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ABSTRACT

Serving as a record of what happened during a scientific process, often computational, prove-
nance has become an important piece of computing. The importance of archiving not only data and
results but also the lineage of these entities has led to a variety of systems that capture provenance
as well as models and schemas for this information. Despite significant work focused on obtaining
and modeling provenance, there has been litte work on managing and using this information. Using
the provenance from past work, it is possible to mine common computational structure or determine
differences between executions. Such information can be used to suggest possible completions for
partial workflows, summarize a set of approaches, or extend past work in new directions. These
applications require infrastructure to support efficient queries and accessible reuse.

In order to support knowledge discovery and reuse from provenance information, the manage-
ment of those data is important. One component of provenance is the specification of the com-
putations; workflows provide structured abstractions of code and are commonly used for complex
tasks. Using change-based provenance, it is possible to store large numbers of similar workflows
compactly. This storage also allows efficient computation of differences between specifications.
However, querying for specific structure across a large collection of workflows is difficult because
comparing graphs depends on computing subgraph isomorphism which is NP-Complete. Graph
indexing methods identify features that help distinguish graphs of a collection to filter results for a
subgraph containment query and reduce the number of subgraph isomorphism computations. For
provenance, this work extends these methods to work for more exploratory queries and collections
with significant overlap. However, comparing workflow or provenance graphs may not require exact
equality; a match between two graphs may allow paired nodes to be similar yet not equivalent. This
work presents techniques to better correlate graphs to help summarize collections.

Using this infrastructure, provenance can be reused so that users can learn from their own and
others’ history. Just as textual search has been augmented with suggested completions based on
past or common queries, provenance can be used to suggest how computations can be completed or
which steps might connect to a given subworkflow. In addition, provenance can help further science
by accelerating publication and reuse. By incorporating provenance into publications, authors can
more easily integrate their results, and readers can more easily verify and repeat results. However,
reusing past computations requires maintaining stronger associations with any input data and un-

derlying code as well as providing paths for migrating old work to new hardware or algorithms.



This work presents a framework for maintaining data and code as well as supporting upgrades for

workflow computations.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Serving as a record of what happened during a scientific process, often computational, prove-
nance has become an important piece of computing. The importance of archiving not only data and
results but also the lineage of these entities has led to a variety of systems that capture provenance as
well as models and schemas for this information. Despite significant work focused on obtaining and
modeling provenance, there has been litte work on managing and using this information. Querying
this information has been studied for feasibility and interoperability concerns, but applications that
drive these queries have been limited. One of the applications for provenance is reproducibility—
exactly replicating a process or computation. This work proposes reuse as an improved application,
allowing provenance users to migrate work to new techiques or hardware and more easily extend
published findings.

Provenance documents how something was accomplished; a collection of such information is
thus extremely valuable in understanding solutions. Furthermore, using data mining, it is possible
to determine similar solutions or common pieces of provenance information. Such parts can then be
used to derive new complete or partial solutions. Note that an important component in such mining
is the structure of the provenance; with more abstraction, it can be easier to locate patterns. In order
to suggest relevant suggestions, existing structure can be used to index into a summary of collected
provenance.

Along similar lines, while suggestions are targeted to help users for specific tasks, summaries
of collections of provenance can be useful for browsing the information. Because provenance is
often understood as a graph of dependencies, a textual summary of information is usually difficult
to parse. On the other hand, visually a collection of graphs is complicated by the fact that comparing
graphs is NP-Complete. This work presents algorithms to build summaries of collections of graphs.
In addition, it demonstrates methods for editing these summaries by splitting and joining multinodes
and multiedges.

To support queries, completions, and summaries for provenance, there must be infrastructure
to support efficient access to the information. Indexing techniques are often used to speed queries

over certain fields in databases, but because provenance information is stored as a graph, a query
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can leverage both distinct node criteria and connectivity constraints. Thus, indexing must also
encapsulate these features. However, because subgraph isomorphism is NP-Complete, even com-
paring two graphs in a collection to test their equivalence can be difficult. Existing techinques for
graph indexing leverage discriminative subgraphs that help filter candidates, limiting the number
of full verifications that need to be calculated via subgraph isomorphism calculations. However,
provenance queries can be more vague, referencing only loosely-connected pieces of a subgraph,
and may return large numbers of results. This work proposes a framework to adapt existing indexing
techniques to make provenance queries more efficient.

A key concern in provenance is the data associated with the steps involved. For exploratory
science, it is not always possible or efficient to curate data and ensure their longevity. At the
same time, referencing data by filenames or URIs is problematic; a file can be moved or deleted,
and linking provenance from outside the originating machine is difficult. This work proposes
a framework for both identifying and managing the input and output data involved inline with
provenance information.

For the goal of reuse—not simply reproducibility, it is important to have the ability to migrate
and adapt documented processes to use new hardware or techniques. To identify possible incom-
patibilities and how the necessary changes may be completed, documenting version information is
required. At the same time, the provenance of the changes themselves can be invaluable when diag-
nosing differences in results. Thus, provenance plays an important role in both allowing upgrades

but also in documenting changes.

1.2 Thesis Statement

Techniques for the management and analysis of provenance enable applications for knowledge

discovery and reuse by leveraging the information contained in provenance stores.

1.3 Dissertation Objectives
In this dissertation, we present a set of techniques for managing and analyzing provenance
information as well as applications that use this framework to aid in future work. The goal is to use
provenance, often viewed as archival data, to help develop solutions that use this information. The
outline of this dissertation can be separated into four contributions:

¢ A method to suggest possible workflow completions using provenance information about
previously constructed workflows [85]. This technique both offers starting points for novice

users and reduces the effort for more experienced users in constructing workflows.
e A framework for indexing provenance information that permits more exploratory queries

and supports queries that have large numbers of results. The techinques augment existing
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graph indexing techniques by adding an extra layer to the index for more quickly locating
large numbers of results as well as incorporating disconnected features.

¢ A technique to display a collection of graphs in a visual summary that allows discovery of
similarities and differences. This can be used to display collections of provenance graphs
so users can discover changes, and the summaries are editable so they can serve to develop
reusable analogies that can be applied to other work.

e An infrastructure to support new modes of publication. To support work on executable
papers and Web-based publications, it is necessary to maintain links to data [84] and support
the longevity of provenance for later use through upgrades [86].

The rest of this dissertation is organized as follows. Chapter 2 reviews background on prove-
nance and other work in this area. Chapter 3 describes VisComplete, a recommendation system for
workflows that uses provenance information to derive completions. Chapter 4 describes an indexing
scheme for querying provenance information. Then, Chapter 5 describes techniques for visualizing
collections of graphs, including provenance graphs. Chapter 6 describes contributions that enabled
greater reuse and longevity for publications. Finally, Chapter 7 presents conclusions and directions

for future work.



CHAPTER 2

BACKGROUND

As this work relies on provenance, it is important to start by reviewing what constitutes prove-
nance, how it is generated and captured, and what techniques exist to manipulate and access this
information. The techinques and frameworks have been implemented or integrated into computa-
tional work, usually via an existing system. The VisTrails scientific workflow system has served as a
testbed for this work, and both the system and workflows in general have prompted and aided many
of the applications. However, the framework and algorithms are general and can be integrated with
other systems. This chapter begins by defining provenance before describing scientific workflow
systems and provenance capabilities. VisTrails is used as an example to highlight how provenance

and scientific workflow systems are coupled.

2.1 Provenance

Provenance is the lineage or history of some object, including relationships to other objects that
influence it. It can refer to the trail of ownership of a piece of artwork from painter to current owner,
the steps in baking a cake from ingredient collection to finished product, or the processes involved in
deriving a scientific result from experimental setup to analyses. While the term has not always been
associated with science, the concepts are ingrained into both the work and mindset of scientists.
Published results are derived from information about the exact procedures followed, captured data,
annotations, and documented analyses. In addition, all of this information is documented in the
publication so other scientists can validate procedures and reproduce and extend results. This
provenance is often as important, if not more, than the results.

As computing resources are used for more tasks and data are stored in digital form, the pace
of work has accelerated and the complexity of tasks has increased. Manually keeping track of all
steps followed, parameters set, and data used is burdensome and prone to error. For computational
tasks, it is more efficient to have computers record this information. Computational provenance,
then, tracks the steps and data involved in some computational task. The provenance (also referred
to as the audit trail, lineage, and pedigree) of a data product contains information about the process
and data used to derive the product [47, 137]. It provides important documentation that is key

to preserving the data, to determining its quality and authorship, and to reproducing as well as



validating the results. These are all important requirements of the scientific process.

The scope and granularity of provenance information vary based on the task and capture mech-
anism. For example, fine-grained information about the lineage database tuples can be captured
and used to analyze query results [144]. For more general tasks, the granularity of provenance
varies from a listing of all low-level system/kernel calls [49, 107] to abstracted workflow descrip-
tions [81, 145, 153]. Note that low-level capture is more general but requires significant work to
obtain a high-level description. More abstract provenance can be more easier understood but may
lack some of the details.

Another classification for provenance information involves the type of information being col-
lected. Prospective provenance captures the specification of a computational task (i.e., a script or
workflow)—it corresponds to the steps that need to be followed (or a recipe) to generate a data
product or class of data products. Retrospective provenance captures the steps that were executed
as well as information about the execution environment used to derive a specific data product—a
detailed log of the execution of a computational task. Note that retrospective provenance can be
captured for any task regardless of whether that task has prospective provenance. For example,
information like which processes were run, who ran them, and how long they took, can be captured
without knowing the sequence of steps ahead of runtime.

Provenance can also contain user-defined information, documentation that cannot be automat-
ically captured but records important decisions and notes. These data are often captured in the
form of annotations. Annotations can be added at different levels of granularity and associated with
components of both prospective and retrospective provenance.

To investigate the capabilities of various systems, relationships between them, and models
for storage, challenges were proposed and accomplished by a set of teams. The first challenge
highlighted different methods for capturing and querying provenance information [121]. The second
investigated interoperability of provenance models [122], and the third challenge focused on using
the Open Provenance Model (OPM) as a model for exchanging provenance between systems [123].
As a very general model, OPM allows a variety of types of provenance information to be recorded

without enforcing many constraints [105].

2.2 Scientific Workflow Systems
Computational tasks can be represented using a variety of mechanisms including computer
programs, scripts, and workflows. They can also be constructed interactively using specialized
tools (e.g., ParaView [82] for scientific visualization, GenePattern [54] for biomedical research) that
often have their own internal format to represent a task. Some complex computational tasks require

that different tools be weaved together, including loosely-coupled resources, specialized libraries,
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distributed computing infrastructure, and Web services. For example, to analyze the results of a CT
scan, it may be necessary to preprocess the data with different parameters, visualize each result, and
compare them. To ensure reproducibility of the entire task, it is beneficial to have a description that
captures these steps and the different parameter values used.

Workflow and workflow-based systems have recently grown in popularity within the scientific
community as a means to assemble complex processes [40, 46, 81, 104, 114, 138, 145, 149, 153,
156]. Not only do they support the automation of repetitive tasks, but they can also systematically
capture provenance information for the derived data products [39]. Most workflow systems support
provenance capture, although each adopts its own data and storage models [39, 47]. These range
from specialized Semantic Web languages (e.g., RDF and OWL) and XML dialects that are stored
as files in the file system, to tables stored in relational databases.

A workflow describes a set of computations as well as an order for these computations. To
simplify the presentation, we focus on dataflows; but note that our approach is applicable to more
general workflow models. In a dataflow, computational flow is dictated by the data requirements of
each computation. A dataflow is represented as a directed acyclic graph where nodes are the compu-
tational modules and edges denote the data dependencies as connections between the modules—an
edge connects the output port of a module to an input port of another. Often, a module has a set
of associated parameters that can control the specifics of one computation. Some workflows also
utilize subworkflows where a single module is itself implemented by an underlying workflow.

Because workflows abstract computation, there must be an association between the module
instances in a workflow and the underlying execution environment. This link is managed by the
module registry which maps module identifiers to their implementations. For convenience and
maintenance, related modules are often grouped together in packages. Thus, the module identifier
may consist of package identifier, a module name, an optional namespace, and information about the
version of the implementation. Version information can serve to inform us when implementations
or interfaces in the environment change, and is part of provenance information.

Consider, for example, the VisTrails system [153]. In VisTrails, each module corresponds
to a Python class that derives from a predefined base class. Users define custom behaviors by
implementing a small set of methods. These, in turn, might run some code in a third-party library
or invoke a remote procedure call via a Web service. The Python class also explicitly describes the
interface of the module: the set of allowed input and output connections, given by the module’s
ports. A VisTrails package consists of a set of Python classes.

One of the benefits of workflow systems is that they lend themselves to visual programming
environments. Those browsing a collection of workflows should be able to gain an idea of the

computation from a depiction of the general structure without reading a long code listing. Connec-
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tions show relationships between modules without the need to trace variable names, and parameter
settings can be located with the modules they affect. This enables users to more quickly set

parameter values, add computational modules, or delete extraneous analyses.

2.3 VisTrails

VisTrails (http://www.vistrails.org) is an open-source system that supports data exploration and
visualization. It combines and substantially extends useful features of scientific workflow and
visualization systems. Similar to scientific workflow systems [81, 117, 145, 156], VisTrails allows
the specification of computational processes which integrate existing applications, loosely-coupled
resources, and libraries according to a set of rules; and similar to visualization systems [71, 82,
91, 154], VisTrails makes advanced scientific and information visualization techniques available to
users, allowing them to explore and compare different visual representations of their data. As a
result, users can create complex workflows that encompass important steps of scientific discovery,
from data gathering and manipulation, to complex analyses and visualizations, all integrated in one
system.

A distinguishing feature of VisTrails is a comprehensive provenance infrastructure that trans-
parently captures and maintains detailed history information about the steps followed and data
derived in the course of an exploratory task [48]. Whereas workflows have been traditionally used
to automate repetitive tasks, for applications that are exploratory in nature, such as simulations,
data analysis, and visualization, very little is repeated—change is the norm. As a user generates
and evaluates hypotheses about data under study, a series of different, albeit related, workflows
are created as they are adjusted in an iterative process. VisTrails was designed to manage these
rapidly-evolving workflows: it maintains provenance of data products (e.g., visualizations, plots) of
the workflows that derive these products, and their executions. The system also provides annotation
capabilities that allow users to enrich the automatically captured provenance.

Besides enabling reproducible results, VisTrails leverages provenance information through a
series of operations and intuitive user interfaces that help users to collaboratively analyze data.
Notably, the system supports reflective reasoning by storing temporary results, by providing users
the ability to examine the actions that led to a result and to follow chains of reasoning backward
and forward [113]. Users can navigate workflow versions in an intuitive way, undo changes but
not lose any results, visually compare multiple workflows, and show their results side-by-side in a
visualization spreadsheet [17, 48, 135].

Because the need for data analysis and visualization is pervasive across disciplines, VisTrails
was designed with usability and extensibility in mind. VisTrails addresses important usability

issues that have hampered a wider adoption of workflow and visualization systems. To cater
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to a broader set of users, including many who do not have programming expertise, it provides
a series of operations and user interfaces that simplify workflow design and use, including the
ability to create and refine workflows by analogy, to query workflows by example, and to suggest
workflow completions as users interactively construct their workflows using a recommendation
system [85, 130]. VisTrails is also linked to a new framework that allows the creation of custom
applications that can be more easily deployed to (nonexpert) end users [127, 128]. The extensibility
of VisTrails comes from an infrastructure that makes it simple for users to integrate tools and
libraries, as well as to quickly prototype new functions. This has been instrumental to enable the
use of the system in a wide range of application areas, including environmental sciences [16, 70],
psychiatry [10], astronomy [147], cosmology [9] , high-energy physics [42], quantum physics [7],

and molecular modeling [64].



CHAPTER 3

VISCOMPLETE: DATA-DRIVEN SUGGESTIONS
FOR VISUALIZATION SYSTEMS

3.1 Introduction

Data exploration through visualization is an effective means to understand and obtain insights
from large collections of data. Not surprisingly, visualization has grown into a mature area with
an established research agenda [109], and a number of software systems have been developed that
support the creation of complex visualizations [30, 71, 82, 83, 101, 114, 153, 154]. However, a
wider adoption of visualization systems has been greatly hampered due to the fact that these systems
are notoriously hard to use, in particular, for users who are not visualization experts.

Even for systems that have sophisticated visual programming interfaces, such as DX, AVS, and
SCIRun, the path from the raw data to insightful visualizations is laborious and error-prone. Visual
programming interfaces expose computational components as modules and allow the creation of
complex visualization pipelines which combine these modules in a dataflow, where connections
between modules express the flow of data through the pipeline. They have been shown to be
useful for comparative visualization and efficient exploration of parameter spaces [17]. Through the
use of a simple programming model (i.e., dataflows) and by providing built-in constraint checking
mechanisms (e.g., that disallow a connection between incompatible module ports), they ease the
creation of pipelines. Notwithstanding, without detailed knowledge of the underlying computational
components, it is difficult to understand what series of modules and connections ought to be added
to obtain a desired result. In essence, there is no “roadmap”; systems provide very little feedback to
help the user figure out which modules can or should be added to the pipeline. A novice user (i.e.,
an experienced programmer that is unfamiliar with the modules and the dataflow of the system),
or even an advanced user performing a new task, often resorts to manually searching for existing
pipelines to use as examples. These examples are then adapted and iteratively refined until a solution
is found. Unfortunately, this manual, time-consuming process is the current standard for creating
visualizations rather than the exception.

Recent work has shown that provenance information (the metadata required for reproducibility)
can be used to simplify the process of pipeline creation by allowing pipelines to be refined and

queried by example [130]. For example, a pipeline refinement can act as an analogy template for



10

creating new visualizations. This is a powerful tool and can be helpful in situations when the user
knows in advance what they want the end result to be. However, during pipeline creation, it is not
always the case that the user has an analogy template readily available for the visualization that is
desired. In these cases, the user is relegated to manually searching for examples.

In this chapter, we present VisComplete, a system that aids users in the process of creating
visualizations by using a database of previously created visualization pipelines. The system learns
common paths used in existing pipelines and predicts a set of likely module sequences that can
be presented to the user as suggestions during the design process. The quality and nature of the
suggestions depend on the data from which they are derived. Whereas in a single-user environment,
suggestions are derived based on pipelines created by a specific user, in a multi-user environment,
the “wisdom of the crowds” can be leveraged to derive a richer set of suggestions that includes
examples with which the user is not familiar. User collaboration and social data reuse has proven
to be a powerful mechanism in various domains, such as recommendation systems in commercial
settings (e.g., Amazon, e-Bay, Netflix), knowledge sharing on open Web sites (e.g., Wikipedia),
image labeling for computer vision (e.g., ESPGame), and visualization creation (e.g., ManyEyes).
The underlying theme shared by these systems is that they use information provided by many
users to solve problems that would be difficult otherwise. We apply a similar concept to pipeline
creation: pipelines created by many users enable the creation of visualizations by consensus. For
the user, VisComplete acts as an auto-complete mechanism for pipelines, suggesting modules and
connections in a manner similar to a Web browser suggesting URLs. The completions are presented
graphically in a way that allows the user to easily explore and accept suggestions or disregard them
and continue working as they were. Figure 3.1 shows an example of VisComplete incorporated
into a visual programming interface and Figure 3.2 shows some example completions for a single
module.

We propose a recommendation system that leverages information in a collection of pipelines
to provide advice to users of visualization systems and aid them in the construction of pipelines.
By modeling pipelines as graphs, we develop an algorithm for predicting likely completions that
searches for common subgraphs in the collection. We also present an interface that displays the
recommended completions in an intuitive way. Our preliminary experiments show that VisComplete
has the potential to reduce the effort and time required to construct visualizations. We found that
the suggestions derived by VisComplete could have reduced the number of operations performed by
users to construct pipelines by an average of over 50%. Note that although in this chapter we focus
on the use of VisComplete for visualization pipelines, the techniques we present can be applied to

general workflows.
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The rest of this chapter is organized as follows. In Section 3.2, we discuss related work.
In Section 3.3, we present the underlying formalism for generating pipeline suggestions, and in
Section 3.4, we describe a practical implementation that has been integrated into the VisTrails
system [153]. We then detail the use cases we envision in Section 3.5, report our experiments
and results in Section 3.6, and provide a discussion of our algorithm in Section 3.7. We conclude in

Section 3.8, where we outline directions for future work.

3.2 Related Work

Visualization systems have been successfully used to bring powerful visualization techniques to
a wide audience. Seminal workflow-based visualization systems, such as AVS Explorer [154], Iris
Explorer [111], and Visualization Data Explorer [71], have paved the way for more recent systems
designed using an object-oriented approach such as SciRun [114] for computational steering and
the Visualization Toolkit (VTK) [83] for visualization. Systems that incorporate standard point-
and-click interfaces and operate on data at a larger scale, such as Vislt [30] and ParaView [82],
still use workflows as their underlying execution engine. Development in workflow systems for
visualization is ongoing, as seen in projects such as MeVisLab [102] for medical visualization and
VisTrails [153] for incorporating existing visualization libraries with other tools in a provenance
capturing framework. Our completion strategy can be combined with and enhance workflow and
workflow-based visualization systems.

Recommendation systems have been used in different settings. Like VisComplete, these are
based on methods that predict users’ actions based solely on the history of their previous interac-
tions [68]. Examples include Unix command-line prediction [87], prediction of Web requests [50,
112], and autocompletion systems such as IntelliSense [103]. Senay and Ignatius have proposed
incorporating expert knowledge into a set of rules that allow automated suggestions for visualization
construction [132], while Gilson et al. incorporate RDF-based ontologies into an information
visualization tool [55]. However, these approaches necessarily require an expert that can encode
the necessary knowledge into a rule set or an ontology.

Fu et al. [50] applied association rule mining [3] to analyze Web navigation logs and discover
pages that co-occur with high frequency in navigation paths followed by different users. This
information is then used to suggest potentially interesting pages to users. VisComplete also derives
predictions based on user-derived data and does so in an automated fashion, without the need for
explicit user feedback. However, the data it considers are fundamentally different from Web logs:
VisComplete bases its predictions on a collection of graphs and it leverages the graph structure to
make these predictions. Because association rule mining computes rules over sets of elements, it

does not capture relationships (other than co-occurrence) amongst these elements.
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In graphics and visualization, recommendation systems have been proposed to simplify the
creation of images and visualizations. Design Galleries [97] were introduced to allow users to
explore the space of rendering parameters by suggesting a set of automatically generated thumb-
nails. Igarashi and Hughes [72] proposed a system for creating 3D line drawings that uses rules
to suggest possible completions of 3D objects. Suggestions have also been used for view point
selection in volume rendering. Bordoloi and Shen [158] and Takahashi et al. [143] present methods
that analyze the volume from various view points to suggest the view that best shows the features
within the volume. Like these systems, we provide the user with prioritized suggestions that the
user may choose to utilize. However, our suggestions are data-driven and based on examples of
previous interactions.

