allow the user to specify the connections visually.

In addition to capturing the provenance of upgrades and using this information to guide future

user-driven, manual upgrades, we believe we might also use this provenance for further analysis.

For example, we might be able to examine the actions used in upgrades to mine rules for packages

whose developers have not defined upgrade paths. It may also be interesting to try to analyze

performance or accuracy changes in workflow execution after upgrades.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation has presented a set of techniques for both managing and using provenance

information. From linking data with provenance to suggesting possible workflow completions, the

methods blend infrastructure with applications. In doing so, this work looks beyond normal capture

and archival of provenance information to using those data to drive new ideas and to improve the

access to details of algorithms, implementations, and experiments.

Chapter 3 introduced a method for reusing the provenance from a collection of workflows to

derive suggestions as users built workflow structures. This solution allows novice users to browse

the set of possible completions for ideas while other users can benefit from a reduced number of

operations to complete a pipeline. One of the remaining questions is how this technique can be

extended to support parameter selection. Because parameters often depend on input data (or other

parameters), it may be best to present possible ranges or compute the workflows with a variety of

different parameters so users can evaluate the results. Another opportunity is changing the algorithm

to be more query-driven, utilizing the framework from Chapter 4, to show full results rather than

generalizing skeletons.

The next chapter, Chapter 4, presents a technique for indexing provenance and workflow graphs.

Extending feature-based graph indexing techniques, it seeks to address more exploratory queries

where the number of results might be large as well as queries that are not exactly specified. Using

summary graphs, it reduces the number of costly verification steps which require a solution to

subgraph isomorphism. In order to efficiently evaluate queries where the connectivity may not be

fully specified, transitive closure for verticies must be checked, and a solution where connectivity

can be indexed may aid in speeding up those queries further.

In Chapter 5, summary graphs are introduced as a method for browsing and comparing col-

lections of graphs, including sets of provenance graphs. Here, the summary graph encapsulates

similarities and differences using a heurisitic graph matching algorithm in a hierarchical agglomer-

ation. The graph matching algorithm allows users to control the level to which nodes are merged,

meaning the display can be tweaked in an intuitive manner. The algorithm works well for similar

graphs with some differences, but for larger, more heterogenous collections, the pieces will share

less overlap. This might be addressed by using clustering to develop groups of similar graphs and
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generate a set of summary graphs instead of a single one. The scaling both of the number of graphs

and size of graphs are something which deserves more investigation.

Chapter 6 addresses longevity concerns related to using provenance in publications. These

include preserving and linking data with provenance information as well as providing upgrade paths

so older results can be used and compared using updated hardware or algorithms. Referring to

data with filenames is problematic since both the location and data might change. The persistence

framework records information about data content and computational signatures while transparently

managing and versioning the data so they can be later retrieved. Workflow upgrades use information

about versions of workflow modules to determine when they may be out of date. Given an older

version, there are three types of upgrades that can be used: automatic, developer-defined, and

user-defined. Provenance is maintained throughout so the original and new versions are main-

tained. These solutions are important for scientific publication because reviewers and readers can

better understand and validate experiments and computations when full provenance is available for

reproduction and reuse. In the future, sharing both managed data and upgraded algorithms is an

important concern, especially given the growing size of the data involved in scientific calculations

The presented techniques are designed to allow for more efficient knowledge discovery, and each

recognizes the changing nature of scientific exploration from ideas through publications. Prove-

nance captures the scientific process, the exploration and ideas that lead to published results. For

this reason, it is valuable information that can be used to further scientific discovery, but efficient

algorithms to process large collections of provenance are needed. This dissertation outlines several

solutions for dealing with collections of provenance, ranging from query support to completion

infrastructure. Scaling these approaches for the growing amount of data and provenance will be an

important direction as this work continues.
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Database Management, M. Gertz and B. Ludäscher, Eds., vol. 6187 of LNCS. Springer Berlin
/ Heidelberg, Jul 1, 2010, pp. 397–415.

[85] KOOP, D., SCHEIDEGGER, C., CALLAHAN, S., FREIRE, J., AND SILVA, C. VisComplete:
Automating suggestions for visualization pipelines. IEEE TVCG 14, 6 (2008), 1691–1698.

