290 research outputs found

    Soils Varying Importance and Differences

    Get PDF

    The role of research in public relations

    Full text link
    Thesis (M.S.)--Boston Universit

    A maximum entropy approach to multiple classifiers combination

    Get PDF
    In this paper,we present amaximumentropy (maxent) approach to the fusion of experts opinions, or classifiers outputs, problem. Themaxent approach is quite versatile and allows us to express in a clear, rigorous,way the a priori knowledge that is available on the problem. For instance, our knowledge about the reliability of the experts and the correlations between these experts can be easily integrated: Each piece of knowledge is expressed in the form of a linear constraint. An iterative scaling algorithm is used in order to compute the maxent solution of the problem. The maximum entropy method seeks the joint probability density of a set of random variables that has maximum entropy while satisfying the constraints. It is therefore the “most honest” characterization of our knowledge given the available facts (constraints). In the case of conflicting constraints, we propose to minimise the “lack of constraints satisfaction” or to relax some constraints and recompute the maximum entropy solution. The maxent fusion rule is illustrated by some simulations

    Personalized PageRank with Node-dependent Restart

    Get PDF
    Personalized PageRank is an algorithm to classify the improtance of web pages on a user-dependent basis. We introduce two generalizations of Personalized PageRank with node-dependent restart. The first generalization is based on the proportion of visits to nodes before the restart, whereas the second generalization is based on the probability of visited node just before the restart. In the original case of constant restart probability, the two measures coincide. We discuss interesting particular cases of restart probabilities and restart distributions. We show that the both generalizations of Personalized PageRank have an elegant expression connecting the so-called direct and reverse Personalized PageRanks that yield a symmetry property of these Personalized PageRanks

    SciRecSys: A Recommendation System for Scientific Publication by Discovering Keyword Relationships

    Full text link
    In this work, we propose a new approach for discovering various relationships among keywords over the scientific publications based on a Markov Chain model. It is an important problem since keywords are the basic elements for representing abstract objects such as documents, user profiles, topics and many things else. Our model is very effective since it combines four important factors in scientific publications: content, publicity, impact and randomness. Particularly, a recommendation system (called SciRecSys) has been presented to support users to efficiently find out relevant articles

    Large Scale Spectral Clustering Using Approximate Commute Time Embedding

    Full text link
    Spectral clustering is a novel clustering method which can detect complex shapes of data clusters. However, it requires the eigen decomposition of the graph Laplacian matrix, which is proportion to O(n3)O(n^3) and thus is not suitable for large scale systems. Recently, many methods have been proposed to accelerate the computational time of spectral clustering. These approximate methods usually involve sampling techniques by which a lot information of the original data may be lost. In this work, we propose a fast and accurate spectral clustering approach using an approximate commute time embedding, which is similar to the spectral embedding. The method does not require using any sampling technique and computing any eigenvector at all. Instead it uses random projection and a linear time solver to find the approximate embedding. The experiments in several synthetic and real datasets show that the proposed approach has better clustering quality and is faster than the state-of-the-art approximate spectral clustering methods

    Spanning Forests and the Golden Ratio

    Get PDF
    For a graph G, let f_{ij} be the number of spanning rooted forests in which vertex j belongs to a tree rooted at i. In this paper, we show that for a path, the f_{ij}'s can be expressed as the products of Fibonacci numbers; for a cycle, they are products of Fibonacci and Lucas numbers. The {\em doubly stochastic graph matrix} is the matrix F=(f_{ij})/f, where f is the total number of spanning rooted forests of G and n is the number of vertices in G. F provides a proximity measure for graph vertices. By the matrix forest theorem, F^{-1}=I+L, where L is the Laplacian matrix of G. We show that for the paths and the so-called T-caterpillars, some diagonal entries of F (which provides a measure of the self-connectivity of vertices) converge to \phi^{-1} or to 1-\phi^{-1}, where \phi is the golden ratio, as the number of vertices goes to infinity. Thereby, in the asymptotic, the corresponding vertices can be metaphorically considered as "golden introverts" and "golden extroverts," respectively. This metaphor is reinforced by a Markov chain interpretation of the doubly stochastic graph matrix, according to which F equals the overall transition matrix of a random walk with a random number of steps on G.Comment: 12 pages, 2 figures, 25 references. As accepted by Disc. Appl. Math. (2007

    Do logarithmic proximity measures outperform plain ones in graph clustering?

    Full text link
    We consider a number of graph kernels and proximity measures including commute time kernel, regularized Laplacian kernel, heat kernel, exponential diffusion kernel (also called "communicability"), etc., and the corresponding distances as applied to clustering nodes in random graphs and several well-known datasets. The model of generating random graphs involves edge probabilities for the pairs of nodes that belong to the same class or different predefined classes of nodes. It turns out that in most cases, logarithmic measures (i.e., measures resulting after taking logarithm of the proximities) perform better while distinguishing underlying classes than the "plain" measures. A comparison in terms of reject curves of inter-class and intra-class distances confirms this conclusion. A similar conclusion can be made for several well-known datasets. A possible origin of this effect is that most kernels have a multiplicative nature, while the nature of distances used in cluster algorithms is an additive one (cf. the triangle inequality). The logarithmic transformation is a tool to transform the first nature to the second one. Moreover, some distances corresponding to the logarithmic measures possess a meaningful cutpoint additivity property. In our experiments, the leader is usually the logarithmic Communicability measure. However, we indicate some more complicated cases in which other measures, typically, Communicability and plain Walk, can be the winners.Comment: 11 pages, 5 tables, 9 figures. Accepted for publication in the Proceedings of 6th International Conference on Network Analysis, May 26-28, 2016, Nizhny Novgorod, Russi

    Semantic distillation: a method for clustering objects by their contextual specificity

    Full text link
    Techniques for data-mining, latent semantic analysis, contextual search of databases, etc. have long ago been developed by computer scientists working on information retrieval (IR). Experimental scientists, from all disciplines, having to analyse large collections of raw experimental data (astronomical, physical, biological, etc.) have developed powerful methods for their statistical analysis and for clustering, categorising, and classifying objects. Finally, physicists have developed a theory of quantum measurement, unifying the logical, algebraic, and probabilistic aspects of queries into a single formalism. The purpose of this paper is twofold: first to show that when formulated at an abstract level, problems from IR, from statistical data analysis, and from physical measurement theories are very similar and hence can profitably be cross-fertilised, and, secondly, to propose a novel method of fuzzy hierarchical clustering, termed \textit{semantic distillation} -- strongly inspired from the theory of quantum measurement --, we developed to analyse raw data coming from various types of experiments on DNA arrays. We illustrate the method by analysing DNA arrays experiments and clustering the genes of the array according to their specificity.Comment: Accepted for publication in Studies in Computational Intelligence, Springer-Verla
    • …
    corecore