An emerging trend in image processing is to enhance images based on a database of existing
images. Hays and Efros [61] recently presented a system for filling in missing regions of an
image by searching a database for similar images. Along similar lines, Lalonde ef al. [90] recently
introduced Photo Clip Art, a method for intelligently inserting clip art objects from a database to
an existing image. Properties of the objects are learned from the database so that they may be
sized and oriented automatically, depending on where they are inserted into the image. The use
of databases for completion has also been used for 3D modeling. Tsang et al. [151] proposed
a modeling technique that utilizes previously created geometry stored in a database of shapes to
suggest completions of objects. Like these methods, our completions are computed by learning from
a database to find similarities. But instead of images, our technique relies on workflow specifications
to derive predictions.

Another important trend is that of social visualization. Web-based systems such as VisPortal [19,
76] provide the means for collaborative visualization from disjoint locations. Web sites such as
Sens.us [63], Swivel [141], and ManyEyes [157] allow many users to create, share, and discuss
visualizations. One key feature of these systems is that they leverage the knowledge of a large
group of people to effectively understand disparate data. Similarly, VisComplete uses a collection

of pipelines possibly created by many users to derive suggestions.

3.3 Generating Data-driven Suggestions
VisComplete suggests partial completions (i.e., a set of structural changes) for pipelines as they
are being created by a user. These suggestions are derived using structural information obtained
from a collection G of already-completed pipelines.
Pipelines are specified as graphs, where nodes represent modules (or processes) and edges
determine how data flows through the modules. More formally, a pipeline specification is a directed

acyclic graph G(M, C'), where M consists of a set of modules and C'is a set of connections between
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modules in M. A module is a complex object which contains a set of input and output ports through
which data flows in and out of the module. A connection between two modules m, and m; connects

an output port of m, to an input port of my,.

3.3.1 Problem Definition

The problem of deriving pipeline completions can be defined as follows. Given a partial graph
G, we wish to find a set of completions C'(G) that reflect the structures that exist in a collection of
completed graphs. A completion of G, G, is a supergraph of G.

Our solution to this problem consists of two main steps. First, we preprocess the collection of
pipelines G and create G, a compact representation of G that summarizes relationships between
common structures (i.e., sequences of modules) in the collection (Section 3.3.2). Given a partial
pipeline p, completions are generated by querying G, to identify modules and connections that

have been used in conjunction with p in the collection (Section 3.3.3).

3.3.2 Mining Pipelines

To derive completions, we need to identify graph fragments that co-occur in the collection of
pipelines G. Intuitively, if a certain fragment always appears connected to a second fragment in our
collection, we ought to predict one of those fragments when we see the other.

Because we are dealing with directed acyclic graphs, we can identify potential completions for
a vertex v in a pipeline by associating subgraphs downstream from v with those that are upstream.
A subgraph S is downstream (upstream) of a vertex v if for every v € S, there exists a path
from v to v’ (v’ to v). In many cases where we wish to complete a graph, we will know either
the downstream or upstream structure and wish to complete the opposite direction. Note that this
problem is symmetric: we can change one problem to the other by simply reversing the direction of
the edges.

However, due to the (very) large number of possible subgraphs in G, generating predictions
based on subgraphs can be prohibitively expensive. Thus, instead of subgraphs, we use paths, i.e.,
a linear sequence of connected modules. Specifically, we compute the frequencies for each path in
G. Completions are then determined by finding which path extensions are likely given the existing
paths.

To efficiently derive completions from a collection of pipelines G, we begin by generating a
summary of all paths contained in the pipelines. Because completions are derived for a specific
vertex v in a partial pipeline (we call this vertex the completion anchor), we extract all possible
paths that end or begin with v and associate them with the vertices that are directly connected

downstream or upstream of v. Note that this leads to many fewer entries than the alternative of
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extracting all possible subgraph pairs. And as we discuss in Section 3.6, paths are effective and lead
to good predictions.

More concretely, we extract all possible paths of length [V, and split them into a path of length
N — 1 and a single vertex. Note that we do this in both forward and reverse directions with respect
to the directed edges. This allows us to offer completions for pipeline pieces when they are built
top-down and bottom-up. The path summary G, is stored as a set of (path, vertex) pairs sorted by
the number of occurrences in the database and indexed by the last vertex of the path (the anchor).
Since predictions begin at the anchor vertex, indexing the path summary by this vertex leads to
faster access to the predictions.

As an example of the path summary generation, consider the graph shown in Figure 3.3. We
have the following upstream paths ending with D: A - C - D, B - C — D, C — D, and
D. In addition, we also have the following downstream vertices: F and F'. The set of correlations
between the upstream paths and downstream vertices is shown in Figure 3.3. As we compute these
correlations for all starting vertices over all graphs, some paths will have higher frequencies than
others. The frequency (or support) for the paths is used for ranking purposes: predictions derived
from paths with higher frequency are ranked higher.

Besides paths, we also extract additional information that aid in the construction of completions.
Because we wish to predict full pipeline structures, not just paths, we compute statistics for the in-
and out-degrees of each vertex type. This information is important in determining where to extend
a completion at each iteration (see Figure 3.4). We also extract the frequency of connection types
for each pair of modules. Since two modules can be connected through different pairs of ports, this

information allows us to predict the most frequent connection type.

path vertex

0 (oD
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Figure 3.3: Deriving a path summary for the vertex D.
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3.3.3 Generating Predictions
Predicting a completion given the path summary and an anchor module v is simple: given the
set of paths associated with v, we identify the vertices that are most likely to follow these paths. As
shown in Algorithm 1, we iteratively develop our list of predictions by adding new vertices using

this criteria.

Algorithm 1: Generate Predictions
Input: A set of paths P
Output: A set of workflow completions P
GENERATEPREDICTIONS(P)
(1) possibles < FIRSTPREDICTION(P)

@ Pl

(3)  while |possibles| > 0

4) do p «— REMOVEFIRST(possibles)

5) newPossibles < REFINE(p)

(6) if |[newPossibles| = 0

(7 then? — P +p

(8) else possibles < possibles + newPossibles

At each step, we refine existing predictions by generating new predictions that add a new vertex
based on the path summary information. Note that because there can be more than one possible new
vertex, we may add more than one new prediction for each existing prediction. Figure 3.4 illustrates
two steps in the prediction process.

To initialize the list of predictions, we use the specified anchor modules (provided as input). At
this point, each prediction is simply a base prediction that describes the anchor modules and possibly
how they connect to the pipeline. After initialization, we iteratively refine the list of predictions by
adding to each suggestion. Because there are a large number of predictions, we need some criteria
to order them so that users can easily locate useful results. We introduce confidence to measure the
goodness of the predictions.

Given the set of upstream (or downstream depending on which direction we are currently
predicting) paths, the confidence of a single vertex ¢(v) is the measure of how likely that vertex
is, given the upstream paths. To compute the confidence of a single vertex, we need to take into
account the information given by all upstream paths. For this reason, the values in G, are not
normalized; we use the exact counts. Then, as illustrated by Figure 3.5, we combine the counts
from each path. This means we do not need any weighting based on the frequency of paths; the

formula takes this into account automatically. Specifically,

() = DPesmanty) (v | P)
ZPEupstream(v) COWU(P)
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Then, the confidence of a graph G is the product of the confidences of each of its vertices:

eo(G) =[] el)

veG

While each vertex confidence is not entirely independent, this measure gives a reasonable approx-
imation for the total confidence of the graph. Because we perform our predictions iteratively, we
calculate the confidence of the new prediction p; ;1 as the product of the confidence of the old

prediction p; and the confidence of the new vertex v:

c(pit1) = c(pi) - ¢(v)

For computational stability, our implementation uses log-confidences so the products are actually
sums.

Because we wish to derive predictions that are not just paths, our refinement step begins by
identifying the vertex in the current prediction from which we wish to extend our prediction. Recall
that we computed the average in- and out-degree for each vertex type in the mining step. Then, for
each vertex, we can compute the difference between the average degree for its type and its current
degree for the current prediction direction. We choose to extend completions at vertices where the
current degree is much smaller than the average degree. We also incorporate this measure into our

vertex confidence so that predictions that contain vertices with too many edges are ranked lower:
ci(v) = c(v) + degree-difference(v)

We stop iteratively refining our predictions after a given number of steps or when no new
predictions are generated. At this point, we sort all of the suggestions by confidence and return
them. If we have too many suggestions, we can choose to prune our set of predictions at each step

by eliminating those which fall below a certain threshold.

3.3.4 Biasing the Predictions

The prediction mechanism described above relies primarily on the frequency of paths to rank
the predictions. There are, however, other factors that can be used to influence the ranking. For
example, if a user has been working on volume rendering pipelines, completions that emphasize
modules related to that technique could be ranked higher than those dealing with other techniques.
In addition, some users will prefer certain completions over others because they more closely
mirror their own work or their own pipeline structures. Again, it makes sense to bias completions
toward user preferences. We can adapt our algorithm to include such bias by incorporating a
weighting factor in the confidence computation. Specifically, we adjust our counts by weighting
the contribution of each path according to a pipeline importance factor determined by a user’s

preferences.
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3.4 Implementation
Our implementation is split into three specific steps: determining when completion should be
invoked, computing the set of possible completions, and presenting these suggestions to the user.
Computing the possible completions requires the machinery developed in the previous section. The
other steps are essential to make the approach usable. The interface, in particular, plays a significant
role in allowing users to make use of suggestions while also being able to quickly dismiss them

when they are not desired.

3.4.1 Triggering a Completion

We want to provide an environment where suggestions are offered automatically but do not
interfere with a user’s normal work patterns. There are two circumstances in pipeline creation
where it makes sense to automatically trigger a completion: when a user adds a new module and
when a user adds a new connection. In each of these cases, we are given new information about the
pipeline structure that can be used to narrow down possible completions. Because users may also
wish to invoke completion without modifying the pipeline, we also provide an explicit command to
start the completion process.

In each of the triggering situations, we begin the suggestion process by identifying the modules
that serve as anchors for the completions. For new connections, we use both of the newly connected
modules, and for a user-requested completion, we use the selected module(s). However, when a user
adds a new module, it is not connected to the rest of the existing pipeline. Thus, it can be difficult to
offer meaningful suggestions since we have no surrounding structure to leverage. We address this
issue by first finding the most probable connection to the existing pipeline, and then continue with
the completion process.

Finding the initial connection for an added module may be difficult when there are multiple
modules in the existing pipeline than can be connected to the new module. However, because visual
programming interfaces allow users to drag and place new modules in the pipeline, we can use the
initial position of the module to help infer a likely connection. To accomplish this, we compute the
user’s layout direction based on the existing pipeline, and locate the module that is nearest to the

new module and can be connected to it.

3.4.2 Computing the Suggestions
As outlined in the previous section, we compute possible completions that emanate from a set of
anchor modules in the existing pipeline using path summaries derived from a database of pipelines,
and rank them by their confidence values. Depending on the anchor modules, a very large set of

completions can be derived and a user is unlikely to examine a long list of suggestions. Therefore,
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we prune our predictions to avoid rare cases. This both speeds up computation and reduces the
likelihood that we provide meaningless suggestions to the user. Specifically, because our predictions
are refined iteratively, we prune a prediction if its confidence is significantly lower than its parent’s
confidence. Currently, this is implemented as a constant threshold, but we can use knowledge of the
current distribution or iteration to improve our pruning.

VisComplete provides the user with suggestions that assist in the creation of the pipeline struc-
ture. Parameters are also essential components in visualizations, but because the choice of pa-
rameters is frequently data-dependent, we do not integrate parameter selection with our technique.
Instead, we focus on helping users complete pipelines, and direct them to existing techniques [17,
77,78, 96] to explore the parameter space. Note that it might be beneficial to extend VisComplete
to identify commonly used parameters that a user might consider exploring, but we leave this for

future work.

3.4.3 The Suggestion Interface

In concert with our goal of unobtrusiveness, we provide an intuitive and efficient interface
that enables users to explore the space of possible completions. Auto-complete interfaces for
text generally show a set of possible completions in a one-dimensional list that is refined as the
user types. For pipelines, this task is more difficult because it is not feasible to show multiple
completions at once, as this would result in visual clutter. The complexity of deriving the completion
is also greater. For this reason, our interface is two-dimensional: users can select from a list of full
completions and then increase or decrease the extent of the completion.

Current text completion interfaces defer to the user by showing completions but allowing the
user to continue to type if he does not wish to use the completions. We strive for similar behavior
by automatically showing a completion along with a simple navigation panel when a completion is
triggered. The user can choose to interact with the completion interface or disregard it completely
by continuing to work, which will cause the completion interface to automatically disappear. The
navigation interface contains a set of arrows for selecting different completions (left and right) and
depths of the current completion (up and down). In addition, the rank of the current completion is
displayed to assist in the navigation and accept and cancel buttons are provided (see Figure 3.1(c)).
All of these completion actions, along with the ability to start a new completion with a selected
module, are also available in a menu and as shortcut keys.

The suggested completions appear in the interface as semitransparent modules and connections,
so that they are easy to distinguish from the existing pipeline components. The suggested modules
are also arranged in an intuitive way using a set of simple heuristics that respect the layout of the

current pipeline. The first new suggested module is always placed near the anchor module. The
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offset of the new module from the anchor module is determined by averaging the direction and
distance of each module in the existing pipeline. The offset for each additional suggested module
is calculated by applying this same rule to the module to which it is appended. Branches in the
suggested completion are simply offset by a constant factor. These heuristics keep the spacing
uniform and can handle upstream or downstream completions whether pipelines are built top-down

or left-right.

3.5 Use Cases

We envision VisComplete being used in different ways to simplify the task of pipeline construc-
tion. In what follows, we discuss use cases which consider different types of tasks and different
user experience levels. The types of tasks performed by a user can range from the very repetitive
to the unique. Obviously, if the user performs tasks that are very similar to those in the database of
pipelines, the completions that are suggested are very full—almost the entire pipeline can be created
using one or two modules (see Figure 3.2 for examples). On the other hand, if the task that is being
performed is not often repeated and nothing similar in the database can be found, VisComplete will
only be able to assist with smaller portions of the pipeline at a time. This can still aid the user by
showing the possible directions to proceed with pipeline construction, albeit at a smaller scale.

The experience level of users that could take advantage of VisComplete also varies. For a
novice user, VisComplete replaces the process of searching for and tweaking an example that will
perform their desired visualization. For example, a user who is new to VTK and desires to compute
an isosurface of a volume might consult documentation to determine that a “vtkContourFilter”
module is necessary and then search online for an example pipeline using this module. After
downloading the example, they may be able to manipulate it to produce the desired visualization.
Using VisComplete, this process is simplified— the user needs only to start the pipeline by adding
a “vtkContourFilter” module and their pipeline will be constructed for them (see Figure 3.1). Mul-
tiple possible completions can easily be explored and unlike examples downloaded from the Web,
VisComplete can customize the suggestions by providing completions that more closely reflect a
specific user’s previous or more current work.

For experienced users, VisComplete still offers substantial benefits. Because experts may not
wish to see full pipelines as completions, the default depth of the completions can be adjusted
as a preference so that only minor modifications are suggested at each step. Thus, at the smallest
completion scale, a user can leverage just the initial connection completion to automatically connect
new modules to their pipeline. The user could also choose to ignore suggested completions as they
add modules until the pipeline is specific enough to shrink the number of suggestions. Unlike the

novice user who may iterate through many suggestions at each step, the experienced user will likely
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choose to ignore the suggestions until they provide the desired completion on the first try.

3.6 Evaluation
3.6.1 Data and Validation Process

To evaluate the effectiveness of our completion technique, we used a set containing 2875 visual-
ization pipelines along with logs of the actions used to construct each pipeline. These pipelines were
constructed by 30 students during a scientific visualization course.! Throughout the semester, the
students were assigned five different tasks and carried them out using the VisTrails system, which
captures detailed provenance of the pipeline design process: the series of the actions a user followed
to create and refine a set of related pipelines [48].

The first four tasks were straightforward and required little experimentation, but the final task
was open-ended; users were given a dataset without any restrictions on the use of available vi-
sualization techniques. As these users learned about various techniques over the semester, their
proficiency in the area of visualization presumably progressed from a novice level toward the expert
level.

To predict the performance gains VisComplete might attain, we created user models based on
the provenance logs captured by VisTrails. User modeling has been used in the HCI community
for many years [23, 24], and we employed a low-level model for our evaluation. Specifically, we
assumed that at each step of the pipeline construction process, a VisComplete user would either
modify the pipeline according to the current action from the log or select a completion that adds a
part of the pipeline they would eventually need. We assumed that a user would examine at most ten
completions and could select a subgraph of any of these suggestions.

Because VisComplete requires a collection of pipelines to derive suggestions, we divided our
dataset into training and test sets. The training sets were used to construct the path summaries while
the test sets were used with the user models to measure performance.

We note that this model presumes a user’s foreknowledge of the completed pipeline, and this
certainly is not always the case. Still, we believe this simple model approximates user behavior
well enough to gauge performance. We also assumed a greedy approach in our model; a user would
always take the largest completion that matched their final pipeline. Note that this might not always
yield the best performance because the quality of the suggestions may improve as the pipeline is

further specified.

Yhttp://www.vistrails.org/index.php/SciVisFall2007
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3.6.2 Results

Figure 3.6 shows one of the test pipelines with the components that VisComplete could have
completed highlighted along with its resulting visualization. To evaluate the situation where a set of
users create pipelines that all tend to follow a similar template, we performed a leave-one-out test for
each task in our dataset. Figure 3.7 shows that our suggestion algorithm could have eliminated over
50%, on average, of the pipeline construction operations for each task. Because Task 1 was more
structured than the other tasks, it achieved a higher percentage of reduction. Because Task 4 was
more open-ended, although the average percentage is also high, the results show a wider variation
(between 30% and 75%). This indicates that the completion interface can be faster and more
intuitive than manually choosing a template.

Because it is much more likely that our collection will contain pipelines from a variety of tasks,
we also evaluated two cases that examined the type of knowledge captured by the pipelines. Since
Task 5 was more open-ended and completed after the four other tasks, we expected that most users
would be proficient using the tool and closer to the expert user described in Section 3.5. We ran
the completion results using Tasks 1 through 4 as the training data (2250 pipelines) and Task 5 (625
pipelines) as the test data to represent a case where novice users are helping expert users, but we
also ran this test in reverse to determine if pipelines from expert users can aid beginners. Figure 3.8
shows that both tests achieved similar results; this implies that the variety of pipelines from the four
novice tasks balanced the knowledge captured in the expert pipelines.

Our testing assumed that users would examine up to ten full completions before quitting. In
reality, it is likely that users would give up even quicker. To evaluate how many predictions a user
might need to examine before finding the desired completion, we recorded the index of the chosen
completion in our tests. Figure 3.9 shows that the the chosen completion was almost always among
the first four. Note that we excluded completions that only specified the connection between the new
module and the existing pipeline because these trivial completions are possible at each prediction
index.

Our results show that VisComplete can significantly reduce the number of operations required
during pipeline construction. In addition, the completion percentages might be higher if our tech-
nique were available to the users because it would likely change user’s work patterns. For example, a
user might select a completion that contains most of the structure they require plus some extraneous
components and then delete or replace the extra pieces. Such a completion would almost certainly
save the user time but was not captured with our user model. Finally, the parameters (e.g., pruning
threshold, degree weighting) for the completion algorithms were not tuned. We plan to evaluate
these settings to possibly improve our results.

The completion examples shown in the figures of this chapter, with the exception of Figure 3.6,
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Operations Completed (Per Task)
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Figure 3.7: Box plot of the percentages of operations that could be completed per task (higher is
better). The statistics were generated for each user by taking them out of the training data.

Operations Completed (Novice vs. Expert)
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Figure 3.8: Box plot of the percentages of operations that could be completed given two types of
tasks, novice and expert. The statistics were generated by evaluating the novice tasks using the
expert tasks as training data (novice) and by evaluating the expert tasks using the novice tasks as
training data (expert).
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Average Prediction Index (Per Task)
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Figure 3.9: Box plot of the average prediction index that was used for the completions in Figure 3.7
(lower is better). These statistics provide a measure of how many suggestions the user would have
to examine before the correct one was found.

used the entire collection of pipelines to generate predictions. Figure 3.6 used only the pipelines

from Tasks 1-4.

3.7 Discussion

To our knowledge, VisComplete is the first approach for automatically suggesting pipeline com-
pletions using a database of existing pipelines. As large volumes of data continue to be generated
and stored and as analyses and visualizations grow in complexity, the creation of new content by
consensus and the ability to learn by example are essential to enable a broader use of data analysis
and visualization tools.

The major difference between our automatic pipeline completion technique and the related work
on creating pipelines by analogy [130] is that instead of using a single, known sequence of pipeline
actions, our method uses an entire database of pipelines. Thus, instead of completing a pipeline
based on a single example, VisComplete uses many examples. A second important difference is that
instead of predicting a new set of actions, our method currently predicts new structure regardless
of the ordering of the additions. This also means that VisComplete only adds to the structure while
analogies will delete from the structure as well. By incorporating more provenance information,

as in analogies, VisComplete might be able to leverage more information about the order in which
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additions to a pipeline are made. This could improve the quality of the suggested completions.

We note that there will be situations where data about the types of completions that should occur
are not available. Also, some suggestions might not correspond to the user’s desires. If there are
no completions, VisComplete will not derive any suggestions. If there are completions that do not
help, the user can dismiss them by either continuing their normal work or by explicitly canceling
completion. Currently, we determine the completions in an offline step (by precomputing the path
summary, Section 3.3). We could update the path summary as new pipelines are added to the
repository, incorporating new pipelines as they are created. In addition, we could learn from user
feedback by, for example, allowing users to remove suggestions that they do not want to see again.
Completions could be further refined by assigning greater weight to those that more closely mirror
the current user’s actions, even if they are not the most likely in the database.

One important aspect of our technique is that it leverages the visual programming environment
available in many visualization systems. In fact, it would be difficult to offer suggestions without
a visual environment in which to display the structural changes. In addition, the information for
the completions comes from the fact that we have structural pipelines from previous work. Without
an interface to construct pipeline structures, it would be more difficult to process the data used
to generate completions. However, we should note that turnkey applications that are based on
workflow systems, such as ParaView [82], may also be able to take advantage of completions in
a more limited way by providing a more intelligent set of default settings for the user during their

explorations.

3.8 Summary

We have described VisComplete, a new method for aiding in the design of visualization pipelines
that leverages a database of existing pipelines. We have demonstrated that suitable pipeline frag-
ments can be computed from the database and used to complete new pipelines in real-time. Fur-
thermore, we have shown how these completions can be presented to the user in an intuitive way
that can potentially reduce the time required to create pipelines. Our results indicate that substantial
effort can be saved using this method for both novice and expert users.

There are several areas of future work that we would like to pursue. As described above, we
would like to update the database of pipelines incrementally, thus allowing the completions to be
refined based on current information and feedback from the user. We plan to refine the quality of the
results by formally investigating the confidence measure and its parameters. We would also like to
explore suggesting finished pipelines from the database in addition to the constructed completions
we currently generate. For finished pipelines, we could display not only the completed pipeline

structure but also a thumbnail of the result from an execution of that pipeline.



CHAPTER 4

EFFICIENT EVALUATION OF EXPLORATORY
QUERIES OVER PROVENANCE
COLLECTIONS

4.1 Introduction

Increasingly, scientific exploration requires advanced computing capabilities to help researchers
obtain insights into large datasets. The processes required to analyze and visualize data are often
defined as workflows, which are iteratively refined as researchers formulate and test hypotheses.
To manage these complex analyses, including the intermediate and final data products, workflow
systems have been developed and track the provenance of the data products as well as of the
workflow evolution [39, 47].