[86] KOOP, D., SCHEIDEGGER, C., FREIRE, J., AND SILVA, C. T. The provenance of work-
flow upgrades. In Provenance and Annotation of Data and Processes, D. McGuinness,
J. Michaelis, and L. Moreau, Eds., vol. 6378 of LNCS. Springer Berlin / Heidelberg, Jun
15, 2010, pp. 2–16.

[87] KORVEMAKER, B., AND GREINER, R. Predicting unix command lines: Adjusting to user
patterns. In Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence (2000), pp. 230–
235.

[88] KUHN, H. W. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly 2, 1-2 (1955), 83–97.

[89] KURAMOCHI, M., AND KARYPIS, G. Frequent subgraph discovery. In ICDM (2001),
pp. 313–320.

[90] LALONDE, J.-F., HOIEM, D., EFROS, A. A., ROTHER, C., WINN, J., AND CRIMINISI, A.
Photo clip art. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 26, 3 (2007).

[91] LAWRENCE LIVERMORE NATIONAL LABORATORY. VisIt: Visualize It in Parallel Visual-
ization Application. https://wci.llnl.gov/codes/visit [29 March 2008].

[92] LEE, E. A., AND PARKS, T. M. Dataflow Process Networks. Proceedings of the IEEE 83,
5 (1995), 773–801.



133

[93] LINS, L., KOOP, D., ANDERSON, E., CALLAHAN, S., SANTOS, E., SCHEIDEGGER, C.,
FREIRE, J., AND SILVA, C. Examining statistics of workflow evolution provenance: a first
study. In Proceedings of SSDBM (2008).

[94] LU, J., LING, T. W., CHAN, C.-Y., AND CHEN, T. From region encoding to extended
dewey: on efficient processing of xml twig pattern matching. In VLDB (2005), pp. 193–204.

[95] LUDASCHER, B., ALTINTAS, I., BERKLEY, C., HIGGINS, D., JAEGER, E., JONES, M.,
LEE, E. A., TAO, J., AND ZHAO, Y. Scientific workflow management and the kepler system:
Research articles. Concurr. Comput. : Pract. Exper. 18, 10 (2006), 1039–1065.

[96] MA, K.-L. Visualizing visualizations: User interfaces for managing and exploring scientific
visualization data. IEEE Comput. Graph. Appl. 20, 5 (2000), 16–19.

[97] MARKS, J., ANDALMAN, B., BEARDSLEY, P. A., FREEMAN, W., GIBSON, S., HODGINS,
J., KANG, T., MIRTICH, B., PFISTER, H., RUML, W., RYALL, W., SEIMS, J., AND
SHIEBER, S. Design galleries: A general approach to setting parameters for computer
graphics and animation. In ACM SIGGRAPH (1997), pp. 389–400.

[98] MCCAMANT, S., AND ERNST, M. D. Predicting problems caused by component upgrades.
In ESEC (2003), pp. 287–296.

[99] MCCAMANT, S., AND ERNST, M. D. Early identification of incompatibilities in multi-
component upgrades. In ECOOP 2004 — Object-Oriented Programming, 18th European
Conference (Oslo, Norway, June 16–18, 2004), pp. 440–464.

[100] MELNIK, S., GARCIA-MOLINA, H., AND RAHM, E. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In Proceedings of the 18th
International Conference on Data Engineering (2002), pp. 117–128.

[101] MERCURY COMPUTER SYSTEMS. Amira. http://www.amiravis.com.

[102] MEVIS RESEARCH. MeVisLab. http://www.mevislab.de.

[103] MICROSOFT. Intellisense. http://msdn.microsoft.com/en-us/library/
hcw1s69b(VS.80).aspx.

[104] Microsoft Workflow Foundation. http://msdn2.microsoft.com/en-us/
netframework/aa663328.aspx.

[105] MOREAU, L., FREIRE, J., FUTRELLE, J., MCGRATH, R. E., MYERS, J., AND PAULSON,
P. The open provenance model: An overview. In IPAW (2008), pp. 323–326.

[106] MOUALLEM, P., BARRETO, R., KLASKY, S., PODHORSZKI, N., AND VOUK, M. Tracking
files in the kepler provenance framework. In SSDBM 2009: Proceedings of the 21st Interna-
tional Conference on Scientific and Statistical Database Management (2009), pp. 273–282.

[107] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U., AND SELTZER, M.
Provenance-aware storage systems. In Proceedings of the annual conference on USENIX ’06
Annual Technical Conference (Berkeley, CA, USA, 2006), USENIX Association, pp. 4–4.
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