As the volume of provenance captured by these systems grows and is shared among users, new
opportunities are created for knowledge reuse. Different kinds of queries can be posed against
provenance [121]. Since workflow provenance can be represented as a graph [39], queries that
seek the detailed derivation history of a given data product require that the provenance graph be
recursively traversed (backwards), starting from the node that represents the data product. Another
useful class of queries involve exploring the structure of the workflows that derive the data products.
The workflows (and workflow traces) shared in provenance repositories expose users to examples
of (sophisticated) uses of tools and libraries [33, 110]. By querying this information, users can
leverage the collective wisdom it encodes. Not only can users find workflows that are relevant
for a particular task and learn to assemble new workflows by example [18, 130, 131], but recom-
mendation systems can be built to leverage this information to guide users in the workflow design
process [85]. This is especially important given the fact that, despite the growing popularity of
workflow systems, constructing workflows is often a challenging and time-consuming task. Detailed
knowledge of the underlying computational components is necessary to determine what modules
and connections ought to be added to obtain a desired result.

While there has been work on speeding up recursive queries over provenance graphs [65],
the problem of evaluating structural queries has been largely overlooked. In this paper, we study

the problem of efficiently evaluating structural queries that are exploratory in nature. Exploratory
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queries are naturally expressed as simple graphs that may contain wildcards in constrast to standard
containment queries like the one shown in Figure 4.1. For example, Figure 4.2 shows an exploratory
query posed by a scientist interested in habitat modeling reports that were generated using the
RandomForest model with a climate predictor layer. This query can be quickly defined without
the need to understand exactly how the different components are connected. Queries with wildcards
are useful to search for workflows (or subworkflows) that contain a given structural pattern, but
can also be used and to identify possible directions for completing an unfinished workflow. For
example, when a workflow designer is faced with a known input and desired output, it is helpful
to identify different subworkflows that can connect the source and sink nodes of the the graph (see
Section 4.5).

Although there has been substantial work on graph indexing techniques to speed up the evalu-
ation of fully-specified structural queries [133, 166, 168], the same cannot be said of the problem
of efficiently evaluating exploratory queries: Existing approaches have focused on connected-graph
queries, not queries that are disconnected or contain wildcards. In addition, while the filtering
step in these indexing schemes significantly reduces the number of required (and costly) subgraph
isomorphism checks, vague queries often have a large number of answers, all of which must be
verified through subgraph isomorphism. FG-Index introduced a verification-free indexing scheme
to address this issue [29], but this comes at a cost: when the number of frequent subgraphs is large,
the index may become prohibitively large.

We propose a flexible, two-level framework to support exploratory queries over provenance
collections. Building on graph indexing techniques, we add 2-component frequent subgraphs to the
index to support vague queries like those with wildcards and summary graphs to limit the time spent
verifying candidate graphs after the filtering step. By augmenting the collection with summary
graphs before constructing a discriminative index, we can process queries by verifying summary
graphs first, reducing the total number of subgraph isomorphism checks required. We implemented
a prototype mechanism and evaluated it on two large collections of provenance information.

This chapter is organized as follows. We review workflow definitions as well as graph termi-
nology in Section 4.2 before introducing our indexing framework in Section 4.3. In Section 4.4,
we detail our implementation, and Section 4.5 describes applying the framework to workflow
completions. We evaluate our framework using provenance data from visualization and Yahoo!
Pipes workflows in Section 4.6. We discuss extensions and limitations in Section 4.7 and review

related work in Section 4.8 before concluding in Section 4.9.
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4.2 Background

Before presenting our indexing framework for exploratory queries over provenance collections,
we will review terminology and definitions. Specifically, we wish to abstract these constructs to
graphs in order to leverage and extend existing graph indexing techniques. We first review the
correspondence between provenance and workflows, then define queries over workflow collections,

and finally abstract this to graphs.

4.2.1 Provenance and Workflows

Provenance information is represented as a directed acyclic graph (DAG) encoding dependen-
cies among computational steps. Similarly, workflows can also be represented as a graph specifying
the order of computation, and most scientific workflows are dataflows which are also DAGs. Fur-
thermore, when provenance is generated during the execution of a workflow, the provenance graph
directly reflects the structure of the workflow. Thus, a query over provenance graphs (or parts
of that query) can often be translated into a query over workflows. In many cases, the workflow
specification is shared among several provenance traces derived from multiple executions of similar
workflows. In addition, the workflow graph can be much more compact than the provenance graph,
especially for workflows that include looping constructs. Thus, while our indexing framework can
be directly applied to provenance graphs, it is usually more efficient to index the workflows behind
the provenance graphs.

A workflow is a set of steps usually associated with some partial order. The steps followed can
be controlled by their order, a set of logical constraints, or dictated by human input. A dataflow is
a special kind of workflow that is a DAG.! In a dataflow, each node performs a computation and
edges define the flow of data from the outputs of one node to the inputs of another [92]. While
general workflows may contain cycles and explicit control constructs [1], their provenance can be
represented as DAG—with loops unrolled and branches selected.

Formally, a workflow w is a set of computational modules linked by connections that define the
flow of data from one module to another. This is often represented as a DAG whose vertices are
modules and edges are connections. Each vertex and edge is distinguished with the type of module
or connection it represents. For example, the center module in Figure 4.3 has the type RunModels,
and the type of connection from it to the BuildMDS module is defined by the ports used to connect

the modules.

!The dataflow model is the most prevalent model supported by scientific workflow systems.
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Figure 4.3: A representative workflow from a collection of workflows used for habitat modeling.

4.2.2 Queries Over Provenance Collections

A provenance collection consists of a set of provenance records. The collection may contain
records generated from multiple executions of a single workflow, from a variety of workflows
created as part of a collaborative scientific project, or from an entire database of workflows built
by members of a scientific research group over a period of many years. Note that large, distributed
collections implicitly contain a wealth of scientific information, cataloging different strategies,
experimental approaches, and results. As described earlier, because provenance records often
contain (or link to) the specifications of the workflows that were run, these collections often contain
an embedded collection of workflows.

Some queries can be posed against a single workflow, others involve the differences between
two workflows, but many are best answered by examining an entire collection. If a user wishes to
know exactly which predictors in the workflow shown in Figure 4.3 affect the maps generated in the
report, they need only analyze that single workflow. Another important type of query is identifying
differences between pairs of workflows [15]. However, users are often interested in searching a

collection of workflows to find those that exhibit specific behaviors. For example, a user may wish
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to locate all workflows that run using a RandomForest module, a climate predictor, and that
generate a report. We focus on this type of query. More formally, given a workflow collection W
and a query ¢, we wish to find the subset YW, © W such that every w € WV, satisfies q.

Like others [18, 85], we posit that a query can be represented as a workflow. The most basic
type of workflow query is containment. Formally, a workflow containment query q is a workflow
specification, and a workflow w € W satisfies ¢ if there exists an injective function f that maps
modules in ¢ to modules in w such that

o type(m) = type(f(m)), m € g, f(m) € w, and

o c(mi1,mg) € ¢ = 3c(f(ma), f(m2)) € w and type(c) = type(c’)
where ¢(m, m2) is a connection from module 1 to module ms. Thus, the query is satisfied when a
workflow contains the query workflow. This type of query can be used when looking for a particular
region of functionality; for example, searching for all workflows that run a predictor and resamples
its results.’

The problem with these containment queries is that the user must know exactly what to look
for—the exact module types and connectivity. We suggest a more powerful form of workflow
queries where the query allows wildcards for module or connection types. This relaxation allow
queries to specify existence of paths in addition to direct connections, and existence of a module
rather than a specific module type. More formally, an exploratory workflow query is a partial
workflow ¢, a workflow where modules and connections can have the wildcard type * meaning
any type of module or connectivity is allowed. Then, a workflow w satisfies the exploratory query
q if there exists an injective function f such that

o type(m) =  or type(m) = type(f(m))

e type(c(my,mz)) = * = Ipath(f(m1), f(m2)) € w

o type(c) # * = type(c) = type(f(c))
where f(c) = f(e(my,m2)) = /(f(m1), f(m2)). Note that exploratory queries offer far greater
flexibility; users can query a collection without worrying about steps that are not important to their
search. For example, a user may wish to find all workflows that use a RandomForest module
and eventually output an HTML report that includes information from that model; whether or not
BuildMap is used is not relevant to the user. In an exploratory query, wildcards can be used to
indicate that a path must connect the two modules but with no restrictions on what modules that
path connects. See Figures 4.1 and 4.2 for an example of the difference between containment and

exploratory queries.

2Note that workflow queries may also include information about parameters: these can also be specified as part of the
workflow.
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4.2.3 Graphs and Isomorphisms

Because we wish to make use of existing graph indexing approaches, we propose a translation
from workflow queries to queries over collections of graphs. Workflows can be naturally represented
as labeled graphs whose vertices and edges are labeled by the module or connection type. Formally,
a workflow w can be represented by the labeled graph G(V, E') where each module in w is repre-
sented by a vertex in V' and each connection is an edge in E. In addition, the labeling functions,
Ly (v) and Lg(e) are defined as the types of the modules and connections, respectively. Then, a
basic workflow query can be immediately translated into a subgraph isomorphism problem, and
exploratory workflow queries can be translated to an extension of subgraph isomorphism involving
wildcards.

Two graphs G and H are isomorphic if there exists a bijective function f : V(G) — V(H)
such that for every edge (v;,v;) € E(G), there exists an edge (f(v;), f(v;)) € E(H) and vice
versa. If G and H are labeled graphs, then f must also preserve labels: Ly (v;) = Ly (f(v;)) and
Lg((vi,v;)) = Le((f(vi), f(vj))). If we relax f to be an injective function, then G is subgraph
isomorphic to H, G € H, again with the same restrictions for labeled graphs.

Much of the existing graph indexing work has focused on speeding up graph containment
queries: given a query graph (), find all graphs G in the collection for which Q < G. This type of
query is analogous to our workflow containment query, and thus these approaches do not support
exploratory queries with wildcards. To extend these techniques, we must first extend the definition
of subgraph isomorphism to incorporate wildcards.

A wildcard graph G* is a labeled graph where any edge can have a special * label that denotes
a path (not necessarily a single connection) between two vertices. Then G* is wildcard subgraph
isomorphicto H if G*—{e | Lg(e) = *,e € E(G*)} (G* excluding all wildcard edges) is subgraph
isomorphic to H and for each wildcard edge (v;, v;), there exists a path from f(v;) to f(v;) such
that no internal vertex in this path is in f(V(G*)). Note that the restriction on the path ensures that
a query graph where vertices are specified and not identified as path of a path cannot be used in a

wildcard path.

4.3 Indexing Framework
With the abstraction of provenance and workflow queries over provenance collections to graph
queries, we will propose extensions to existing graph indexing frameworks to support exploratory
queries. The inherent graph structure in provenance queries means they are subject to theoreti-
cal constraints on subgraph isomorphism which is known to be NP-Complete [31]. Thus, doing
a subgraph isomorphism check for each graph in the collection will not scale. We propose a

two-level framework that extends existing graph indexing techniques by incorporating summary
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graphs that capture verification-free subgraph isomorphisms and discriminative features defined
over the extended provenance collection. Our goal is to reduce the number of total subgraph
isomorphism checks while at the same time allowing less-specific, and thus more exploratory,
queries. The framework is rooted in the observation that even if we cannot resolve a query without
any verification as in [29], we can reduce the number of subgraph isomorphism computations by

finding a subset of the result set with limited verification.

4.3.1 Standard Graph Indexing

Standard graph indexing seeks to make subgraph containment queries over collections of graphs
more efficient by limiting the number of subgraph isomorphism checks. Indexing strategies have
primarily fallen into two categories: feature-based methods (see e.g., [133, 166, 168]) and hierar-
chical organization [62, 162]. We focus on feature-based methods because for exploratory searches,
users are often querying for specific (and often disconnected) features.

Feature-based graph indexing identifies features that aid in distinguishing graphs in a collection
from each other. Each feature is linked to the graphs that contain it, and all features are organized
in a hierarchy according to feature size. Queries are evaluated by identifying a set of features
contained by the query and computing the intersection of the graphs associated with each feature.
A graph must contain the same set of features as the query, but this is not sufficient as the features
do not necessarily uniquely identify a graph. Thus, we must check whether each candidate graph
is subgraph-isomorphic to the query. The fewer isomorphisms we compute, the faster the query

execution. Thus, we wish to find a set of features that minimizes the size of the candidate set.

4.3.1.1 Identifying Features

The first ingredient in graph indexing is identifying features that will help to differentiate the
graphs in our collection. To minimize the size of the index, we wish to find a set of features that
serves to filter the collection into small subsets of graphs such that the features are not redundant.
Formally, given a graph collection G, a subgraph H is frequent with respect to a threshold T if

|sup(H)| = T where the support of a subgraph H is
sup(H) ={G | H € Ge G}

Note that if a query graph contains a given frequent subgraph H, we can immediately exclude all
graphs in G that are not in sup(H).

For a frequent subgraph H, any subgraph of H is also frequent because any graph that contains
H must also contain all subgraphs of H. This means that there may exist a large number of frequent

subgraphs when a dataset has a large pattern that occurs frequently. More generally, when frequent
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subgraphs have similar support values, they serve to prune nearly the same set of graphs. We desire
to select a smaller set of frequent subgraphs that still provides good pruning power. This implies
that selected feature subgraphs should not significantly overlap. Given the collection G and a set of

subgraphs F, a subgraph F' is discriminative if
sup(F) » N prer prer sup(F')

Figure 4.4 shows a set of frequent subgraphs, their respective supports, and the size of the intersec-
tion of the supports of their subgraphs. Note that F5 and F3 are well indexed by Fy, F5, and Fg and

thus are not discriminative.

4.3.1.2 Index Construction and Query Processing

After identifying the discriminative features, we build an index by organizing the features into
a hierarchy to facilitate apriori pruning. Note that this hierarchy may contain features that are
not discriminative in order to simplify traversals during query processing. Because each feature is
linked to a list of graphs that contain the feature, we can easily prune our search space for each
feature in the query. A query is processed by starting with individual vertices and building features
with increasing size by traversing the hierarchical index. Once we have the maximal features from
the query, we intersect the lists of graphs associated with each of the features. The intersection of
these graph lists forms the candidate set of graphs that may satisfy the query. Because we do not
know if the candidates actually match the query, we must then verify each candidate by computing
a subgraph isomorphism. Note that because subgraph isomorphism can be costly, it is important to

have features which prune a large portion of the collection.

4.3.2 Wildcard Graph Indexing

Standard graph indexing techniques present two major issues when dealing with exploratory
provenance queries. The first is that they usually assume that queries are connected graphs which
is not necessarily the case when dealing with workflows. For example, suppose that a user wishes
to find a workflow that uses a particular data source and produces a figure in a specific output
format. In this case, the user does not care what the internals of the workflow are, so the standard
containment query does not apply. A second issue is that answering queries with a large number of
satisfying workflows may result in many subgraph isomorphism calculations. A vague query like
one to find a common subworkflow might produce many candidates after filtering, all of which need
to be verified. We introduce 2-component frequent subgraphs and summary graphs to address these

issues.
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DISCRIMINATIVE FEATURES

|sup(£1)| = 10, | sup(F)| = 32, [sup(F3)| = 35,
|sup(Fy)| = 70, |sup(F5)| = 54, | sup(Fp)| = 49
| sup(Fy) nsup(Fg)| = 36, | sup(Fy) nsup(Fs)| = 39,
| sup(F2) nsup(F3)| = 28

Figure 4.4: Because the graphs identified by a feature may also be identified by subgraphs of that
feature, we choose discriminative features to be those whose subgraphs collectively identify many
more graphs. For example, F7 is selected because the graphs identified by the combination of F5
and Fj3is 28 » 10.

4.3.2.1 2-Component Frequent Subgraphs

Because exploratory queries frequently contain only pieces of a graph, we propose an indexing
strategy that considers disconnected frequent subgraphs. Most existing frequent subgraph mining
algorithms can be extended to also consider disconnected subgraphs. The problem with doing
so is that the number of frequent subgraphs jumps exponentially. Any frequent subgraph with n
vertices has on the order of 2" possible disconnected frequent subgraphs that are also frequent.
We can classify these disconnected subgraphs by the number of components. An m-component
subgraph is a subgraph whose vertices can be partitioned into no fewer than m sets such that there
does not exist any path from a vertex in one set to a vertex in another set. Including 2-component
subgraphs in our set of frequent subgraphs only increases the number of frequent subgraphs by a
quadratic amount. In addition, a frequent subgraph with more than n components contains O(n?)
2-component subgraphs so we still have a large number of features to help prune the search space.
Figure 4.5 shows an example where the two-component subgraph F} filters many more graphs than
F5 and F3. This usually occurs when the query identifies components as nonoverlapping, but many

of the graphs indexed by the single-component features have them overlapping.

4.3.2.2 Summary Subgraphs
While frequent subgraphs prune the search space and help quickly locate graphs that may satisfy
the query, we still need to check every graph that remains after pruning. This verification step

involves the computation of a subgraph isomorphism, and this can be even more costly when
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2-COMPONENT FEATURE

2

(5
.

Lc ) F

3

| sup(F1)| = 22, |sup(F»)| = 62,
|sup(F3)| = 57, | sup(F2) n sup(F3)| = 50

Figure 4.5: While the features F5 and F3 occur together often, they are usually disjoint as defined
by the two-component feature Fy: |sup(F})| < |sup(Fs) n sup(F3)|.

wildcards are involved. Cheng et al. proposed FG-Index as a way to eliminate the verification
step by noting that when the query is itself a frequent subgraph, the indexed graphs automatically
satisfy the query [29]. While these verification-free answers are ideal, indexing all of the frequent
subgraphs—not only discriminative ones—can lead to prohibitive index sizes.

We propose summary subgraphs as a scalable way to limit the number of verification steps.
A summary subgraph F is linked to a subset of the graph collection where each graph G is a
supergraph of F'. Then, if a summary subgraph satisfies the query, we know that all of the graphs
the summary subgraph indexes also satisfy the query. In addition, we will only include subgraphs
that do not have immediate supergraphs that index a similar number of graphs. See Figure 4.6 for
an example showing which subgraphs are selected as summary features. Formally, a subgraph F' is

a summary subgraph in a set of graphs F if for all F € F, F' 2 F:
sup(F) « sup(F’)

A summary subgraph is analogous to the J-tolerance closed frequent subgraph [29], but we use
them differently. When a query graph H is found to be a subgraph of a summary subgraph G,
we know that all of the graphs that G indexes also satisfy H. Thus, if this single verification of
H < G succeeds, we avoid verifying all of the graphs GG indexes. Note that H may satisfy other
graphs; we leave the remaining graphs to either other summary graphs or basic verification using
subgraph isomorphism. However, because mining features are required for feature-based indexing

techniques, finding summary subgraphs takes minimal computation.
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SUMMARY FEATURE

|sup(F1)| = 52, | sup(Fa)| = 62,
|sup(F3)| = 57, | sup(Fy)| = 60
| sup(F1) nsup(Fs)| = 50, | sup(F1) nsup(F3)| = 51,
|sup(£1) N sup(Fy)| = 50

Figure 4.6: Because each subgraph of a frequent subgraph is also frequent, we choose summary
features to be those whose supergraphs have much smaller frequency.

4.3.2.3 Index Construction and Query Processing

Our index is composed of both summary and discriminative features. Both summary and dis-
criminative features link to supergraphs of themselves that exist in the graph database, as illustrated
in Figure 4.7. Because we need to identify the summary subgraphs during query processing just like
any other candidate graph, our discriminative features will index to those graphs as well as those
in the graph database. Additionally, after identifying the summary subgraphs, any graph indexing
scheme can be applied to this extended graph database. Index construction begins by mining a set
of connected and 2-component frequent subgraphs. Then, we identify the summary graphs and add
them to the collection. Next, we create an index over the augmented collection; because we have
already mined features, it is more efficient to use a feature-based scheme. As described earlier,
discriminative features can be quickly extracted to index these graphs.

Query processing is similar to standard graph indexing schemes, except that we use 2-compon-
ent frequent subgraphs to better filter candidates and shortcut the verification process using summary
subgraphs. When pruning candidate graphs, we are able to use 2-component frequent subgraphs

as features. In addition, our verification step begins by checking all summary graphs first, then
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SUMMARY
FEATURES i

DISCRIMINATIVE
FEATURES

INDEX WORKFLOW DB

Figure 4.7: Our index has two tiers, the summary features which summarize frequent features and
provide verification-free answers, and the discriminative features which point to both the original
workflow database and the summary features. Note that for this illustration, many items have been
omitted from the figure; in practice, each workflow is indexed by at least one discriminative feature.

verifying graphs that remain unverified by the summary graphs.

4.3.2.4 Verification

Given the summary graphs and discriminative index, our query processing proceeds like stan-
dard graph indexing with the exception that we choose to verify summary graphs before any of the
graphs from our collection. As noted earlier, whenever a summary graph S satisfies the query graph,
we immediately know that any graph indexed by .S also satisfies the query graph. This means that
we do not have to individually verify that entire subset of graphs. Note that if S does not satisfy
the query, we cannot exclude the graphs indexed by S because summary graphs are inclusive rather
than exclusive. However, we expect that frequent graphs will be summarized, and a query that has
a candidate summary graph that does not verify will either be indexed by another summary graph

or be infrequent.

4.4 Implementation
Our implementation of the index construction, query processing, and index maintenance is
described in this section. Note that we do much of our processing by levels of the subgraph

hierarchy.
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4.4.1 Index Construction
As described earlier, there are two distinct steps in our index construction: summary graph se-
lection and constructing an index for the collection augmented with the summary graphs. Summary
graph selection requires frequent subgraph mining, and we also implement our discriminative index
using frequent subgraphs. For that reason, we mine features from the entire collection and use those
features for both steps. After mining, we choose summary graphs and construct a discriminative

subgraph hierarchy over the augmented collection. See Figure 4.8 for an overview of the process.

INPUT WORKFLOWS ALL FEATURES
1. MINE FEATURES

TR
2 g2

3. SELECT DISCRIMINATIVE
FEATURES

2. SELECT SUMMARY

‘ FEATURES

!

DISCRIMINATIVE FEATURES l
() 35[ % SUMMARY FEATURES
—
2 o 28 %
2 %5
INDEX
4. BUILD INDEX

@—»:@

Figure 4.8: The construction of our index involves feature mining, followed by the identification of
summary features, which are used to determine discriminative features and build the index.
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4.4.1.1 Mining Frequent Subgraphs

Among existing subgraph mining algorithms, we have chosen to use the open-source imple-
mentation of gSpan [164] from Jahn and Kramer [74]. Because summary graph and discriminative
feature selection involve comparing a graph against its super- or subgraphs, we maintain a directed
acyclic graph £ to manage these relationships. An immediate subgraph of a graph G is a subgraph
G’ where G’ is missing exactly one of the edges from G (it may also be missing a vertex if the edge
connects to a degree-one vertex). Then, as we mine features, we maintain links from every graph
to its immediate subgraphs in £. This will help us process graphs in levels where each level has all

graphs with a set number of edges.

4.4.1.2 Generating 2-component Frequent Subgraphs

To mine 2-component subgraphs, we can either modify an existing algorithm like gSpan [164]
or the Frequent Subgraph Miner [89] or process the set of connected frequent subgraphs and gen-
erate the 2-component subgraphs. For gSpan, the depth-first search can be amended to include a
component number so that mining will consider disconnected subgraphs [165]. However, if we
already have the set of connected frequent subgraphs, we can generate the 2-component frequent
subgraphs by examining all pairs of frequent subgraphs, and checking whether the intersection of
graphs matching both subgraphs contain them disjointly.

Given our subgraph relationship graph £, we can build 2-component frequent subgraphs (2CF-
SGs) by checking pairs of subgraphs level-by-level up from single-vertex pairs. If any pair of
subgraphs is not frequent, we need not continue to check supergraphs of that combination. Also,
note that as we compute these 2CFSGs, we will update £ to include the new subgraphs as well. The

entire process is detailed in Algorithm 2.

4.4.1.3 Selecting Summary Graphs

To select summary graphs, we follow the principles outlined in Section 4.3.2, but again work on
a level-by-level basis, in order to more easily determine whether a subgraph should be selected or
not. We maintain the set of supergraphs for each subgraph in parent level, and work top-down. Then
at any level, we can look up exactly what the cumulative supergraph support is without traversing

the entire supergraph hierarchy. Algorithm 3 details this process.

4.4.1.4 Building the Discriminative Index
After selecting summary graphs, we build a discriminative index over the graph collection
augmented with the summary graphs. As noted earlier, determining discriminative subgraphs is

similar to selecting summary graphs except that we are concerned with exclusion here in contrast to



Algorithm 2: Mine Frequent Subgraphs

Input: A collection of workflows G and a threshold T’
Output: A set F of frequent subgraphs of W

MINESUBGRAPHS(G)

€)) F < Run gSpan(G,T)

2) Add single-vertex features to F

3) pairs « all pairs of single-vertices from F

4) while pairs # :

(®)) foreach G1, G in pairs:

(6) matches < sup(G1) n sup(Ga)

(7) if |matches| <T

(8 continue

(9) G, <« G(Gl, GQ)

(10) if |{G | VERIFY(G',G)}| < T

(11) continue

(12) Fe—F+¢&

(13) G5 < IMMEDIATESUPERGRAPHS(G2)
(14) foreach Sy € G :

(15) pairs « pairs + (G1, S2)

(16) G{ < IMMEDIATESUPERGRAPHS(G)
(17) foreach S; € G:

(18) pairs « pairs + (S1, G2)

Algorithm 3: Select Summary Graphs

Input: A set F of frequent subgraphs of W
Output: A subset of summary subgraphs S
SELECTSUMMARYSUBGRAPHS(F)

ey
2
3)
“)
&)
(6)
(N
(®)

Sort F according to the number of edges in decreasing order
foreach G € F:
Gt <« IMMEDIATESUPERGRAPHS(G)
if GT = Jor | ugeg+ supports(G')| > T
S<S+G
supports(G) « sup(Q)
else
supports(G) — | Ugieg+ supports(G')|
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summary graphs which emphasize inclusion. Recall a subgraph is discriminative when its subgraphs

that are also discriminative filter many fewer graphs. Thus, we work on a level-by-level basis, but

work from the bottom-up instead of top-down as we do with the summary graphs. Algorithm 4

formally expresses this idea.

4.4.2 Query Processing

Given a workflow query ¢ in graph form, we break the graph ¢ into features. Note that these

features may be 2CFSGs, so we begin with single-vertex features and grow them into progressively
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Algorithm 4: Build Index
Input: A collection of workflows WV and summary graphs &
Output: Anindex 7T for the collection
BUILDINDEX(W, S)
(1) G—WuS

2) Sort G according to the number of edges in increasing order
3) foreach G € G

4) G~ « IMMEDIATESUBGRAPHS(G)

(%) if G~ = Jor| ngreg- supports(G')| > T

©6) T<T+G

7 supports(G) < sup(QG)

®) else

©)] supports(G) «— N greq-supports(G')

larger (and possibly disconnected) features according to the tree we maintain as part of the discrim-
inative index. When we have determined the maximal features, we compute the intersection of the
sets of graphs linked to these features. Note that the resulting set of candidates /* may contain
graphs from the collection and summary graphs.

Next, we must verify the set of candidates. Recall that if a summary graph S satisfies the query,
we immediately know that all of the graphs that S represents also satisfy the query. Thus, we
may be able to avoid some individual verifications by checking summary graphs first. However,
if a summary graph does not satisfy the query, we cannot assume that the graphs it indexes do
not satisfy the query; another summary graph may verify them or we may have to check them
individually. Algorithm 5 details this process. For workflow queries that do not involve wildcards,
these verification steps are just subgraph isomorphism checks. However, wildcard queries require

an extension of subgraph isomorphism. Figure 4.9 illustrates the entire process.

4.4.2.1 Wildcard Query Verification

Because wildcard queries are essentially disconnected graphs with special wildcard edges, we
can delete the wildcard edges and run the query over the disconnected graphs. However, during
verification, we need to evaluate whether the wildcard edges are satisfied by the candidate graph:
we need to check the wildcard subgraph isomorphism problem defined in Section 4.2. Since we
have chosen to mandate that paths between the two vertices on each side of the wildcard edge
must not contain vertices already matched to the query graph, we cannot evaluate this query using
standard transitive closure. Instead, we do this evaluation with a standard connectivity search on
the candidate graph by excluding any vertices already matched, using a depth-first search. Note that
this requires computing the matching generated from a subgraph isomorphism, and checking other

subgraph isomorphism answers if a suitable answer has not been found.
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Figure 4.9: Query processing is faster because the discriminative index limits the number of
candidates and summary graphs limit the number of computationally-expensive verifications.
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Algorithm 5: Process Query
Input: Query workflow @), index T, collection of summary graphs S, collection of workflows W
Output: A subset .4 of W that satisfy )
PROCESSQUERY(Q, 7, S, W)
(1) AW
2) features « single-vertex features of )
3) foreach F' € features

@ ifFreT

®) features «— features +

(6) IMMEDIATESUPERGRAPHS(F', Q)
(7) A—AnT(F)

() Sort A so that all G € S are first
) foreach G € A
(10) if VERIFY(Q, G)

(11) ifGeS

(12) A— A+ S(G)
(13) else

(14) A—A-G

(15 A<—A-S8

4.4.3 Index Maintenance

Because selecting frequent features requires mining, we cannot expect to regenerate the entire
index on the fly. Note, however, that both levels of the index can be updated to include new graphs
using existing summary and discriminative features. Unfortunately, it is difficult to discover new
frequent subgraphs after index creation as this requires recomputing the mining. As has been
discussed in other work [166], we can wait until a certain number of graphs have been added or
deleted and then recreate the index. In addition, we will always index base features like single
vertices or edges to ensure that new graphs will appear in search results. Thus, while the quality of
the index may degrade until it is recreated, it should not degrade too quickly. We may also choose
to recreate the discriminative index without updating the summary subgraphs, or we can recalculate

both levels of the index.

4.5 Workflow Completions
We can leverage exploratory workflow queries to suggest workflow completions, i.e., how a
partial workflow might be filled in. Similar to how textual completion works for programming
environments [103] or search fields [57], workflow completion seeks to provide suggestions to
users as they construct workflows. For example, in Figure 4.10, we show possible completions for
a modeling workflow. These completions are derived from an existing provenance collection and
aggregate workflow query results in order to rank putative completions. In [85], we showed that

using automatically generated completions, the effort to create workflows is substantially reduced.
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In our experiments, we observed a reduction of over 50% in the the number of operations performed
by users to construct workflows.

Formally, a workflow completion of a partial workflow w is a (nonpartial) workflow w’ such
that the workflow query represented by w is satisfied by w’. Thus, each wildcard module is
matched to some module in the completion and each wildcard connection maps to some path in
the completion. Note that a completion need not do more than satisfy each wildcard constraint
and match non-wildcard modules and connections. Thus, completions may be simple, just filling
in the minimum structure (see Figure 4.10(a)), or more complex, adding additional branches (see
Figure 4.10(b)). Also, since a completion is the result of a workflow query, improvements in the

efficiency of workflow queries translate directly to improvements in workflow completion.

4.5.1 Implementing Workflow Completions

We can augment our indexing framework to support workflow completions by capturing the
paths that satisfy the connectivity constraints in wildcard queries. During wildcard query verifica-
tion, we can capture these paths and suggest them as completion paths. Note that we can expand
a completion path to include modules and connections attached to the path. However, we always
add only vertices and edges that do not appear in the query graph (i.e., the existing workflow). This
ensures that the user does not see suggestions that reflect the workflow pieces they have already
constructed.

Ideally, completions should be ranked based on their importance. If one completion occurs in
hundreds of workflows and another occurs only once, we would like to present the more prevalent
one first. Note that a match to a summary graph guarantees that a completion there occurs fre-
quently. Thus, after verifying only the summary graphs, we might immediately present the user
with suggestions for completing a workflow. We can continue to generate suggestions from the

other graphs in the background, but allow the user to see the initial suggestions quickly.

4.6 Evaluation
4.6.1 Theoretical Costs

The total cost of a workflow query g using a standard graph index is
Clg) = Cr +[Z(a)|Cy

where C is the filtering cost, C, is the cost of verification, and Z(q) is the set of candidate graphs
from the index given the query ¢q. Our improved index splits subgraph isomorphism checks into

two classes; we pay more up front in the hope of reducing the total number of verifications. Let



52

S(Z'(q)) denote the set of summary graphs identified by the index for a query ¢ and sup(S™) denote

the workflows indexed by the subset that satisfies ¢q. Then, the total cost is:
Clq) = Cy +[S(T'(0))|Co + IT'(q) — sup(S*(Z'(4)))|Co

Note that when sup(S™) is large, we avoid many verification steps as a single summary graph veri-
fication check suffices. In general, we seek to minimize |Z'(Q)| while at the same time maximizing
| sup(ST)|. The worst case is when the index identifies a set of summary graphs, none of which
satisfy the query (] sup(S™)| = 0); we perform extra verifications but because they are all negative,
we do not gain anything. However, these cases are rare as we expect frequent queries from users,
and any candidate sets for nonfrequent queries should be limited by the discriminative features. In

most cases, the summary graphs will provide fewer verification checks and thus faster query times.

4.6.2 Data Sets

We evaluated our techniques using two provenance collections. The first comes from a set
of visualization workflows and the second from Yahoo! Pipes workflows [163]—both are sets of
dataflows. The collection of 6,117 visualization workflows was generated over two years by 60
different users. The users were assigned specific tasks and generated workflows to solve these
problems. As such, we expect some overlap in the overall structure of the workflows, although
there should be some variation throughout. There were 150 different types of modules involved in
these workflows. The second collection is a set of 40,505 Yahoo! Pipes workflows used to construct
Web mashups. Here, the number of module types used was only 54, and users tended to follow
very similar patterns in workflow development. As such, there were few frequent patterns but many
occurrences of them.

We ran queries selected at random from the entire set of mined frequent subgraphs for these data
sets. In order to test the effectiveness of the summary subgraphs and the addition of 2-component
frequent subgraphs, we performed tests with both features enabled (S+2C), only summary graphs
enabled (S), and both features disabled (Orig.). Note that when both are disabled, the framework
is similar to glndex [166]. For the Yahoo! Pipes data with features that occurred at least 500 times
and the summary and discriminative thresholds also held at 500, we were able to compute answers
to queries with an average of over 700 candidate graphs with only 20 isomorphism checks. For the
visualization workflows, with the same parameters all at 200, we were able to compute answers to
queries with an average of over 380 candidate graphs with only 64 checks.

Our prototype uses a sgqlite3 database and python code to construct the index and perform
queries. Results for tests of the visualization dataset are shown in Figure 4.11a; note that for queries

with few results, our technique performs slightly more verifications than the number of results,
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but for queries with many results, the summary graphs help dramatically reduce the number of
verifications. Figure 4.11b shows similar results for queries of frequent subgraphs in the pipes
dataset.

We also performed tests with a range of thresholds for summary graph selection and discrim-
inative feature selection. As expected, smaller thresholds produced better results in both cases.
Figure 4.12a shows that decreasing the discriminative threshold significantly decreases the number
of isomorphisms. Examining Table 4.1, we see that the number of graphs in the index does
not increase significantly either. Figure 4.12b shows that decreasing the summary threshold also
decreases the number of isomorphisms, although here we do not see as pronounced an effect. This
can be explained by the fact that frequent subgraphs with no supergraphs are always included. Thus,
the internal nodes, where the threshold matters, play a less significant role.

Figure 4.13 shows that the number of edges involved in the query has an effect on the mean ratio
of the isomorphisms computed; smaller graphs are more often summarized which is to be expected.
The subtraction of 2-connected features, however, does not follow the same pattern. In addition,
the original feature-based strategy does not have a ratio of one because the summary graphs are

computed as candidates but not verified.

4.7 Discussion
4.7.1 Subworkflows
Many workflow systems offer operations to abstract parts of a workflow into subworkflow
or compound modules, whose computation is the execution of another workflow. Note that a
workflow can be expanded (or refined [18]) by replacing its subworkflow modules with the actual
specifications for the subworkflows. If we add the restriction that subworkflows cannot be included
circularly, we can always expand both query workflows and workflows in the collection. When
indexing, we always index the fully-expanded workflow, and fully-expand a query before evaluating
it. Note that in some cases, it may be worthwhile to also index unexpanded workflows, specifically

when a subworkflow is very common, because it will reduce the time involved in mining.

4.7.2 Scalability
Since a given frequent subgraph has n connected subgraphs of its own, it may have O(n?)
2-component subgraphs. Thus, the number of 2-component frequent subgraphs can quickly become
unreasonable. Note that a large pattern will generate many frequent subgraphs, but because most
of them are summarized by the pattern, it is not necessary to mine all of them. If a 2-component
subgraph has a supergraph that is a summary graph, and the difference in their supports is minimal,

we need not worry about it or its supergraphs. A test using the visualization dataset confirmed
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Figure 4.11: Comparison of the number of subgraph isomorphism verifications required for queries
with different numbers of results across different indexing schemes. For both the visualization
workflows (a) and the Yahoo! Pipes workflows (b), we used the proposed scheme having both
summary features and 2-component subgraphs (S+2C), a scheme using only summary features (S),
and the original feature-based indexing scheme (Orig.). The actual number of results is plotted as a
baseline (Actual) as well as the number of candidates (including summary graphs) after filtering for
the proposed scheme (Cands.).
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that with 25,708 frequent connected subgraphs, we would have 304,626 frequent 2-component
subgraphs, but running with the maximal heuristic, we can reduce this to 14,025 2-component

subgraphs.

4.7.3 Parameters

Although our focus in this work is on structural queries, we can also integrate parameters and
connection types into our approach. Connection types are edge labels, and we easily integrate this
information into existing algorithms. We could encode parameter information as part of the module
type and use the existing algorithms as well, but because parameters are more likely to vary across
workflows, this will likely lead to a much larger index. Instead, we propose that parameters be
indexed separately and queries processed by joining results from the parameter index with those
from the structural index. This also allows for queries that involve comparisons of parameters (e.g.,
temperature < 98.6); an exact structural index where parameter values are baked into module types

would not be very effective.

4.8 Related Work

Although there has been work on frameworks and interfaces for querying workflow collec-
tions [18, 130] and for using these collections to derive recommendations for users as they design
workflows [85], not much attention has been given to performing these tasks efficiently. To the
best of our knowledge, ours is the first proposal for an index structure that supports the efficient
evaluation of exploratory queries over collections of workflows.

There is a substantial body of work on techniques for indexing graph databases to speed up
subgraph queries. Much of that work has focused on mining and utilizing frequent features that
serve to differentiate graphs. Index features range from single vertices and edges to paths and
graphs. Zhao et al. [168] provide a discussion and empirical analysis of the role and granularity of
paths, trees, and non-tree subgraphs. GraphGrep [133] uses paths as index elements, gIndex [166]
uses discriminative subgraphs, and Tree + A [168] uses selective trees along with graphs generated
on-demand. These techniques work in two separate steps. First, there is a filtering step that uses the
index to prune graphs that do not match the query by intersecting the matches for each feature to
generate a set of candidate graphs. Then, in the verification step, each candidate graph is checked
via a subgraph isomorphism calculation against the input query. The goal of the pruning step is to
minimize the number of subgraph isomorphism checks required to evaluate the query. Note that
because of these checks, the query time scales according to the number of results. Chen et al. have
attacked the problem of searching collections of large graphs by using randomized summaries [25];

note that their summaries each characterize a single graph while our summary features index multi-
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ple graphs.

FG-Index [29] improves on the feature-based techniques by avoiding the expensive verifica-
tion step when a query exactly matches an indexed feature. The FG-Index contains entries for
all frequent subgraphs in a tree structure with an edge-set lookup. This was later extended to
FG*-Index [28] which incorporated a feature-based lookup as well as on-demand indexing. The
size of the FG-Index is dependent on the number of frequent subgraphs; thus, if a collection has

a frequent subgraph G with 20 edges, all subgraphs of G (a set with close to 220

elements) will
also be frequent. Although it is inefficient to keep all such subgraphs indexed, by indexing only the
largest subgraph, we can still quickly return answers for queries that are subgraphs of the “large”
subgraphs.

Wildcard queries are also supported by XML query languages. A number of approaches have
been proposed for XML indexing to efficiently support wildcard queries that have path expressions
involving ancestor and descendant axes. These range from encoding parent-child and ancestor-
descendant relationships via numbering schemes [94] and using structure-encoded sequences for

documents [159] to indexing a subset of the data paths in an XML document [26], However, these

techniques are specifically designed for tree models and cannot be directly applied to graphs.

4.9 Summary

We have presented a new indexing strategy to support exploratory queries over provenance
collections. The proposed two-level indexing framework combines the pruning power of discrim-
inative features of graphs with verification-free answers from indexed frequent subgraphs. Our
results show that the addition of summary graphs and 2-component subgraphs significantly reduces
the number of verification steps for queries that have many results. In fact, for the Yahoo! Pipes
dataset, this number was nearly constant even as the number of results increased. Our framework is
also flexible: the two enhancements are naturally orthogonal, and we can integrate either with other
existing graph indexing schemes. In addition, we are able to apply our framework to suggestions
for workflow completions. As the amount of provenance data continues to grow, understanding and
using this information requires efficient support for the exploratory queries that users are interested

in.



CHAPTER 5

VISUAL SUMMARIES FOR GRAPH
COLLECTIONS

5.1 Introduction

From molecular structures to social networks and workflows, graph collections are widely
available. While visualizing a single graph has been an important step in understanding these data,
given large graph collections, it becomes crucial to analyze the differences and similarities in the
collection. The questions of how a graph differs from some norm or where edges or nodes change
across time are more important than being able to view each graph individually. We introduce
summary graphs to synthesize collections of graphs to a single, interactive visualization. See
Figure 5.1 for an example summary graph.

There are a variety of domains where graphs are common, and being able to better understand
relationships between graphs is important. Molecules are well-known structures that can be repre-
sented as graphs, and understanding structural differences can help inform physical or biological
processes. More recently, there has been a great deal of interest in social networks, and one
might consider analyzing groups of users across different networks by comparing relationships.
Metabolic pathways, the chemical interactions between enzymes and compounds in a cell, are also
represented as networks, and pathways in different organisms often vary, allowing researchers to
construct phylogenies using information about these differences. With structured computations
like visualization pipelines or workflows, we also have a graph structure that can be analyzed for
differences.

Graphs are usually best understood via visual encodings, and there has been significant work
in algorithms to lay out and draw them. However, most of this work has focused on single graphs.
There are also algorithms to calculate distances between graphs or find maximal common sub-
graphs. Here, most of this work has focused on pairwise comparisons of graphs. With more than two
graphs, understanding the similarities and differences can be a challenge with pairwise techniques.
In addition, these comparisons tend to be strict, with little flexibility when vertices or edges are not
exactly equal. The ability to gather a slightly “fuzzy” mapping between graphs is important when
summarization is the goal.

One of the major challenges in understanding relationships between graphs is that there is no
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known computationally efficient method for comparing them. Testing whether one graph is an exact
subgraph of another (subgraph isomorphism) is NP-Complete, and relaxing constraints to allow
for greater freedom in any matching leads to even more possibilities. Unfortunately, exhaustive
algorithms tend to take too long because of the number of possible alignments, and heuristic
algorithms cannot be guaranteed to produce a good result. However, in many cases, a collection of
graphs contains significant overlap between individual graphs and locating possible matches is less
daunting than the general problem. We present a set of methods that are effective at matching pairs
of graphs by solving the assignment problem on a matrix that encodes cost estimates for matching
vertices. By first diffusing vertex similarities across a product graph, we can also integrate some
global connectivity information.

Given approaches for comparing pairs of graphs, we can build a summary graph using hierar-
chical agglomeration. From two graphs, we can construct a simple summary by combining matched
vertices and edges and connecting unmatched pieces of each graph. We recursively combine initial
and intermediate graphs until we end up with a single summary. Note that it may become apparent
that certain graphs do not share many (if any) similarities with the rest of the collection, and those
might be disregarded. An initial clustering step can help organize a set of graphs into logical
collections where summary graphs are appropriate.

Visualizing this computed summary graph should allow users to explore the similarities and
differences between graphs. As such, it is important to be able to recognize which pieces are unique
to a subset of graphs or common to most graphs. For large collections where a general understanding
is desired, we use lightness to indicate the relative occurrences of graph elements. By highlighting
a single graph with color in the context of the summary, one can understand how that graph relates
to the collection. Projecting a selected subset of graphs and using color to differentiate them allows
one to see how their specific relationship mirrors or differs from the summary. See Figure 5.2 for
an example of how color is used in a summary graph.

Finally, while our computed summaries usually offer a good initial picture of the collection, we
provide tools to allow users to interactively explore and update the summary graph. By ordering
matches according to a confidence measure, a user can control how much summarization occurs.
At a lower-level, users can select vertices and break or join them according to their wishes. Thus,
blemishes in an initial configuration can be quickly remedied. At the same time, this guidance can
be used to rerun the summarization process with a user’s preferences. In addition, these operations
are animated so a user can see exactly where nodes are split or joined as the layout is updated. This
is useful when navigating the amount of summarization.

In this chapter, we formally define summary graphs and show how they can be constructed

and visualized. Their construction is aided by an extension to an existing matching algorithm that
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produces concise, inexact matchings. In addition, we present operations for interactively editing
summary graphs as well as different modes for analyzing these visualizations. Finally, we present
applications that demonstrate the utility of our technique.

We begin by reviewing related work, and then build the definitions and computational machinery
for computing matches between pairs of graphs in Section 5.3. In Section 5.4, we formally define
a summary graph and detail how to construct one from a graph collection. Next, we describe how
we visualize and interact with summaries in Section 5.5. In Section 5.6, we provide case studies for
uses of summary graphs, and we conclude in Section 5.7 with a discussion of both shortcomings

and possible extensions.

5.2 Related Work

There has been substantial work in the area of graph visualization, ranging from layout algo-
rithms to methods for visualizing large graphs to interacting with graphs. However, the problem of
visualizing multiple graphs in a single view has been largely overlooked. Herman ef al. provide a
good summary of the early work on graph visualization and navigation [66].

There has been work on comparing and visualizing two or more trees at once. Furnas and Zacks
suggested Multitrees as a way to integrate sets of hierarchical information [51]. The InfoVis 2003
Contest generated significant work in tree comparison [119]. Much of it was rooted in work done
for consensus trees used for phylogenies in the biological community [2]. Munzer ef al.’s TreeJuxta-
poser tackled the problem of comparing large trees using focus+context and visibility criteria [108].
Tu and Shen showed how to encode changes in treemaps [152], and Graham and Kennedy used
directed acyclic graphs to agglomerate multiple trees [58]. They also provide a comprehensive
survey of work in the area of visualizing multiple trees [59]. Isenberg and Carpendale explored how
collaborators can share comparison information [73]. There has been some work to compare pairs
of graphs visually, including the visual diff for comparing two workflows by Freire et al. [48]. The
difference between pairs provenance graphs was considered by Bao et al. [14].

In contrast with the approach described in this chapter that aims to summarize a collection of
graphs, much of the work on graph summarization has focused on single, large graphs. Such graphs
can be clustered or summarized with regions collapsed into smaller entities (e.g., [44]). Other
approaches have used topology [12] and interaction [52, 155] to better navigate graphs. In addition,
edges can be bundled, allowing users to better identify connectivity when graphs have large numbers
of edges [34, 69]. Level-of-detail can also be used to more efficiently navigate large graphs [13].
There are also techniques for multivariate graphs that focus on relationships between nodes [160].
We note that while our focus is on combining graphs into a single visualization, as summary graphs

are graphs, this work can also be applied to them.
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Also related to our work are techniques for computing matches between graphs. The diffusion
matching we present is an extension of the similarity flooding work by Melnik et al. [100] and the
analogy matching from Scheidegger et al. [130]. Our work, however, uses a different formation
that is rooted in the concepts of graph edit distance. Riesen and Bunke suggest an approximation
for graph edit distance that uses a solution to the assignment problem [124], and Zeng et al. use a
similar formulation for graph searching [167]. We also use a solution to the assignment problem to
solve our final matrix after performing a diffusion step. Heymans and Singh use another variant to

compare metabolic pathways to generate phylogenetic trees [67].

5.3 Graph Matching

Generating a summary graph requires that common substructures in a given collection of graphs
be merged. Our algorithm for constructing summary graphs depends on pairwise merges, and graph
matching plays an important role in determining these merges. We are not, however, concerned
with the strict, exact matching that is often considered in graph theory. Rather, we wish to find the
best inexact matches so as to maintain a compact set of vertices and edges. When two graphs have
nodes that are exactly the same and their neighborhoods are similar, it makes sense to match them.
However, there are often nodes that, while not equal, are also very similar. This similarity may
be due to the fact that they are known to be related or because they are used in similar contexts in
their respective graphs. For example, in chemistry, it is known that sodium and potassium are very
similar atoms as they appear in the same group in the periodic table. However, while sulfur and
nitrogen are less similar, if they are bonded to similar neighborhoods, it may still be reasonable to
match them.

Graph edit distance is a measure of graph similarity, and its delineation between substituting,
adding, and deleting components provides a framework for identifying when a merge is appropriate.
However, computing graph distance can be slow and approximations do not take into account
global connectivity. Similarity flooding uses a Markov chain on a product of two graphs to diffuse
similarities and determine matches with the influence of connectivity information [100]. We propose
extensions to similarity flooding that incorporate concepts from edit distance approximations and
provide information to consider when vertices are best left unmatched. We begin by defining graphs,
graph matchings, and the quality of a match. After reviewing graph edit distance and similarity

flooding, we present our enhanced matching algorithm.

5.3.1 Definitions
A graph G = (V, E) is a set of vertices V and set of edges £ where each edge e = (v1,v2) € E

connects two vertices v1,v2 € V. In an undirected graph, each edge is specified by an unordered
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pair of vertices, and in a directed graph, the edges are specified by ordered pairs of vertices. Note
that an undirected graph can be transformed into an equivalent directed graph by creating a pair of
edges, one in each direction, for each edge. Because our graph comparisons rely on information
contained at vertices or on edges, we define labels for each. A labeled graph is thus a graph with

labeling functions Ly : V — L and Lg : E — L where L is a finite set of labels.

5.3.1.1 Matching

There are several ways to define a matching between two graphs, ranging from exact equality
to any one-to-one mapping between the two. Graph isomorphism involves finding a mapping from
one graph to the other such that each vertex and edge is matched, meaning each pair of labels
corresponds and the vertices of each edge also match. Subgraph isomorphism allows for an injective
map from a smaller graph to a larger one where the larger graph is allowed to have unmatched
vertices and edges. The decision version of the subgraph isomorphism problem has been shown to
be NP-Complete [31], making an efficient exact solution to this problem unlikely. Also note that
both of these problems consider exact matches on vertex and edge labels. We would like to allow
more flexibility by also matching vertices and edges that have similar, but not equivalent, labels.
Furthermore, we also wish to permit unmatched vertices in both graphs as some nodes are best
unmatched.

More formally, a graph isomorphism between two graphs G = (V,E) and G’ = (V' E') is a
bijection h between their vertices V' and V"’ such that for each edge e = (v1,v2) € E, there exists
an edge €/ = (v}, v}) € E' such that h(v1) = v} and h(ve) = v). For labeled graphs, we also have
the restriction that Ly (v) = Ly+(h(v)) and Lg((vi,v2)) = Lg/((h(v1), h(v2))). We wish to allow
any mapping, regardless of whether it matches all vertices or if there are label mismatches. Thus, a
graph matching for two graphs G and G’ is any map h : V' — V’. Note that this definition allows
a wide variety of matchings, ranging from an empty map to a full isomorphism. Since there can be
multiple valid graph isomorphisms for two graphs, there are many more of these general matchings.

Because of the number of possible matchings, we have some qualitative measure to evaluate
their utility. Any such measure is based on functions that define the similarity between nodes
and edges. These functions may be, most strictly, based only on the data represented by the
node or edge, but this is often relaxed to allow a comparison of neighborhood structure. Such
generalized scoring functions allow improved measures of similarity in a more global setting.
Formally, a vertex similarity function Sy can be defined for two graphs G = (V, E, Ly, Lg) and
G' = (V,E' Ly, Lg) as Sy : V x V' — R. An edge similarity function S can be similarly
defined. Strict similarity functions may be defined without considering the vertices themselves, only

the labels. Note that a similarity function can also be represented inversely as cost; components with
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high similarity have low cost.
Using these measures, which may be domain-specific, we can define the score of a graph
matching. Given G = (V4, E1), G2 = (Va, Es), Sy, and Sk, we define the score of a graph

matching h as

score(h) = Z Sy (v, h(v)) + 2 Se(e, h(e))

vEVY eck,
Then, a maximal graph matching is a graph matching h where score(h) is maximized. Note that
there cannot be any claim of uniqueness; for example, a graph with any symmetry will usually have

at least two matchings that attain the same, maximal score.

5.3.1.2 Graph Edit Distance

While similarity functions can help guide users to the best correspondence between a pair of
graphs, note that for functions that define strictly positive scores, it is always best to match as many
vertices and edges as possible. Allowing negative scores or using thresholding [100] can aid in
discarding poor matches, but note that it can be instructive to have some measure of when it is best
not to match nodes. Graph edit distance establishes a cost for transforming one graph into another.
Such a transformation consists of three types of operations: substitutions, additions, and deletions.
This allows a direct comparison between the cost of substituting a vertex in one graph for another
versus the cost of removing the vertex and adding the other. In the context of graph matching, this
means we can identify when to leave vertices or edges unmatched. We will show that we can use a
solution to graph edit distance to construct a maximal graph matching.

Formally, given two graphs G1(V1, E1) and G5(Va, E3) and cost functions Cyq : Vo — R,
Cog V1 DR Cus: Vi x Vo 5 R, Cep: Eo >R, Coq: 1 > R, Ces : By x By — R, the graph

edit distance between G1 and G is

min Z Cya(v) + Z Cpa(v) + Z Cys(v)+

Va,Via,Vs,Ea,Eq, Es
arVdy Vs BarBdyBs ey veVy veVs

+ ). Ceale) + D) Ceale) + Y Cesle)

eEF, eeFEy eEF

The solution to this minimization is not straightforward because the selection of which vertices are
substituted affects the selection of edge actions. Thus, F,, E4, and E5 are not independent of V,
V4, and V.

However, note that if, during the computation of graph edit distance, we track the composition
of V,,,Vy, Vs, By, Eq, Es, we can construct a graph matching. V; and E; define exactly which nodes
and edges, respectively, should be matched. Note that this does not match our original definition of

maximal because we now have some measure of when components should be left unmatched. This
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suggests an extension to our similarity functions: expand the domain to include unmatched entities.

Let € represent leaving a vertex unpaired. Then, our vertex similarity function becomes
Sy:Viu{e xVau{e >R

and the edge similarity function can be extended in the same manner. Note that S(e, €) does not
play a role in the computation. Then, vertex additions are scored by S(e,v2) and vertex deletions

by S(v1, €). This allows us to directly compare S(vy, v2) with S(vy, €) + S(e, v2).

5.3.2 Computing Graph Edit Distance
Graph edit distance is also NP-Complete so an efficient solution for it is unlikely [167]. In
practice, for small graphs, A* can be used to evaluate the entire space of possible solutions. For

larger graphs, we can use heuristics that rely on estimates to prune the search space.

5.3.2.1 A* Search

To compute graph edit distance, we can explore the space of all possible vertex matchings, since
they will induce edge costs [124]. Note that for any vertex matching, we can choose substitution or
an add/delete pair based on which operation(s) have a lower cost. Then, we can iteratively compute
the cost of a node as the cost of its parent plus the cost of matching the two vertices indicated by the
node. This cost includes both the node similarity and the costs of the induced edge operations. The
number of leaves in this search tree is n!/(n —m)! for m < n, meaning that there is an exponential
number of cost computations.

Because of the high computational cost, it is impractical to compute the full A* tree for anything
other than small graphs. As with other search algorithms, we can use pruning strategies to help cut
down these costs. The key ingredient is being able to determine which branches are promising,
usually accomplished by estimating the remaining cost down the tree. Given such a heuristic, we
can evaluate all active nodes by estimating the remaining cost, and keep only the top (or top-k in
beam search). This reduces the number of computations to k per level, for a total of k£ - min{m, n},

which will clearly be faster.

5.3.2.2 [Edit Distance and the Assignment Problem
For these algorithms to be practical, we must have a reasonable estimate for graph edit distance.
If we discard costs for edges, we only need consider the assignment of vertices. For the substitution

costs for vertices in two graphs G1 and G, we have the following matrix:

So0  So1 "t Som
S10  S11 " Sin

Sm0  Smil t Smn
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where s;; is the cost of substituting v; € Go for v; € G1. Because each node can be matched
to at most one other node, we can select at most one entry from each row and at most one from
each column but want minimal cost. Furthermore, a full assignment for an m x n matrix requires
that we have all rows in columns in the smaller dimension covered. This is exactly the assignment
problem [22], and it has a polynomial time solution via the Hungarian algorithm [88].

One issue is that we would like to include the add and delete costs as well. Riesen and Bunke
proposed a matrix that encodes these costs and still allows for a solution via the Hungarian algo-

rithm [124]. The matrix has four blocks

S0 So1 - Som |G OO -+ QO
10 S11 -+ Sin | O a1 o0
Sm0 Sml1 "' Smmn | O OO -+ Gy
5.1
d) o© -+ o |0 0 0
Q0 dy Q0 0 O 0
© o -+ dy |0 0 -+ O

where the upper-left block contains all substitution costs (s;;), the lower-left and upper-right blocks
contain add/delete costs (ar and d;), and the lower-right block is free. The trade-off between
substitution and addition/deletion is enforced by setting off-diagonal entries in the upper-right and
lower-left blocks to co, meaning that the assignment must, for each left column, either select a
substitution or a deletion, and for each upper row, either select a substitution or an addition. Because
we must assign each row/column (we can pad to a square matrix for rectangular matrices), we can

obtain a minimal cost for vertex operations.

5.3.2.3 Including Neighborhood Information

While we can efficiently solve the vertex assignment problem given vertex similarity functions,
such a solution does not take into account any edge information. This is problematic, as Figure 5.3b
shows, because connectivity is a major component of a graph; otherwise we are simply matching
sets of vertices. Connectivity can also influence when vertices should be matched. For example,
when evaluating whether a vertex in one graph matches one in another, it is reasonable to consider
a correspondence if all of the neighbors in the first graph correspond to the neighbors in the second
graph.

However, note that for our vertex assignment matrix, there is no restriction that the costs must
correspond to the vertex similarity function. We can choose to define the entries in the cost matrix

as a combination of the vertex similarity cost and an estimate of the cost involved in matching
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neighborhoods. Instead, we can add the costs for matching adjacent edges of each pair of ver-
tices [124]. For such a pair, the best correspondence for edges can also be solved via a solution
to the assignment problem for the edge sets. Note that this will produce a locally optimal cost,
and because the constraints are not global, the local costs cannot usually be reconciled. An edge
correspondence for one pair of vertices may pair two edges differently than a similar correspondence
for an adjacent pair of vertices. Figure 5.3c shows that the detected asymmetry between the A and

FE nodes does not propagate to correctly pair the C' vertices.

5.3.3 Diffusion Matching

In order to incorporate global connectivity into the vertex assignment matrix, we need greater
diffusion of similarity. An iterative refinement like similarity flooding [100] allows individual
similarities to influence the entire graph. This refinement works by constructing a product graph
whose vertices are all pairs of nodes from the original graphs and whose edges indicate correlations
between pairs. One issue with the original approach is that it uses thresholding to determine when
nodes should be unmatched; we improve this by integrating both the assignment matrix solution
from graph edit distance and skip nodes, additional vertices added to the product graph that track

scores for keeping vertices unmatched.

5.3.3.1 Similarity Flooding

To begin, we create a product graph so that we can diffuse costs between vertex pairs using
the combined connectivity. Given graphs G1(V1, F1) and Go(Va, E»), the direct product graph
G*(V*,E*) = G1 x Gy where V* = V] x V5 and

E* = {((u1,u2), (v1,v2)) | (u1,v1) € Eq, (u2,v2) € Es}

Note that this graph differs from the Cartesian product defined in other settings (e.g., [75]), where we
have a union of edge sets instead of an intersection; diffusion should only occur when an edge exists
in both graphs. Also, for directed graphs, we must preserve order so we will not create a product
edge from the simple edges (u1,v1) to (ug, ve) if (u1,u2) € Ej and (ve,v1) € Es. That said, these
edges are undirected; paired edges indicate a connection between vertices and the direction of that
edge is irrelevant for diffusion.

Then, for each edge e* € G*, we need to assign a diffusion score S* that represents how well-
linked the new product vertices are. More accurately, we need to decide how costs should propagate
from a product vertex to its neighbors. We can calculate this from some combination of Sy and
Se. When edges are dissimilar, Sg is small, and we do not wish to propagate as much similarity

between the connected nodes. From these scores, we construct an adjacency matrix A(G*) for the



(a) Original Graphs (b) Vertex-Only Matching

(c) Neighborhood Matching (d) Global Matching

Figure 5.3: A comparison of graph-matching algorithms when run on the same two starting graphs,
shown in (a); mismatched vertices and edges in (b) and (c) are highlighted. A vertex-only
matching (b) has issues with mismatched edges (e.g., the two Bob nodes from the red graph
match the Bob and Robert nodes from the blue graph equally well). A neighborhood matching
will correct some errors because it takes into account neighboring nodes, but it will not propagate
this information to other nodes. For example, the neighborhoods of the two Cynthia/Cindy nodes
in each graph (one neighborhood from each graph is highlighted in (a)) will match equally well
and may cause an edge mismatch as shown in (c). Global methods, like A* search and diffusion
matching seek to resolve such problems, leading to matchings without mismatched edges (d).
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product graph. Each entry (i, j) corresponds to a pair of paired vertices, ((s,t), (u,v)), and we
assign its value to the diffusion score S*((s,t), (u,v)). We normalize A so that the sum of each
row is one; when a row is all-zero, we can factor that row out.

For each vertex v* = (v1, v2) € G*, we can define a similarity score via Sy (v, v2). Computing
this for each pair, we end up with a vector ¢ which is again normalized. This will allow us to infuse
each step of the diffusion with vertex scores. Let m; measure the pairwise similarity and « be a
parameter that controls the amount of diffusion versus initial similarity. Then, we have the following
formula from [130]:

Tyl = OéA(G)Wk + (1 — Oé)C(G) = Mmy,

which corresponds to the power method for eigenvector computation, according to the structure
of M. Thus, this iterative process will converge to w4 which corresponds to the similarities after
diffusion.

The output similarity vector 7, can be reshaped to a vertex assignment matrix, and we can
proceed in a similar fashion to that outlined for graph edit distance. Note that because of the diffu-
sion, this matrix contains scores that better incorporate connectivity information. Figure 5.3d shows
that this approach allows us to compute a better match than a vertex-only or neighborhood-based

matching.

5.3.3.2 Scoring Unmatched Nodes

In the usual product graph employed in similarity flooding, we have no way to determine if
a node would be best unmatched. Thus, if we use the output vertex assignment matrix directly,
we will attempt to pair all vertices. We can prune all matches that fall below a certain threshold or
relative threshold [100], but note that we have no score on which to base this decision. Our approach
extends the original product graph with skip nodes, nodes that represent unpaired vertices from the
original graphs. They can be integrated into the normal diffusion scheme, and their final scores can
be used to decide whether a substitution is more optimal.

We construct an augmented product graph G from G1 and G5 which is a product graph with

additional vertices (v, ¢€),v € V; and (e, v), v € Va, and additional directed edges

((u1,u2), (v1,€)),u1,v1 € Vi,uz € Va U e, (ug,v1) € By

((ul,uQ), (6,'02)),11,1 € V1 U €, U2,V2 € VQ, (UQ,UQ) € EQ

((u1,€), (v1,v2)),ur,v1 € Vi,ug € Vo, (u1,v1) € Eq

((e,u2), (v1,v2)),u1 € Vi, u2,v2 € Va.(uz,v2) € By
Note that we do not add (e, €), and edges between skip nodes are relegated to those from the same
original graph that are connected. In addition, edges to and from a skip node to the original graph

are allowed when there are edges in a graph with the specified vertex. Note that the direction of the
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edges is important when determining the adjacency matrix A. We can use information about other
edges on the way into a skip node, but the probability of taking a possible edge back to the original
product graph must be uniform.

Given our augmented similarity functions S§; and S%, we can determine initial scores for un-
matched vertices and construct a slightly larger adjacency matrix. The augmented vertex similarity
function allows us to bias particular nodes to stay unmatched. For example, for molecules, we
might define the similarity of hydrogen (usually a node with a single edge) with € to be higher so
that we end up merging too many nodes. Both our adjacency matrix A and similarity vector c are
of larger dimension to accommodate the new nodes and connections, but our computation proceeds
as before, producing a new vertex similarity matrix. Now, however, we can solve the assignment
problem on the matrix shown in Equation 5.1 since we have scores for keeping vertices unmatched.
Finally, because this is still essentially a matrix of vertex similiarities, we can incorporate the same

neighborhood information used in graph edit distance to amplify vertex similarities.

5.4 Summary Graphs
A summary graph for a collection of graphs is a graph where each vertex (or edge) represents
one or more vertices (or edges) from the graphs it summarizes. More formally, given a collection
of graphs {G1 = (V1, E1),...,G, = (V,,, Ey)}, asummary graph G = (V, £) is a graph such that
there exists a surjective map M : Uje[1,, Vi — V where

For each v € V}, there exists a vertex v* € V such that M (v) = v*.

For each e = (v1,v2) € E;, there exists an edge e* = (v}, v;) € £ such that M (vy) = v
and M (ve) = v3.

For each v* € V, there exists v; € V; such that M (v*) = v.

For each (v;,v5) € &, there exists v1 € V;, vy € V; such that (vy, v2) € E;.
As with graph matchings, there are many M which satisfy the criteria, and therefore, there are
many summary graphs for a given collection. For example, M might map every vertex to a distinct
vertex in the summary graph, generating a summary graph that is the union of the individual graphs
from the collection. Thus, while we can be assured of the existence of a summary graph for any
collection, it is important that we have a method to compare and evaluate these summaries.

A summary graph of two graphs can be generated from a graph matching in a straightforward
manner. If nodes are matched, we create a new compound node; if not, we create individual nodes
representing the unmatched nodes. More formally, given a graph matching h : V' — V" for graphs

G, G, we can create a summary graph G by defining the surjective map M : V u V' — V as
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(v,h(v)) v eV and v is in the domain of h
Mv)=<3w v € V when v is not in the domain of i

v v € V' and v is not in the range of h

With a higher-dimensional matching relation, we could compute a summary graph from it in a
similar manner.

As mentioned earlier, the ability to measure the quality of a summary graph is important for gen-
erating meaningful and succinct summary graphs. We extend the notion of similarity (Section 5.3)
to define a maximal summary graph. However, we must first extend our similarity functions to
compare more than two simple vertices or edges. We define a compound vertex as a vertex in a
summary graph that represents one or more vertices (each of which may also be compound) from
the graphsx being summarized. A compound edge is similarly defined as representing one or more

edges from the graph collection.

5.4.1 Compound Similarity Scoring

With only two graphs, the initial similarity of two vertices is obtained via our user-defined
similarity function. However, when the two vertices being compared are from summary graphs, this
similarity can be computed in various ways. Formally, we have the node similarity function S, and
two compound vertices v and v/, each from different intermediate summary graphs. We know that v
and v’ both represent a nonempty set of vertices from the initial graph collections: v = (v;;,...v;,,)
and v’ = (vj,,...v;,). Note that m need not be equal to n. We wish to define Sy : V — R, and we
can choose to compute the overall similarity as an average of all pairs, the sum of similarities for
the best matches, or even the single best similarity. Because this may again be domain-specific, we
allow users to define the combination method. In general, an overall average would seem to make

the most sense as we are effectively determining the similarity of an entire set of vertices.

5.4.2 Construction

Solutions to the assignment problem become NP-Hard in dimensions higher than two [22].
Thus, extended graph matching approaches to compute the best matching for n graphs become
impractical. Instead, we use hierarchical agglomeration to build the summary graph using a series
of pairwise matchings. At each step, we combine two graphs by computing their matching and build
a summary graph according to the matching. Recall that hierarchical clustering requires similarities
for each pair of graphs. Because computing matchings for all pairs is inefficient, we use heuristics
based on feature vectors of the node data to order the agglomeration. Given this ordering, we
compute each of the matchings in the hierarchy to construct a summary graph. Note that for some

collections, combining all graphs may not be desirable if the clusters are far apart.
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A summary graph contains data from all of the graphs it represents, and its vertex and edge
similarities are a combination of the comparisons of the individual data elements using the combined
similarity scoring. Each time we merge two graphs, we create a new graph with compound vertices
and edges. Each label becomes a combination of the labels from the individual vertices; note that
we can eliminate duplicates for succinctness. From the map M for vertices, we infer the edges
based on those correspondences; when two pairs of vertices are matched and there is an edge in
both of the input graphs, we create an edge in the summary graph.

From the assignment matrix, we can generate a node ordering for each match. In order to
generate a global sequence of node merges, we use the graph ordering in combination with the node
orderings for each graph merge. Note that each node merge is pairwise so it may take multiple
merges to create the final summary vertex. Thus, we must enforce a tree ordering so that, even if
the score for merging a node is maximal, we delay adding it until its dependent merges have been
accomplished. From only this tree, we can generate any level of summarization. As detailed in

Section 5.5.2, this feature is useful for interacting with the summary graph.

5.5 Visualizing and Interacting with Graph Summaries

While constructing a summary graph is the initial step toward understanding a collection of
graphs, visualizing and interacting with this new summary is critical to obtaining insight. We built
the GraphSum system to help users explore summary graphs. There are a variety of visual cues that
we can use to represent features of a summary graph with respect to the graph collection. From
node labels to edge thickness, we can both capture common information and unique features. At the
same time, the ability for users to interact with and edit the summaries is also important. Beginning
with layout and initial display, we have developed a variety of tools that allow users to interactively

compare and edit summary graphs.

5.5.1 Layout and Display

One key concern when generating a summary graph is the layout of the result. This graph is
a combination of graphs from the input collection that may or may not have existing layouts. We
use the dot and neato algorithms from the graphviz library [53] to layout directed and undirected
graphs, respectively. We try to preserve layouts by incorporating existing position information,
although since the algorithms we use are not intended for dynamic layouts, the layouts will change.
We use animation to show how these changes occur.

Recall that a node of a summary graph can represent nodes from one or more of the input graphs.
Each of these nodes can have a separate label, although there is often overlap in the set of labels. We

can use both the cardinality and labels of the nodes represented to render a summary node. When
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displaying a node, we can use saturation or lightness to indicate the number of nodes summarized.
When a summary node represents nodes with different labels, we can also display each label. Color
can be used to indicate which nodes match graphs from the initial collection.

As with summary nodes, a summary edge can encode an edge from one or more input graphs.
Here, the thickness or opacity/saturation of the edge can be used to indicate how many graphs in
which the edge appears. In addition, edge labels can be used as text or to generate styled edges (e.g.,
via colors) linked to a legend. Some styles might be extended to encode the contents of a summary
edge.

Of course, when there exist domain-specific techniques for visualizing graphs, it is useful to
utilize them by extending the original technique to capture summary information. At the same time,
a summary graph could violate constraints of the technique; the summary “operation” is not closed.
For example, a summary graph of a set of planar graphs may not itself be planar. Thus, any layout

or rendering that depends on planarity could not be extended to work in general.

5.5.2 Controlling the Amount of Summarization

Recall that the key method for condensing graphs is merging nodes and edges when they match.
Thus, in order to control the amount of summarization, we can manipulate the number of merges
that take place. Because we have a measure of the similarity between nodes, we can order merges
according to this measure. For a single merge step, this is straightforward. However, we would
like to be able to explore and control the node merges over the entire hierarchy. Although we
have scores for the merges at each step, in this situation, we have an added constraint: merging a
previously merged node with another node cannot be allowed if the first merge has not occurred. For
this reason, we must construct an ordering that takes both measures into account; we cannot simply
order by count. From this ordering, we allow the user to control the amount of summarization via
a linear control. The user selects the index of the order, and we construct the summary graph based
on all of the merges. See Figure 5.4 for an example of this control.

To construct the global order, we need the forest that corresponds to all merges that we allow
from our summary graph construction. Each node in the forest is a node resulting from a merge
of two nodes. Then, for each node, we have a weight that corresponds to the measure of similarity
from the matching. A node is a leaf if it is a merge of two nodes from the initial graphs. To compute
the order, we use an iterative algorithm with a priority queue. The queue is seeded with all of the
leaves of the tree and ordered by the similarity measure. At each step, the highest scoring node
is removed from the queue, added to the final order, and if all siblings of the selected node have
already been added to the final order, the parent node is inserted to the priority queue. For example,

the summary graph shown in Figure 5.5 is summarized by the global order tree shown in Figure 5.6.
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Figure 5.4: The settings for GraphSum allows users to control summarization, adjust vertex and
edge coloring, and toggle the display of individual graphs.

5.5.3 Color

Color provides a significant visual cue, and we take advantage of it to compress the information
from many graphs into our more compact summary graph. We can highlight both nodes and edges
by a representative color for the original graph to which they belong. However, as Figure 5.7a
shows, too much color can over-saturate the visualization and provide a more complex display to
understand. Using a threshold to determine when color should be used, we can highlight unique
differences, as shown in Figure 5.2b which only uses color when the feature is seen in the selected
original graphs. Users can also focus on these graphs specifically by hiding other graphs (Fig-
ure 5.7c). The threshold and selection controls are available via the settings interface shown in

Figure 5.4.

5.5.4 Manipulating the Summary Graph

Because we are using a heuristic approach to compute the summary graphs, we cannot expect

that summary graphs will always conform to a user’s preference. For this reason, we provide the

ability to control parameters including the amount of compacting the algorithm does and the amount

to which vertex degree should influence diffusion. In addition, we provide the ability to explicitly

define which nodes should be joined or split. We provide three operations for users to manipulate
nodes:

1. Break. Split each selected vertex by creating two new compound vertices that split the data

from the vertex.
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(c) Hiding Graphs

(b) Highlighting

Figure 5.7: Continued.
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2. Join. Join the selected vertices by creating a new compound vertex that combines the data
from each selected vertex.
3. Reinforce. Does not change the current graph but specifies that the selected vertices should
remained merged in further operations.
Note that because of the diffusion, rerunning the algorithm conditioned to the nodes that were
selected means that every blemish need not be corrected. Often joining or splitting single nodes can
help influence the other desired results. An example is shown in Figure 5.8.

An initial approach for controlling merges can be accomplished by manipulating the order of
summarization. If we remove a merge, we effectively split the node. If we choose to join two nodes,
we can introduce a new join. Note that for both of these operations, we have constraints on the insert
into the order from the tree; we cannot introduce a merge before the nodes to be merged have been
merged. However, we do not have any measure on the quality of the merge. We currently introduce
the merge into the order at the currently selected level of summarization. Another option might be
to take the score of such a merge from the computed scores.

We use animation to point users to the specific changes. Specifically, when changing the amount
of summarization, the animation can highlight the splits or merges. In addition, it can help provide
continuity when the layout of the graphs changes. For nodes that are not split or merged, we use
linear interpolation between a node’s old location and its new location. When a node is split, we
show the new nodes as they move from the original position to their new positions. When a node
is joined, we show the old nodes as they move from their original positions to their new common

position.

5.6 Case Studies
5.6.1 Metabolic Pathways

In biology, the pathways that drive life by chemical processes are important components in our
understanding of cells. During each process, compounds (metabolites) are processed into other
compounds via different enzymes and substrates. Even for the same process (e.g., glycolysis or
the citric acid cycle), the components involved can vary across organisms. Understanding these
differences can help in comparing organisms, especially with respect to their evolutionary history.
Each pathway can be abstracted to only the orders of different enzymes to simplify this process [67].
Enzymes can be identified by their EC numbers, four-number tuples separated by dots, which are
organized hierarchically [161]. Thus, the similarity between enzymes can be determined based on
how many numbers match (e.g., 1.2.3.4 and 1.2.3.5 are quite similar while 4.3.2.1 and 4.5.6.7 are
close to completely different).

In our examples, we used the Kyoto Encyclopedia of Genes and Genomes (KEGG) database
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which provides a vast array of information on metabolic pathways in addition to other genetic
data [80]. Specifically, they store known pathway information for many different organisms. We
used data from the Citric Acid Cycle for eight organisms, ranging from bacteria to humans, to
generate a graph summary. After recovering the enzymes and their relationships, we looked up
the EC numbers, again using KEGG, to generate labelled graphs. Figure 5.2 shows an example of
a resulting summary graph. Note that complex organisms share most enzyme relationships, while
simpler organisms like yeast and E. coli have many differences from the common components in the
summary. This visualization has the potential to help scientists determine evolutionary relationships,
including full phylogenies, via greater information than a single number that measures similarity as

in [67].

5.6.2 Visualization Pipelines

For programs that have a modular structure, it is often useful to visually examine this structure.
Visualization pipelines or workflows are a good example of structured programs: they are defined
as graphs, where modules correspond to computational functions and edges represent how data
flow through the modules. Given a collection of visualization pipelines, being able to summarize
them can help users better understand existing approaches. For example, one can examine different
contexts where volume rendering is used, and even contrast these against other techniques such
as isosurface extraction. An important application in this context is in teaching. Given that we
can summarize a set of pipelines that are produced by different students as a solution to some
visualization assignment, we can derive both a “consensus” solution as well as identify the unique
differences in individual solutions.

We investigated a set of visualization pipelines built with the VTK [83] modules in the Vis-
Trails system [153]. The pipelines were built by students to accomplish a well-defined homework
task, so we can expect significant overlap in their solutions. However, we would also expect that
some students will use different approaches to obtain their results. In order to compare modules
(our vertices), we used the VTK inheritance hierarchy and module interfaces to estimate similarity.
For example, vtkStructuredPointsReader and vtkDataSetReader both inherit from
vtkDataReader and share similar ports so they have a greater similarity than vtkActor and
vtkMapper, which do not share a common base class. Figure 5.5 shows a summary graph for eight
different visualization workflows. We can see that most students followed the same core structure,
but the filters used varied and some added additional features. The summary graph combines similar
modules like vt kActor and vtkLODActor to condense the number of nodes, but with color, we

can see which student(s) used the LOD version.
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5.6.3 Molecular Structures

Understanding the differences between molecules can be important in a variety of fields from
pharmaceuticals to physics. Molecules are composed of atoms and the chemical bonds between
them. With similarity graphs, we can understand the similarities and differences in families of
molecules. One application of this is searching for substructures that may be important in combating
diseases. For example, knowing that a certain class of molecules shows an ability to resist or attack
viruses or bacteria can aid researchers searching for clues to produce vaccines or drugs.

We examined the NIH’s AIDS Antiviral Screen dataset of chemical structures for compounds
that have been checked for evidence of anti-HIV activity.! The dataset contains the molecular
description of 42,390 such compounds, including all atoms and bonds. Note that unlike metabolic
pathways and visualization pipelines, molecules are undirected graphs. This allowed us to test
the impact of directed edges on our algorithm; note that this allows more alignments. In order
to search for similar molecules, we used a feature vector containing the atom counts. From this
rough clustering, we were able to test groups of similar molecules by building summary graphs.
Our similarity function for nodes ranked exact matches highest, but also ranked atoms in the same
group in the periodic table higher than those in other groups. Some groups produced poor results
because the connectivity structure was very different despite a similarity in atom counts, which was

not unexpected. Figure 5.1 shows an example of one of the summary graphs obtained.

5.7 Discussion
Like any graph visualization, a summary works best in conditions where the graphs that are
involved are somewhat compact and sparse, allowing a user to see node labels and individual
edges. There are methods to draw more compact representations of graphs by condensing regions of
graphs, and those same techniques can be utilized for summary graphs as well. In addition, specific
regions of the summary may correspond to a specific subset of the collection, and we can use this

information to guide this condensation.

5.7.1 Overlaps
A second condition that can be used to evaluate the utility of the summary is the amount of
overlap between the set of input graphs. Intuitively, graphs that are very dissimilar cannot be nicely
summarized and much of their display will be independent. Those which contain large proportions
of similar nodes are more likely to produce more informative summaries. We propose a measure

of the amount of overlap in a graph collection in a pairwise manner. Recall that for each pair of

nttp://dtp.nci.nih.gov/docs/aids/aids_data.html
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graphs, we can compute the overall score between two graphs. From the entire hierarchy, we can
compute an overall score that represents an overlap between graphs. The higher the overlap score,
the better the summarization. This overlap score can also be used to determine whether adding a
given graph to an existing summary is worthwhile.

One method for dealing with a collection where the overall overlap is low is to separate it into
smaller subcollections and then construct summaries. Clustering could be used for the initial binning
and the summaries created for each cluster. Note that there is little to be gained from a summary of

two graphs that have a very small overlap, so it makes sense to construct separate overlaps.

5.7.2 Multi-Edge Graphs

For graphs that allow multiple edges defined between the same vertices (and in the same di-
rection for directed graphs), we can extend our definition of summary graph to allow multiple
edges between nodes. Note that most generally, we can allow arbitrarily many edges between
pairs of vertices of the summary graphs as we do not place any restrictions on how vertices must be
summarized. To accomplish this, we can solve an assignment problem for matching edges between
graphs; when edges correspond, we can merge them; when they do not, we leave them separate.
In some cases, to reduce clutter, it may be reasonable to force edges to always match, meaning the
number of edges between two vertices in the summary graph will not exceed the largest cardinality

of edges between individual vertices in the original graphs.

5.7.3 Scoring
The scoring of nodes (and edges) plays an important role in the quality of the summary graphs.
If the scoring functions are poor, we cannot expect that the summary graphs will be well-collected.
The default score is one of equality of the data contained in the nodes. However, there are many
cases where this scoring can be improved to take into account known similarities. For example, it
is known that atoms in the same group (family) share similar properties and should be considered
more similar than two atoms from different groups. Such information can be encoded into a node

similarity function for atoms.

5.7.4 How Much Summarization?
Note that the maximal summary graph need not reflect the best visual summary. Consider a
dangling node that attaches to different nodes on each graph. While we can merge that node to

create a more succinct display, it may be more intuitive for a user to see these nodes separately.



CHAPTER 6

SUPPORTING REPRODUCIBLE AND
REUSABLE PUBLICATIONS

6.1 Bridging Workflow and Data Provenance
Using Strong Links

As the volume of data generated by scientific experiments and analyses grows, it has become
increasingly important to capture the connection between the derived data and the processes as well
as parameters used to derive the data. Not surprisingly, the ability to capture the provenance of data
products has been a major drive for a wide adoption of scientific workflow systems [38, 39, 47]. By
tracking workflow execution, it is possible to determine how an output is derived, be it a data file,
an image, or an interactive visualization.

However, the common practice of connecting workflows and data products through file names
has important limitations. Consider, for example, a workflow that runs a simulation and outputs a file
with a visualization of the simulation results. If the workflow outputs an image file to the filesystem,
any future run will overwrite that image file. If different parameters are used, or the simulation code
is improved and the updated workflow is run, the original image is lost. If that image file were
managed with a version control system, the user could retrieve the old version from the repository.
However, if the user reverts the output image to the original version, how does she know how it
was created? Since there is no explicit link between the workflow instance (i.e., the workflow
specification, parameters, and input files) and the different versions of its output, determining their
provenance is challenging. If we examine the provenance logs for the workflow runs, we will see
that there are two runs that create the specified image file, one with the older simulation routine and
the second with the newer one. We may be able to check timestamps in order to guess, but this is
far from ideal. This problem is compounded when computations take place in multiple systems,
and recording the complete provenance requires tying together multiple workflows through their
outputs and inputs. As files are overwritten, renamed, or moved, provenance information may be
lost or become invalid. As a result, maintaining an accurate provenance graph which ties processes
and the data they manipulate requires a time-consuming and error-prone process.

While version control systems effectively track changes to files, such systems can only deter-

mine that changes have occurred, not how they came about. Provenance-enabled workflow systems,
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on the other hand, are able to capture how changes came about but do not provide a systematic
mechanism for maintaining data provenance in a persistent fashion, i.e., given a file it may not
be possible to determine which workflow instance generated it. We posit that a tighter integration
between scientific workflows and file management is necessary to enable the systematic maintenance
of data provenance.

In this section, we propose a new framework which, by coupling workflow provenance with
the versioning of data produced and consumed by workflows, captures the actual changes to data
as well as detailed information about how those changes came about. A persistent store for the
data ensures that old inputs and results can be retrieved, and we can tie each version of a result
to the provenance that details how the result was generated. We introduce the notion of a strong
link which reliably captures the connection between a workflow instance and data it derives, and
describe an algorithm for generating these links. Instead of relying on the user or ad-hoc approaches
to automatically derive file names, strong links are identifiers derived from the file content, the
workflow specification, and any parameters. As a result, they accurately and reliably tie a given
workflow instance and its input and derived data.

Besides simplifying the process of maintaining data provenance, this approach has several
benefits. By automatically capturing versions of data, it seamlessly supports exploratory tasks
without requiring users to curate the data (e.g., managing the file names). It also provides a general
mechanism for the persistent caching of both intermediate and final results—this is in contrast to
previous approaches which supported only in-memory caching [8, 17]. The caching mechanism
can be used not only to speed up workflow execution, but also to support check-pointing for
long-running computations. In addition, the use of a managed data repository allows the creation
of workflows that are location agnostic: unlike workflows that point to files in the filesystem, work-
flows can be shared and run in multiple environments unchanged. Last but not least, our approach
is general and can be combined with existing workflow systems. We describe our implementation
in the VisTrails system and present a case-study, where the persistent data provenance infrastructure
was deployed in a real application: managing data products in the context of the ALPS project [5].!

We begin by introducing our persistence scheme in Section 6.1.1, and then show how it can
be applied to support data provenance in Section 6.1.2. In Section 6.1.3, we describe how our
approach can be used to extend workflow caching strategies and for publishing scientific results.
In Section 6.1.4, we describe how managed repositories can be shared among multiple users for
both data access and caching. We describe an implementation of our scheme in Section 6.1.5, and

describe its use in the ALPS project in Section 6.1.6. We highlight related work in Section 6.1.7

"http://alps.comp-phys.org
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before concluding with future directions in Section 6.1.8.

6.1.1 Persisting Data Provenance Links

By integrating file management and version control with workflows, we aim to maintain stronger
provenance by referencing data in a versioned, managed repository instead of via file paths (see
Figure 6.1). This repository stores input, output, and intermediate data products, and can be used
to facilitate caching and data sharing.”> Similar to version control systems, this repository stores
multiple versions of files, but to connect to workflow provenance information, it also contains
metadata that represent identity and annotations.

Our approach to this problem is user-driven. As a user designs a workflow, she can specify
which results (or input data) should be persisted in the repository. As we describe in Section 6.1.5, a
possible implementation is to provide special workflow modules that can be connected to the output
ports of modules whose results should be persisted. When users run workflows using data from
the repository, we can ensure that future provenance queries can not only identify the data involved
in the computations but also retrieve the actual data. In addition, given provenance of a workflow
execution, we can reproduce it using the exact versions of the data used in the original execution.
In these provenance applications, there is no need to archive data according to specific path-name
conventions or remember to keep each separate version of the input data. Also, the automatic
and transparent identification and versioning require little user involvement in maintaining these
stronger links.

In what follows, we start by describing a scheme to derive reliable and representative ids for
linking data products and their provenance. We also present the file-management infrastructure and
the attributes we maintain in the managed repository, the differences in our storage depending on
the role of the data, and how data should be updated and stored. Note that while we discuss file

management, the techniques described can be easily extended to directories as well.

6.1.1.1 Deriving Strong Links

Our approach to deriving strong links was inspired by the in-memory caching mechanism
proposed by Bavoil et al. [17] and the content hashing used in version control systems including
git [56]. We use the signatures of workflows to identify intermediate and output data derived by
the workflows, and content hashing to identify input data.

The central idea of caching in workflow systems is that any self-contained piece of a computa-

tion can be reused if the computation is deterministic and its structure, input data, and parameters do

2In the remainder of the text, we use the terms “repository” and “managed store” interchangeably.
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not change. For dataflows, we can formalize this concept by defining the upstream subworkflow of
a module m in a workflow W as the subgraph induced by all modules v € W for which there exists
a path from u to m in W (including m itself). Note that the existence of such a path implies that
the results of © may have an effect on the computation of m. Then, if any module or connection in
the upstream workflow of m changes, we must recompute m. Conversely, if the upstream workflow
does not change, we need not recompute m, and can reuse results from a previous execution. Thus,
for any other workflow W’ that contains an upstream subworkflow U that also exists in W, we can
reuse the intermediate results of U from W in W',

Caching thus requires the identification of equivalent subworkflows. This would be expensive if
we needed to perform graph matching, but we instead use a recursive serialization of the upstream
workflow that allows us to quickly check the cache. We define the default label of a module m,
£(m), as the serialization of its type and parameter values ordered by parameter name. Note that
individual module types can override this default label to better capture module state; for example,
a module linked to a specific file would define its label based on the contents of the file—if that
file changes, the label changes. Similarly, the label of a connection ¢, £(c), is the serialization of
the types of the ports it connects. Then, a canonical serialization of the upstream subworkflow of a

module m is defined recursively as

S(m) =4(m) + + S(source(c)) + £(c)
c e UC(m)
where UC(m) is the set of upstream connections into m sorted by £(c), source returns the source
(upstream) module of the given connection, and - is concatenation. The upstream signature is the
SHAT1 hash of this serialization.

Figure 6.2 shows an example workflow and the serialization of the upstream subworkflow of
the ReadCensusField module. Note that the upstream subworkflow will not always be a tree,
but the recursive serialization always branches like it is. This allows two topologically different
upstream subworkflows to have the same signature, but when this happens, the computations must
be identical. For example, consider a subworkflow with a single module m that connects upstream
to two other modules. Whether those two modules connect upstream to a single module n or to
two identical modules that both do the same computation as n will not affect the downstream
computation of m. In addition, by using memoization, we can keep this computation efficient
despite the added branching.

For input files, we define the signature as the hash of its contents. Then, if the file’s contents
change, its signature changes even though its path or other identifying information may not. Note

that we store the content hash separately as well so a file that is the output of one workflow and
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the input of another can be identified in both ways. Thus, the signature provides a strong link that
contains a precise and accurate representation of the workflow fragment that derived a given result.
As we describe in Section 6.1.2, we use this signature as the means to link a data product to the

computation that derived it.

6.1.1.2 File Management

We are concerned with three roles for files in workflows: inputs, outputs, and intermediate data.
Note that a single file may fill different roles depending on the workflow in which it is used; an
output from one workflow may be used as the input to another. Thus, the distinction between roles
does not affect the use of data in any situation, but rather determines what metadata can be captured,
stored, and utilized. An output file can store information about the process that created its contents
but an input file selected from the filesystem cannot. Similarly, an intermediate file need not be
annotated at all if it is used for caching, but files that are to be used again should be named and
tagged to allow users to query for them.

Each file in the repository is uniquely identified by a combination of an id and a version string,
and annotated with user-defined and workflow-generated information including its signature and
content hash. By allowing a collection of files to share the same id, a reference to that id can
be configured to always retrieve the latest version. This is helpful to a user who wishes to run a
workflow with the latest version of a data set but does not wish to manually configure which is the
latest version. On the other hand, reproducing a workflow execution exactly requires a particular
version of the data, and thus identifying data by both the id and version guarantees that the exact
data will be retrieved.

6.1.1.2.1 Input files. An input file must reference an existing file, whether it is already in
the managed store or only in the local system. Upon selection, we either use the existing identifier
(from the store), or create a new unique identifier for the data. Note that we can detect whether the
contents of a file already exist in the repository by computing the hash and checking for that hash
in the repository. By default, changing the contents of the file creates a new version while changing
the selected file creates a new id and version. Users can configure this behavior if necessary.

6.1.1.2.2 OQutput files. The main difference between output and input files is that input files
are not affected by changes in the rest of the workflow. For outputs, any changes to the part of the
workflow that is upstream of the output file may affect its contents. In addition, it is less clear when
an output is a new entity and when it is a new version of an existing entity. When only parameters
change, the output is likely a tweaked version of the original, but when the input files are switched,
the output is more likely new. By default, we create new versions for each execution but allow users

to change this behavior in order to version the outputs. Like inputs, output files can be both stored
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in the persistent store for future reference and use and saved to a local file for immediate use or
inspection.

6.1.1.2.3 Intermediate files. An intermediate file is exactly the same as an output file except
that it is not a sink of the workflow; execution continues after the file is serialized and the contents
are used in further calculations. Such files can be used as checkpoints for debugging, but they
can also be used to cache computational results in order to speed further analyses. Note that
an intermediate file need not be manually annotated or named; it is defined by its signature—the
serialization of the upstream subworkflow.

6.1.1.2.4 Customization. It may be necessary for users to configure the behavior of the
persistence of files in the store in order to link similar files or maintain separate identities for data
products. By selecting an existing reference and linking it to a local file, a user can tie the reference
to a new local file. In addition, users can decide whether files are only persisted in the managed
store or if they are also saved to local files. If they use a local file, they can configure whether the
contents of the file should take precedence or whether a new version should always be obtained
from the repository. Similarly, if the local file contents change, a user can choose whether those

changes should always be persisted to the managed store.

6.1.2 Linking Provenance
Below we discuss how we exploit the strong provenance links to answer important queries. We
also suggest how stronger links from data to provenance can be accomplished. With the advent of
extensible file formats (e.g., HDF5%), it is possible to include direct links to provenance or even
the provenance itself with the data. Finally, we present an application of the improved results from

provenance queries in publishing scientific results.

6.1.2.1 Algorithms for Querying Linked Provenance

Perhaps the most basic provenance query is one that retrieves the lineage of a data product,
specifically what input data and computations contributed to the result [121]. With only the prove-
nance of the execution, a user may find the path to an input but even if a file still exists at that
location, there is no guarantee it has not been modified. To protect against such problems, users
store the exact data used with the provenance, manually archive all of the data, or add archival as
part of the workflow process [106]. With our file management scheme, we can store the id, version,
and content hash of any input as part of the provenance. Then, for lineage queries, we can return

references that can be accessed from the provenance store using the id and version and verified using

3http://www.hdfgroup.org/HDE5
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the content hash. Most workflow systems that support provenance capture also provide support for
determining lineage queries [121].

Note that the content hash also gives us a way to locate the provenance of files that are un-
managed and may have been moved to a different location or had their names changed. We begin
by hashing the contents of the file, then query the managed store for this content hash. The resulting
entries have ids and versions for which we can then search our provenance. Because the provenance
contains these stronger references, we can also identify and return the input data via the managed
store. An outline of this algorithm is shown in Figure 6.3.

Because we abstract workflows from a specific filesystem, the provenance of the workflow
executions can be tied directly to the exact inputs and outputs. This ensures better reproducibility
because the exact content can be retrieved; with links to the file names, we have no guarantee that
the files at those locations were unchanged. To reproduce a workflow execution, we retrieve the
workflow specification and execute it using the data pointed to by the managed file references.
Recall, however, that some workflow specifications may include only data identifiers and not the
versions of the data used. This allows a user to rerun a workflow with the latest data which is
not what we desire for reproduction. Thus, we need to examine the provenance for the execution,
retrieve the exact version specified by the provenance and modify the specification.

Another provenance query that our strong links solves is the lineage of data when the input
of one workflow is the output of another. In the Second Provenance Challenge [122], teams were
asked to answer provenance queries from outputs that were the result of running data through three

consecutive workflows. One issue was the identification of data as they were transferred from the
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Figure 6.3: Given a file which has been moved and renamed, we can use the managed file store and
provenance to first locate the managed copy, and we can locate the original input files as well.
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output of one workflow to the input of another. With the managed store, we allow users to designate
inputs as the output of another workflow by assigning them the same id. Thus, when the first
workflow changes, the second workflow will incorporate the changed results. Even if users do not
use the same identifiers, we can perform provenance queries using the content hashes to link data

across different workflows.

6.1.2.2 Embedding Provenance with Data

We have demonstrated methods to find the provenance of data by searching a provenance store
for the hash of a given file. However, such methods depend on access to the provenance store.
An alternative approach is to embed provenance with the data itself. With many file formats
including HDF5 supporting annotations, it is possible to embed provenance information or links
to provenance with the data. In directories of data, we can add an additional file that contains the
same information. Then, verifying data or regenerating a data product can be accomplished by
examining the provenance stored with the data.

We have developed a schema that allows a user to either link to or directly encode provenance
information in a file. Information represented in this schema can be serialized to XML and embed-
ded in an existing file or saved to a separate file. Figure 6.4 shows an example of a workflow using
this schema. While a provenance link can refer to a local file, we provide support for accessing a
central repository of provenance information. With a central repository, if the file is transferred to a
different user or machine, the link remains valid. With a local reference, it will be more difficult to

link back to provenance information.

6.1.3 Using Strong Links

6.1.3.1 Caching

Caching the intermediate results of workflow computations is useful to avoid redundant com-
putations. If a user executes a workflow, we can reuse any intermediate results from that first
execution in future executions [17]. Using our file management for intermediate files, we are able
to add support for caching files to existing in-memory caching which means that cached data can
be persisted across sessions. With this extension, we can also consider how to share cached data
between different users as well. We begin by reviewing the in-memory workflow caching algorithm
and then introduce an extension for caching across sessions using the managed file store.

6.1.3.1.1 In-memory caching. Using the upstream signatures, we build a cache by labeling
each intermediate result with its upstream signature. Dataflow computation proceeds in a bottom-up
fashion; a sink (a module with no outgoing connections) requests data from all of its inputs which

may in turn request data from their inputs and so on. Our caching algorithm works by hijacking this
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request for data and checking if the upstream subworkflow has already been calculated, returning
the result from the cache when it exists instead of doing the computations.

Before executing any workflow, we compute the upstream signatures for each module in the
workflow. Note that the recursive computation of all signatures is easily memoized. During work-
flow execution, before a module is set to execute, we check if that module’s upstream signature
exists in the cache. If it does, we return the result from the cache. If not, we proceed with the
computation, and after the module finishes executing, we store the results of the computation in the
cache labeled by the upstream signature.

There are some modules that may not perform deterministic calculations. We allow the module
developer to designate such modules as noncacheable. After a workflow with one or more such
modules executes, we immediately remove all modules downstream of such a module from the
cache.

6.1.3.1.2 Persistent caching. We can extend the in-memory caching techniques to persist
results to disk, allowing users to cache results across sessions or share intermediate results. Note
that we need a serialization of the results of any module type in order to mirror the entire in-memory
cache. In addition, saving every intermediate result to disk can needlessly slow down computation.
For these reasons, we have developed persistent caching as a user-driven technique for intermediate
files. We allow the user to connect a new module to the workflow that designates that the upstream
subworkflow of the module should be cached. For non-cached computation, this module receives a
file and passes it downstream. However, when the module finds that the signature associated with a
needed file exists in the cache, it retrieves the linked file without doing the upstream calculations.

This allows any module with serializable results to be persisted in a disk-based cache, but we
can improve this process using the file management scheme described in Section 6.1.1.2. Using this
scheme, additions to the cache are managed as intermediate files and cache lookup is a simple query
to the store. In addition, users need not identify or in any way configure the intermediate files used
for caching; the store assigns identity and stores signature information automatically. When the
upstream workflow of the caching module changes, the cache lookup fails, and the store adds a new
version of the intermediate file. Thus, a user does not lose any intermediate results when exploring

different workflow configurations.

6.1.3.2 Publishing

When publishing scientific results, it is important to describe the lineage of a result. Providing
data sets and computer code allows scientists to verify and reproduce published results and to
conduct alternate analyses. In the past years, interest in this subject has increased in different

communities which led to different approaches for publishing scientific results (see [45] for an
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overview). Our schema for embedding provenance with data can be combined with these ap-
proaches. In particular, it simplifies the process of packaging workflows and results for publication.
In addition, we have also implemented a solution that allows users to create documents whose digital
artifacts (e.g., figures) include a deep caption: detailed provenance information which contains the
specification of the computational process (or workflow) and associated parameters used to produce

the artifact [126].

6.1.4 Sharing Data

We have shown that maintaining workflow data in a managed store allows us to quickly locate
existing data, store accurate provenance, and cache intermediate results across sessions. Additional
benefits can be gained from having multiple users share the repository. For example, if one user
has run a time-intensive step of a calculation, making that result available to other users allows
them to proceed with later steps without each recomputing the same result. Similarly, if one
user has already added a specific file to the store, other users with access to that store can access
the data without locating and copying the same data. Below, we describe both centralized and
decentralized approaches for sharing managed data across systems, and note that the advantages

and disadvantages mirror those encountered with version control systems.

6.1.4.1 Centralized Storage

With a central store, users may either read and write directly to a common repository or transfer
data between a local repository and a central repository. If users have access to a common disk, it
may be possible to simply store all managed files and metadata in a single store on that disk. Then,
all users will access the same repository and automatically have access to each other’s input, output,
and intermediate files. However, this solution may become impractical for large numbers of users.
A second problem is that whenever users do not have access to that disk, they are unable to access
their managed data.

When a central store is added to individual local repositories, a user will always have access
to the local repository but can also retrieve from and add to a central repository. This allows a
set of geographically distant users to share common data. In addition, it allows users to maintain
and access local data even when disconnected from the central store. However, we maintain an
extra copy of the data in this case, and there may be overhead in transferring files, especially if the

distance from the central store is far. In addition, it requires building and maintaining infrastructure.
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6.1.4.2 Decentralized Storage

In a decentralized approach, users would advertise their data and allow other users to transfer
data directly from their repository. A search for a particular piece of data by, for example, name
or signature, would query individual systems instead of one store. If the desired file is found, it is
transferred directly from the source location to the requesting user. Thus, unlike with the central
store, data are only transferred when they are needed. Combined with P2P approaches, the transfer
may be distributed over several machines. However, if a particular machine is offline, the data
generated on that machine may not be available.

A hybrid approach that supports a central table of files but decentralized storage would allow
users to locate files even if they were not currently accessible. Users would not push data to or pull
files from the repository but rather register the available files as they are added and whenever those

data are requested, directly transfer it to the requesting machine.

6.1.5 Implementation

We added file management to the VisTrails system [153] by introducing a new package that
included module types for input, output, and intermediate files and directories. The package also
includes code to set up the managed store as well as navigate and update it through configuration
dialogs. Our goal was to add this support in a way that changes little in workflow structure while
providing ways for users to directly locate and identify data during workflow construction. Thus,
users that normally only configure the path of an input file can do exactly the same for a managed
input file module. In addition, adding an output file has fewer requirements; a user only needs to
connect the data to be persisted to a managed output file module. The system generates unique
ids and signatures automatically. At the same time, we provide methods for annotating data and
configuring their storage and use.

The interface of our prototype implementation is shown in Figure 6.5. We define three new
module types for files: ManagedInputFile, ManagedOutputFile, and ManagedInter—
mediateFile and their equivalents for directories. As described in Section 6.1.1.2, all share a
common set of attributes and options. The key difference between inputs and outputs (or intermedi-
ates) is that outputs have a workflow-dependent signature. Thus, an input file needs to be manually
identified by the user while an output file can be totally identified by its upstream signature.

A user can select a file by either referencing an existing identifier or by creating a new reference.
When referencing a file that already exists in the managed store, the user can search the repository
for metadata including name, tags, user id, date added, or a specific id or version. When creating a
new reference, the user may provide a name and tagging information, and for input files, the local

file that contains those data.
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By default, an identifier for an input file changes when a new local path is selected but does
not change if the contents of the file change. In the second case, we maintain versions of the data,
but update the “current version” whenever the contents changes. Thus, any user that wishes to use
those data in another workflow will always get the latest data by referencing that identifier. Note
that users may choose to link data to an existing reference even if that reference was initially linked

to different data.

6.1.5.1 Storing Data

We use the git version control system [56] to manage files because it stores content inde-
pendent of filesystem structure, and an SQLite database* to store its metadata. Thus, when the
managed store is initialized for the first time, we create a git repository along with a database
to store file information. While a reference is created and annotated during workflow design, the
data are not persisted until execution. Upon execution, we save the file in the repository with its
id (a UUID) as its name. We use git to add and commit the version of the file, and retrieve
the content hash (git uses SHA1) and the version id (a SHA1 hash of the commit). Then, we
update the database with the id, version, content hash, signature (if applicable), name, tags, user,

and modification date.

6.1.5.2 Finding Data

In order to locate existing data, we provide methods to match content hashes and signatures as
well as query the store for specific metadata like name or tag information. When a user selects a file,
we can check the repository to see if that content has already been added by querying the database
for the selected file’s hash. If it does exist, we can prompt the user to reuse the existing reference.
Additionally, when we execute a workflow, we can check to see if an intermediate file’s signature
matches one that already exists; if so, we can reuse that file instead of computing the upstream
workflow. Finally, the configuration for managed file selection includes a free-text query field for
the managed file database. A user can query for a specific name or tag to locate matching files that
can be used as references. This is accomplished by querying the SQLite database and retrieving

the matching id and, optionally, version.

‘http://www.sqlite.org
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6.1.6 ALPS Case Study
We have used the file management solution implementation for VisTrails with the ALPS project’
(Algorithms and Libraries for Physics Simulations) [5]. ALPS is an open source software package
that makes modern, high-performance algorithms for the simulation of quantum systems available
to experimental and theoretical condensed-matter physicists. Typically, a simulation with ALPS

consists of three steps:

e Preparing the input files describing the model to be simulated.

¢ Simulating the model using one of the ALPS programs. Such a simulation can take be-
tween minutes on a laptop for very small test cases and weeks on large compute clusters or
supercomputers for demanding applications.

e Collaboratively evaluating the “raw” simulation output by exploring and analyzing the data,

comparing it to experimental data, and creating figures.

In one specific use case, we have simulated a quantum Heisenberg spin ladder, a model for
quasi-one-dimensional copper oxide materials where magnetic excitations are suppressed at low
temperature by an energy gap A [37]. The purpose of the simulation is to determine this gap A
by calculating the magnetic susceptibility y as a function of the temperature 7" and fitting it to
the expression x(7) ~ % exp~ /T [150]. We first use the “looper” program [146] of ALPS to
calculate x(7") and then use the exploration features of VisTrails to explore the data and find the
optimal range [T}nin, Tmaz| for the nonlinear fit. The results of this exploration are shown in Figure
6.6.

Persistent caching and provenance adds a number of important advantages for the ALPS users:

e Caching persistent files on a shared filesystem means that after one physicist runs the sim-
ulation, her colleague can modify the evaluation part of the workflow and explore the data
without having to redo the time-intensive simulation.

o Identifying the cached files with the workflow signature avoids potentially critical mistakes
of using old simulation results when input parameters to the simulation change. In our
experience, simulations have often been recomputed only to ensure that the data have been
produced with the latest version of codes and input files.

¢ Embedding provenance information in the data and figures gives immediate access to the
provenance including any aspect of the simulation a physicist might wish to know. Since
most projects involve collaborations with other scientists—often at different institutions—

facilitating the exchange of data is very valuable. A common source of confusion is incom-

Shttp://alps.comp-phys.org/
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green modules were executed. The results of a parameter exploration of the fitting range (b).
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plete documentation of data sent to collaborators. Embedded provenance information has
been invaluable in making remote collaborations more efficient.

e Decoupling the executions of different parts of the workflows using persistent data enables
physicists to explore data without the need to always rerun the entire workflow—while still
having the workflow provenance accessible when needed.

In Figure 6.6, we show one ALPS workflow along with plots resulting from an exploration of
the fitting range parameter. The modules colored in blue, including the time-consuming simulation
module “AppLoop”, were not run when this workflow was executed to create the plots because
the output of the simulation had previously been persistently cached. Only the evaluation part
of the workflow was re-executed when the fit range [Tynin, Tmaz] Was modified. Note that the
SimulationID module is striped blue and yellow; this is because it has two outgoing connec-
tions, one used in a file stored in the persistent cache and the other as part of a computation using
the in-memory cache. Changing its value or structure would thus invalidate both cached results and

all others downstream.

6.1.7 Related Work

Data provenance consists of the trail of processing steps and inputs that led to the creations of
a given data object. Tracking changes to files and entire directory structures is well-studied, and
version control systems have been developed exactly for this purpose [36, 140]. However, such
systems can only determine that changes have occurred, not how they came about. More recently,
version control systems that focus on tracking content and directory structure separately have been
developed (see e.g., [56]). Such systems identify files with hashing, and if duplicate files exist, the
content is stored only once in the repository.

A number of workflow systems have been developed to help automate and manage complex
calculations. The structure and abstraction provided by such systems have made them appealing
to a wide assortment of scientific domains. Many of these systems [81, 145, 153] have included
provenance capture to document the process and data used to derive data products [38, 47]. Standard
provenance captured by these systems, however, is not sufficient to identify exactly which workflow
generated a specific file. In fact, in recent exercises to investigate requirements for querying and
integrating provenance information, the lack of effective means to identify intermediate and final
results of workflows has been identified as an important challenge in provenance management [105,
122, 123]

Techniques have been developed to track provenance in databases [27]. These track fine-grained
provenance, i.e., changes to individual data items. In contrast, our approach is targeted to (whole)

files. In future work, we plan to investigate how we can adapt our system to utilize database
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provenance given encapsulated changes.

There is a significant amount of work with workflows that access and maintain curated data.
In these cases, the provided ids or URIs are usually guaranteed to exist, and thus provenance
information with them. Plale et al. have examined the issues involved in maintaining and cataloging
large meteorological data, and noted the importance of allowing users to search and access this
data [120]. Simmbhan et al. have proposed data valets as a workflow-based method for facilitating
the management of stores on the Cloud [136]. Note that if data for computations come from or are
persisted to a curated source, a separate managed store is not required to ensure access to those files.
However, maintaining local copies of these files does allow users to run workflows even when they
cannot connect to the store.

For curated scientific data, the identification of those data is important. There are standards
for such identification including LSID [125] and DOI [116]. Our primary goal is orthogonal to
these: we aim to maintain strong links between data and their provenance. We are not concerned
with registering ids for our local persistent stores and use UUIDs to identify data. Identifying
data by content hashes has been accomplished using the MD5 and SHA1 hashes. Hashing has
also been used in the context of secure provenance to maintain the confidentiality and integrity
of provenance [60]. We use hashing to both identify and search for content as well as compute
signatures for upstream subworkflows.

The problem with maintaining the data with workflows has been examined before. Some
systems have provided specific modules for file management as part of workflow execution [106].
For example, after generating a data product, the result is not only displayed but also archived in a
specific location or disk. This approach works well for static workflows, but for exploratory tasks,
archival is not often included. The cacher package for R® provides a way to export verifiable
statistical analysis and data in a tamper-proof scheme that utilizes hashing [118].

While we developed our store to aid users who use local files as data sources, our discussion
of sharing the data in these stores overlaps many issues that have been considered. There already
exist a number of solutions for managing scientific data on the grid and in cloud environments.
GridFTP [6] and storage resource managers [134] have been developed to efficiently access data
sets by utilizing networked resources. Such solutions can help provide faster access to data and

infrastructure for transferring data across persistent stores.

Shttp://www.r-project.org
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6.1.8 Summary

We have presented file management infrastructure that can be integrated with workflow systems
to provide strong links to data in provenance information. In addition, we have discussed how such
links can be used to solve provenance queries, facilitate persistent caching, and impact scientific
publishing. Finally, we have described our implementation of this system in VisTrails and its use in
the ALPS project.

One important aspect that we have not addressed is how the persistent store should be managed.
In theory, keeping all of the data manipulated by workflows would ensure full reproducibility,
but this is impractical for large amounts of data. In future work, we plan to investigate different
strategies for determining when data can be purged from the store; for example, cached data that
has not been annotated. While our current implementation supports a rich class of queries over
the information in the repository, we would also like to support queries that involve workflow
specification and the data involved—for example, finding a workflow with a ParseCensusData
module that accesses the census2010.dat file.

Another area for future study is the automatic identification of intermediate files for caching.
While users can identify important way points, it can be tedious to add such modules to a large
collection of workflows. By examining the timestamps of module execution in provenance, we may
be able to determine which steps are time-intensive and could benefit from caching. Also, the size
of the intermediate result may also be important; if a large file is generated by a time-intensive step,
but the next step strips unneeded information away, it may be more efficient to store the file after

the extra information has been removed.

6.2 The Provenance of Workflow Upgrades

As tools that capture and utilize provenance are accepted by the scientific community, they must
provide capabilities for supporting reproducibility as systems evolve. Like any information stored
or archived, it is important that provenance be usable both for reproducing prior work and migrating
that work to new environments. Just as word processing applications allow users to load old versions
of documents and convert them to newer versions and data processing libraries provide migration
paths for older formats, provenance-enabled tools should provide paths to upgrade information
to match newer software or systems. Furthermore, it is important to capture and understand the
changes that were made in order to run a previous computation in a new environment. One goal in
documenting provenance is that users can more easily verify and extend existing work. If a given
computation cannot be translated to newer systems or software versions, extensions become more
difficult.

Workflow systems have made significant strides in allowing users to quickly compose a variety
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of tools while automatically capturing provenance information during workflow creation and ex-
ecution [39, 47]. Such systems enforce a structure on computations so that each workflow step is
easily identifiable. Unfortunately, while these systems provide interfaces to a variety of routines and
libraries, they are limited in their ability to upgrade workflows when the underlying routines or their
interfaces are updated. It is well-known that software tends to age [115]. As requirements change,
so do implementations and interfaces. This is more starkly obvious in the case of workflows, where
different software tools from a variety of different sources need to be orchestrated. Figure 6.7
shows an example of different modifications that can be applied to workflow modules, including
the addition of new parameters, the merger of two modules, and the replacement of the underlying
computation. Still, many workflow systems do store information about the versions of routines as
provenance. We seek to use this information to design schemes that allow users to migrate their
work as newer algorithms and systems are developed.

There are two major approaches when dealing with upgraded software components and the
documents or applications that utilize them. It is often important to maintain old versions of libraries
and routines for existing applications that rely on them. In this case, an upgrade to a library should
not replace the existing version but rather augment existing versions. Such an approach is common
in system libraries and Web services where deleting previous versions can render existing code
unexecutable. However, when we can safely upgrade the document or application to match the new
interfaces, we might modify the object to utilize the new version. This second approach is more
often used for documents than for existing applications or code, because there exists an application
that can upgrade old versions. While the first approach is important to ensure that the original work
can be replicated, because workflows are only loosely coupled to their implementations and live
in the context of a workflow system, this second approach is sensible for them. Furthermore, as
Figure 6.8 illustrates, by capturing the provenance of the upgrades, we know exactly what has been
changed from the original version and how it might be reverted.

In order to accomplish the goal of upgrading an existing workflow, we must solve the challenges
of detecting when upgrades are necessary and applicable, as well as dealing with routines (modules)
from disparate sources. Because workflow systems often store information about the modules
included in workflows, it is possible to detect when the current implementation of a module differs
from one that was previously used. However, since they come from different sources, each source
may define or release upgrades differently. Thus, we cannot hope to upgrade workflows atomically;
we need to consider specific concerns from each source. Finally, while some upgrades may be
automated or specified by a developer, others may require user intervention. When the user needs

to be in the loop, it is important to make the process less tedious and error-prone.
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We propose a routine for detecting when a workflow is incompatible with current installed
software and approaches for both automated and user-defined upgrades. Our automated algorithm
combines default routines for cases when only implementations changes with developer-defined
routines, and uses a piecewise algorithm to process all components from each package at once.
This allows complex upgrades, like replacing a subworkflow containing three modules with a single
module. For user-defined upgrades, we suggest how a user might define a single upgrade once
and apply it automatically to a collection of workflows. Finally, we discuss how upgrades should be
considered as an integral part of the information currently managed by provenance-enabled systems.
It is critical that we can determine what steps may have led to an upgraded workflow producing
different results from the original. We describe our implementation of this upgrade framework in

the VisTrails system [153].

6.2.1 Workflow Upgrades

6.2.1.0.1 Incompatible workflows. After a workflow is created, changes to the underlying
implementation of one or more of its modules may make the workflow incompatible. Figure 6.9
shows an incompatible and a valid version of a workflow. Because module registry information is
usually not serialized with each workflow, it can be difficult for users to define upgrades for obsolete
workflows. As shown in the figure, although we may lack the appropriate code to execute a module
or display the complete set of input and output interfaces for a module, we can display each module
with the subset of ports identified by connections in the workflow. This is useful to allow users to
edit incompatible workflows in order to make them compatible with their current environment.

6.2.1.0.2 Provenance of module implementation. Workflow systems offer mechanisms for
capturing provenance information both about the evolution of the workflow itself and each execution
of a workflow [47, 48, 129]. Information about the implementations used for each workflow module
may be stored together with either evolution or execution provenance (i.e.,, the execution log).
However, note that if the interface for a module changes, it will often require a change in the
workflow specification. Thus, while the execution provenance may contain information about the
versions used to achieve a result, any change in the interface of a module may make reproducibility
via execution provenance alone difficult. By storing information about the implementations (like
versions of each module) as evolution provenance, we can connect the original workflow to all
upgraded versions.

Workflow evolution can be captured via change-based provenance [48], where every modifi-
cation applied to a workflow is recorded. The set of changes is represented as a tree where nodes
correspond to workflow versions and an edge between two nodes corresponds to the difference

between the two corresponding workflow specifications.
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Any workflow instance can be reconstructed by applying the entire sequence of change oper-
ations from the root node to the current version. For upgrades, we can leverage this approach to
record the set of changes necessary to update an old workflow to a new version. Note that these
changes define the difference between the two versions, so our provenance will maintain an explicit

definition of the upgrade for reference and comparison.

6.2.1.1 Detecting the Need for Upgrades

To support upgrades, workflow systems must provide developers with facilities to develop and
maintain different versions of modules (and packages) as well as detect and process inconsistencies
when workflows created with older versions of modules are materialized. First, it is important
to have a mechanism for identifying a group of modules (e.g.,, using a group key), as well as a
version indicator or some other method like content-hashing that can be used to identify when
module implementations may have changed. Ideally, any version identifier of a module should
reflect the version of the code or underlying libraries. In fact, we may be able to aid developers by
signaling when their code has changed, alerting them to the need to change the version. Alternately,
developers might link version identifiers to revisions of their code as defined in a version control
system.

Second, we need to tackle the problem of identifying when and where upgrades might be neces-
sary. Upon opening a workflow, the system needs to check that the modules specified are consistent
with the implementation defined by the module registry. As discussed earlier, this usually involves
checking version identifiers but could also be based on actual code. If there are inconsistencies, we
need to identify the type of discrepancy; the workflow may specify an obsolete version of a module,
a newer version, or perhaps the module may not exist in the current registry. In all of these cases,

we need to reconcile the workflow to the current environment.

6.2.1.2 Processing Upgrades

We wish to allow developers to specify upgrade paths but also provide automated routines
when upgrades are trivial and allow users to override the specified paths. The package developer
can specify how a specific module is to be upgraded in all contexts. If that is not possible or
the information is not available for a given module, we can attempt to automatically upgrade a
module by replacing the old version with a new version of the same module. A third method for
upgrading a workflow is to display the obsolete modules and let the user replace them directly.
Our upgrade framework leverages all three approaches. It starts with developer-specified changes,
provides default, automated upgrades if the developer has not provided them, and allows the user to

choose to accept the upgrade, modify it, or design their own.
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6.2.1.2.3 Developer-defined upgrades. Because the modules of any workflow may origi-
nate from a number of different packages, we cannot assume that a global procedure can upgrade
the entire workflow. Instead, we allow developers to specify upgrade routines for each package.
Specifically, we allow them to write a method which accepts the workflow and the list of incompati-
ble modules. A module may be incompatible because it no longer exists in the package or its version
is different from the implementation currently in the registry. A developer needs to implement
solutions to handle both of these situations, but the system can provide utility routines to minimize
the effort necessary for some types of changes. In addition, there may be cases where the developer
wants to replace entire subworkflows with different ones. Changes in the specification of parameter
values may also require upgrade logic. For example, an old version of module may have taken the
color specification as four integers in the [0,255] range, but the new version requires floats in the
[0.0, 1.0] range. Such conversions can be developer-specified so that the a user need not modify
their workflows in order for them to work with new package versions. Note that developer-specified
upgrades may need to be aware of the initial version of a module. For example, if version 0.1 of a
module has a certain parameter, version 0.2 removes it, and version 1.0 adds it back, the upgrade
from 0.1 to 1.0 will be necessarily different than the upgrade from 0.2 to 1.0.

6.2.1.2.4 Automatic upgrades. We can attempt to automate upgrades by replacing the origi-
nal module with a new version of the same module. For any module that needs an upgrade, we check
the registry for a module that shares the same identifying information (excluding version) and use
that module instead. Note that it is necessary to recreate all incoming and outgoing connections
because the old module is deleted and a new module is added. If an upgraded module renames
or removes a port, it is not possible to complete the upgrade. We can either continue with other
upgrades and notify the user, or rollback all changes and alert the user. Also note that if two
connected modules both require upgrades, we will end up deleting and adding at least one of the
connections twice, once for the first module replacement and again for the second module upgrade.
Finally, we need to transfer parameters to the new version in a similar procedure as that used with
connections. See Figure 6.10 for an example of an automatic upgrade.

6.2.1.2.5 User-assisted upgrades. While we hope that automatic and developer-specified
upgrades will account for most of the cases, they may fail for complicated situations. In addition, a
developer may not specify all upgrade paths or a user may desire greater control over the changes.
In such a scenario, we need to display the old, incompatible pipeline, highlight modules that are
out-of-date, and allow the user to perform standard pipeline manipulations. One problem is that,
because we may not have access to the version of the package that was used to create the workflow,

we may not be able to display the module correctly for the user to interact with. With VisTrails,
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we can display the basic graph connectivity as shown in Figure 6.9, but we may not have entire
module specification. Our display is therefore a “recovery mode” where the workflow is shown but
cannot be executed or interacted with in the same way as a valid version. Once users replace all old
modules with current versions, they will able to execute the workflow and interact with it. We can
aid users by providing high-level actions that allow them to, for example, replace an incompatible
module with a new, valid one.

In addition, while users may be willing to perform one or two upgrades manually, it would
be helpful if we are able to aid users by automating future upgrades based on those they have
already defined. Workflow analogies provide this functionality by allowing users to select existing
actions including upgrades and apply them to other workflows [130]. Because analogies compute a
soft matching between starting workflows, they can be applied to a variety of different workflows.
Thus, for a large collection of workflows, a user may define a few upgrades and compute the rest

automatically using these analogies.

6.2.1.3 Provenance Concerns

Given a data product, we cannot hope to reproduce or extend the data product without knowing
its provenance—how it was generated. If our provenance information includes information about
the versions of the modules used, we can use that to drive upgrades. Note that without version
information, we may incorrectly determine which upgrades are necessary. Thus, the provenance of
the original workflow is important to define the upgrade.

At the same time, we wish to capture the provenance of the upgrades. When users either run
old versions of workflows or upgrade and modify these versions, it is important to track the changes
both in the execution provenance and in the workflow evolution provenance. By noting the specific
module versions used in the execution provenance, we can better support reproducibility. We need
to ensure that the versions recorded are exactly the versions executed, not allowing silent upgrades
to happen without being noted in the provenance. Similarly, whenever a user upgrades a workflow,
the changes that took place should be noted as evolution provenance so that subsequent changes
are captured correctly. See Figure 6.8 for an example of captured provenance information that is
relevant for upgrades.

As a workflow evolves over a number of years and is modified by a number of users, it is
important to track the provenance of this evolution. Upgrades may be critical changes in workflow
development and often occur when a new user starts to revise an existing result. By keeping track
of these actions, we may be able to identify how, for example, inconsistencies in results may have
arisen because of an upgrade. In addition, we do not lose links as workflows are refined. Without

upgrades, a user may create a (duplicate) workflow rather than reuse an existing one. If that occurs,
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we lose important provenance of the original workflow and related workflows.

6.2.2 Implementation

We have implemented the framework described in Section 6.2.1 in the VisTrails system. Below,
we describe this implementation.

In VisTrails, when a workflow is loaded (or materialized), it is validated against the current
environment: the classes defining the modules and the port types for each module. To detect whether
modules have changed, we begin by checking each module and ensuring the requested version
matches the registry version. Next, we check each connection to ensure that the ports they connect
are also valid. Finally, we check the parameter types to ensure they match those specified by the
implementation. If any mismatches are detected, we raise an exception that indicates what the
problem is and which part of the workflow it affects. Note that if one problem occurs, we can
immediately quit validation and inform the user, but if we wish to fix the problems, it is useful to
identify all issues. Thus, we collect all exceptions during validation, and pass them to a handler.

We attempt to process all upgrades at once, with the exception of subworkflows which are
processed recursively. To this end, we sort all requests by the packages that they affect, and attempt
to solve all issues one package at a time. This way, a package developer can write a handler to

process a group of upgrade requests instead of processing each request individually.

6.2.2.1 Replace, Remap, and Copy

Note that an upgrade that deletes an old module and adds a new version discards information
about existing connections, parameters, and annotations. In order to maintain this information as
well as its provenance, we extended VisTrails change-based provenance with a new change type
(or action) that replaces the original module, remaps the old information, and copies it to a new
version of the module. This ensure that we transfer all relevant information to the new version
and maintain its provenance. The new action extracts information about connections, parameters,
and annotations from the old module before replacing it, and then adds that information to the new
module. Note that, because interfaces may change, we allow the user to remap parameter, port, or

annotation names to match the new module’s interface.

6.2.2.2 Algorithm
Formally, our algorithm for workflow upgrades takes a list of detected inconsistencies between
a workflow and the module registry and produces a set of actions to revise the workflow. We

categorize inconsistencies as “missing”, “obsolete”, or “future” modules, and this information is

encoded in the exception allowing developers to tailor upgrade paths accordingly. We begin by
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sorting these errors by package identifier. Then for each package, we check if the package has
a handler for all types of upgrades. If it does, we call that handler. If not, we cannot hope to
reconcile “missing” modules. For obsolete modules, we can attempt to automatically reconcile
them by replacing them with newer versions. For future modules, we can attempt to downgrade
them automatically, but usually we raise this error to the user.

Automatic upgrades work module by module, and for each module, we first check to see if
an upgrade is possible before proceeding. An upgrade is possible if the module interface has not
changed from the version specified by the workflow and the version that exists on the system. We
check that by seeing if each connection and parameter setting can be trivially remapped. If they
can, we extract all of the connections and parameters before deleting all connections to the module
and the module itself. Then, we add the new version of the module and replace the connections and
parameters. All of these operations are encoded as a single action.

For developer-defined upgrades, we pass all of the information about inconsistencies as well as
the current state of the workflow to the package’s upgrade handler. The handler can make use of
several capabilities of the workflow system to minimize the amount of code. Specifically, we have a
remap function that allows a developer to specify how to replace a module when interface changes
are due to renaming. In addition, developers can replace entire pieces of a workflow, but doing so
might require locating subworkflows that match a given template. Many workflow systems already
have query capabilities, and these can be applied to facilitate these more complex upgrades. As with
automatic upgrades, these operations are encoded as a single action.

If automated and developer-defined upgrades cannot achieve a compatible workflow, a user can
define an upgrade path. Most of this process is manual and mirrors how a user might normally
update a workflow. Until the workflow is compatible with the current environment, the workflow
cannot be executed, giving users a well-defined goal. Upon achieving a valid workflow, we can save

the user’s actions and use workflow analogies [130] to help automate future upgrades.

6.2.2.3 Subworkflows

To handle subworkflows, both validation and upgrade handling are performed recursively. Thus,
we process any workflow by first recursing on any subworkflow modules, processing the underlying
workflows, and then continuing with the rest of the workflow. However, our upgrades must be
handled using an extra step; if we update a subworkflow, we must also update the module tied to that
subworkflow to reflect any changes. For example, a subworkflow may modify its external interface
by deleting inputs or outputs. Thus, we must upgrade a module after updating its underlying

subworkflow.
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6.2.2.4 Preferences

While upgrades are important, we wish to add them without interfering with a user’s normal
work. Besides the choice between upgrading or trying to load the exact workflow with older
package versions, a user may also wish to be notified of upgrades and persist their provenance
in different ways. Specifically, if old versions exist, a user may wish to always try use them,
automatically upgrade, or be prompted for a decision. If not, a user has a similar selection of
options: never upgrade, always upgrade, or be presented with the choice to upgrade. When a
user wants to upgrade, he may choose to persist the provenance of these upgrades immediately or
delay saving these changes until other changes occur. If a user is browsing workflows, it may be
reasonable to only persist upgrade provenance when the workflow is modified or run. This way,
a user can examine a workflow as it would appear after an upgrade, but the persistence of these
upgrades is delayed until something is changed or the workflow is executed. Users might also want
to have immediate upgrades where the upgrade provenance is persisted exactly when any workflow

is upgraded, even if the user is only viewing the workflow.

6.2.3 Discussion

While perfect reproducibility cannot be guaranteed without maintaining the exact system con-
figuration and libraries, we believe that workflow upgrades offer a sensible approach to manage
the migration from older workflows to new environments. Note that provenance allows us to
always revisit the original workflow, and we can run this version if we can reconstruct the same
environment. By storing the original implementations along with workflows, we may be able to
reproduce the original run, although changes in the system configuration may limit such runs.
Thus, coupling provenance with version control systems could ensure that we users can access
previous package implementations. However, when extending prior work in new environments,
upgrades also serve to convert older work to more efficient and extensive environments. In addition,
managing multiple software versions is a nontrivial task, and even with a modern OS package
management system, installing a given package in the presence of conflicts is actually known to be
NP-Complete [41]. Thus, we cannot expect in general to easily run arbitrarily old library versions.
Because workflows abstract the implementation from the computational structure, the results of
upgrades are more likely to be valid.

Some workflow systems use Web services or other computational modules that are managed
externally. In these cases, we may not know if the interface or implementation may have changed,
so it is harder to know when upgrades are necessary. However, the services may make version
information available or the workflow system may be able to detect a change in the interface [21].

In this case, we are not able to leverage developer-specified upgrade routines, but we should be able
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to accomplish automatic or user-specified upgrades.

When using change-based provenance to track upgrades, a user can see both the original evo-
lution as well as the upgrades and progress after the upgrades. See Figure 6.11 for an example.
It may be useful to upgrade an entire collection of related workflows while retaining the original
provenance of exploration, but adding the upgraded versions may lead to a complex interface. We
believe that restructuring the tree to display the original history but with links to the upgrades might
be useful. Finally, we emphasize that the change-based model for the workflows provenance in
VisTrails is an attractive medium in which to incorporate the upgrading data. Since the upgrades are
represented as actions, they are treated as first-class data in the system, and so the extensive process
provenance capabilities of VisTrails can be directly used. For example, upgrade actions can then be

used in queries or incorporated into statistical analyses [93, 129, 130].

6.2.4 Related Work

Workflow systems have recently emerged as an attractive alternative for representing and manag-
ing complex computational tasks. The goal behind these systems is to provide the utility of the shell
script in a more user-friendly, structured manner. Workflow systems incorporate comprehensive
metadata which, among other advantages, facilitates programming and distribution of results [95],
reproducibility [48], allows better execution monitoring [104], and provides potential efficiency
gains [17].

As the auditability and cost of generating results has increased, managing the provenance of
data products [137] and computational processes [48] has become very important. Together, these
ideas allow users to obtain a fairly comprehensive picture of the programs and data that were used to
generate final results. However, these descriptions are, in a sense, static. In general, the processes are
assumed to stay the same for the lifetime of the workflow, and, as we have argued before, longevity
necessarily introduces changing requirements and interfaces. Our approach serves to detect and
manage these changes to underlying implementations while still keeping the attractive features of
workflow systems described above.

It is well known that longevity introduces novel challenges for maintainability of software
systems, in particular in the presence of complicated dependencies [115]. There have been a
number of approaches to the problem of managing software upgrades, in particular, in understanding
and ensuring safety properties of dynamic updates in, for example, running code or persistent
stores [20, 43]. In small-scale environments, the solutions tend to involve the description (or
prediction) of desired properties to be maintained [98]. For deployments at the scale of entire insti-
tutions or large computer clusters, they tend to involve careful scheduling, and staged deployment

of upgrades [4, 32].
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Component-based software has evolved to separate different concerns in order to provide wide-
ranging functionality. While usually at a lower level than workflow systems, component objects
use well-defined interfaces and are substitutable [142]. For this reason, it is also important to track
the component evolution and versioning [139]. The term “dependency hell” was coined to describe
problems with compatibility when replacing components with new versions. McCamant and Ernst
describe methods to identify such incompatibilities [99] while Stuckenholz proposes “intelligent
component swapping” to update multiple components at once [139].

Web services are another kind of component-based architecture. Since the standards do not ad-
dress the evolution of Web services, developers must rely on design patterns and best practices [21].
Specifically, adding to an interface is possible, but changing or removing from that interface is
not. Andrikopoulos et al. formalize the concepts of service evolution [11]. There are a variety
of approaches that seek to develop mechanisms to version Web services including using a chain
of adapters [79] and hierarchical abstraction [148]. In order to publish such versions, services are
distinguished via namespaces or URLs. In contrast to much of the work for component upgrades,
our approach seeks to add capability by updating older workflows rather than only maintaining
backward compatibility.

In this chapter, we focus on the problem of providing a means of describing upgrade paths
so that a workflow can be automatically updated, its upgrade history appropriately recorded, and
its execution made sufficiently similar to the one before the upgrade. Such problems exist even
when lower-level upgrades are successfully deployed. In that sense, our mechanisms for coping
with upgrades are closer in spirit to mechanisms for automatically updating database queries after

relational schemas have changed [35].

6.2.5 Summary

We have proposed a framework for workflow upgrades and described its implementation in the
VisTrails system. Our framework handles three types of upgrades—automated, developer-specified,
and user-defined, and we have discussed how these can be supported in a systematic fashion. We
have also shown how the framework leverages provenance information to accomplish upgrades and
produces updated provenance detailing the changes introduced by the upgrades. Our implementa-
tion is currently available in nightly releases of VisTrails, and we are planning to incorporate it into
the next major release of VisTrails.

One area that we would like to explore further is the interface for involving the user in upgrades.
The “replace module” action allows users to specify how an upgrade is accomplished, and we
believe a user might drag a new module onto the incompatible module to replace it. At the same

time, if the routine specifications do not exactly match, the user should be able to specify the
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remapping, similar to the method available to developers in their code. We might extend this
functionality to allow the user to specify the connections visually.

In addition to capturing the provenance of upgrades and using this information to guide future
user-driven, manual upgrades, we believe we might also use this provenance for further analysis.
For example, we might be able to examine the actions used in upgrades to mine rules for packages
whose developers have not defined upgrade paths. It may also be interesting to try to analyze

performance or accuracy changes in workflow execution after upgrades.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation has presented a set of techniques for both managing and using provenance
information. From linking data with provenance to suggesting possible workflow completions, the
methods blend infrastructure with applications. In doing so, this work looks beyond normal capture
and archival of provenance information to using those data to drive new ideas and to improve the
access to details of algorithms, implementations, and experiments.

Chapter 3 introduced a method for reusing the provenance from a collection of workflows to
derive suggestions as users built workflow structures. This solution allows novice users to browse
the set of possible completions for ideas while other users can benefit from a reduced number of
operations to complete a pipeline. One of the remaining questions is how this technique can be
extended to support parameter selection. Because parameters often depend on input data (or other
parameters), it may be best to present possible ranges or compute the workflows with a variety of
different parameters so users can evaluate the results. Another opportunity is changing the algorithm
to be more query-driven, utilizing the framework from Chapter 4, to show full results rather than
generalizing skeletons.

The next chapter, Chapter 4, presents a technique for indexing provenance and workflow graphs.
Extending feature-based graph indexing techniques, it seeks to address more exploratory queries
where the number of results might be large as well as queries that are not exactly specified. Using
summary graphs, it reduces the number of costly verification steps which require a solution to
subgraph isomorphism. In order to efficiently evaluate queries where the connectivity may not be
fully specified, transitive closure for verticies must be checked, and a solution where connectivity
can be indexed may aid in speeding up those queries further.

In Chapter 5, summary graphs are introduced as a method for browsing and comparing col-
lections of graphs, including sets of provenance graphs. Here, the summary graph encapsulates
similarities and differences using a heurisitic graph matching algorithm in a hierarchical agglomer-
ation. The graph matching algorithm allows users to control the level to which nodes are merged,
meaning the display can be tweaked in an intuitive manner. The algorithm works well for similar
graphs with some differences, but for larger, more heterogenous collections, the pieces will share

less overlap. This might be addressed by using clustering to develop groups of similar graphs and
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generate a set of summary graphs instead of a single one. The scaling both of the number of graphs
and size of graphs are something which deserves more investigation.

Chapter 6 addresses longevity concerns related to using provenance in publications. These
include preserving and linking data with provenance information as well as providing upgrade paths
so older results can be used and compared using updated hardware or algorithms. Referring to
data with filenames is problematic since both the location and data might change. The persistence
framework records information about data content and computational signatures while transparently
managing and versioning the data so they can be later retrieved. Workflow upgrades use information
about versions of workflow modules to determine when they may be out of date. Given an older
version, there are three types of upgrades that can be used: automatic, developer-defined, and
user-defined. Provenance is maintained throughout so the original and new versions are main-
tained. These solutions are important for scientific publication because reviewers and readers can
better understand and validate experiments and computations when full provenance is available for
reproduction and reuse. In the future, sharing both managed data and upgraded algorithms is an
important concern, especially given the growing size of the data involved in scientific calculations

The presented techniques are designed to allow for more efficient knowledge discovery, and each
recognizes the changing nature of scientific exploration from ideas through publications. Prove-
nance captures the scientific process, the exploration and ideas that lead to published results. For
this reason, it is valuable information that can be used to further scientific discovery, but efficient
algorithms to process large collections of provenance are needed. This dissertation outlines several
solutions for dealing with collections of provenance, ranging from query support to completion
infrastructure. Scaling these approaches for the growing amount of data and provenance will be an

important direction as this work continues.
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