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Abstract

The main object of study in this thesis is subgroup discovery, a theoretical
framework for finding subgroups in data—i.e., named sub-populations—
whose behaviour with respect to a specified target concept is exceptional
when compared to the rest of the dataset. This is a powerful tool that conveys
crucial information to a human audience, but despite past advances has been
limited to simple target concepts. In this work we propose algorithms that
bring this framework to novel application domains. We introduce the concept
of representative subgroups, which we use not only to ensure the fairness of a
sub-population with regard to a sensitive trait, such as race or gender, but also
to go beyond known trends in the data. For entities with additional relational
information that can be encoded as a graph, we introduce a novel measure of
robust connectedness which improves on established alternative measures of
density; we then provide a method that uses this measure to discover which
named sub-populations are more well-connected. Our contributions within
subgroup discovery crescent with the introduction of kernelised subgroup
discovery: a novel framework that enables the discovery of subgroups on
i.i.d. target concepts with virtually any kind of structure. Importantly, our
framework additionally provides a concrete and efficient tool that works
out-of-the-box without any modification, apart from specifying the Gramian
of a positive definite kernel. To use within kernelised subgroup discovery, but
also on any other kind of kernel method, we additionally introduce a novel
random walk graph kernel. Our kernel allows the fine tuning of the alignment
between the vertices of the two compared graphs, during the count of the
random walks, while we also propose meaningful structure-aware vertex
labels to utilise this new capability. With these contributions we thoroughly
extend the applicability of subgroup discovery and ultimately re-define it as
a kernel method.



Zusammenfassung

Der Hauptgegenstand dieser Arbeit ist die Subgruppenentdeckung (Sub-
group Discovery), ein theoretischer Rahmen für das Auffinden von Subgrup-
pen in Daten—d. h. benannte Teilpopulationen—deren Verhalten in Bezug
auf ein bestimmtes Targetkonzept im Vergleich zum Rest des Datensatzes
außergewöhnlich ist. Es handelt sich hierbei um ein leistungsfähiges Instru-
ment, das einem menschlichen Publikum wichtige Informationen vermittelt.
Allerdings ist es trotz bisherigen Fortschritte auf einfache Targetkonzepte
beschränkt. In dieser Arbeit schlagen wir Algorithmen vor, die diesen Rah-
men auf neuartige Anwendungsbereiche übertragen. Wir führen das Konzept
der repräsentativen Untergruppen ein, mit dem wir nicht nur die Fairness
einer Teilpopulation in Bezug auf ein sensibles Merkmal wie Rasse oder
Geschlecht sicherstellen, sondern auch über bekannte Trends in den Daten
hinausgehen können. Für Entitäten mit zusätzlicher relationalen Informa-
tion, die als Graph kodiert werden kann, führen wir ein neuartiges Maß
für robuste Verbundenheit ein, das die etablierten alternativen Dichtemaße
verbessert; anschließend stellen wir eine Methode bereit, die dieses Maß
verwendet, um herauszufinden, welche benannte Teilpopulationen besser ver-
bunden sind. Unsere Beiträge in diesem Rahmen gipfeln in der Einführung
der kernelisierten Subgruppenentdeckung: ein neuartiger Rahmen, der die
Entdeckung von Subgruppen für u.i.v. Targetkonzepten mit praktisch jeder
Art von Struktur ermöglicht. Wichtigerweise, unser Rahmen bereitstellt
zusätzlich ein konkretes und effizientes Werkzeug, das ohne jegliche Modi-
fikation funktioniert, abgesehen von der Angabe des Gramian eines positiv
definitiven Kernels. Für den Einsatz innerhalb der kernelisierten Subgrup-
pentdeckung, aber auch für jede andere Art von Kernel-Methode, führen wir
zusätzlich einen neuartigen Random-Walk-Graph-Kernel ein. Unser Kernel
ermöglicht die Feinabstimmung der Ausrichtung zwischen den Eckpunkten
der beiden unter-Vergleich-gestelltenen Graphen während der Zählung der
Random Walks, während wir auch sinnvolle strukturbewusste Vertex-Labels
vorschlagen, um diese neue Fähigkeit zu nutzen. Mit diesen Beiträgen erweit-
ern wir die Anwendbarkeit der Subgruppentdeckung gründlich und definieren
wir sie im Endeffekt als Kernel-Methode neu.
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1 Introduction
Where is the wisdom we have lost in
knowledge?
Where is the knowledge we have lost in
information?

(T. S. Elliot, The Rock)

We live in the age of information, where every aspect of our life leaves
a considerable trail of data [RGR17; RGR18], which becomes a valuable
resource for the understanding the processes that generate them. The modern
techniques of acquisition, however, easily produce an overwhelming amount
of information that quickly becomes inhibitive for the unaided human to
process. It is therefore necessary for the humans to employ tools that can
automatically search for “nuggets” of important information within this sheer
amount of data, and then present them in a form that is easily understandable
to the human. This comes in contrast with the goals of standard machine
learning, where the aim is rather to replace the human in the decision making
process altogether. What is more, then the decision taking is instead left
upon opaque, black-box models, which cannot be easily inspected by humans
to verify their correctness or gain insight on the data. On the contrary, in
this dissertation we put forward a paradigm where the machine takes up
the role of an intermediary whose goal is to describe important parts of the
underlying processes to the humans, thereby helping them take informed
decisions themselves.
Consider, for example, that we study the behaviour of a newly identified

disease in order to find out which sub-populations of patients are more
vulnerable to this disease. Having this information could help us target
research efforts on the vulnerable patients, invest funds to create more
supportive infrastructure like health centres and hospitals, or simply enable
us to educate the affected groups. To identify such sub-populations, we could
first create and study a sample of the numerous patients that were tested
positive for the pathogen. For each patient we would also record important
demographic information (e.g., sex, age, race, etc), medical history (e.g.,
years smoking, possible comorbidities, etc) and other relevant information
(e.g., date of admission); we can also measure the vulnerability of a patient by
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tracking either the number of days until their full recovery or—wherever more
appropriate—whether they survived an infection. This kind of collected data
contains information not only about the usual behaviour of the pathogen,
but also allows to pinpoint sub-populations which stand out with respect
to this usual behaviour. Therefore, this dataset could allow an automated
intermediary to test a collection of several hypotheses, and then present to
the human the one that answers best the original question: What profile
describes the patients which are unusually more vulnerable to the pathogen?
An exemplary answer to this question was given while studying data

gathered from British hospitals early on during the SARS-CoV-2 pandemic.
Platt and Warwick [PW20] report: “Patients of the Bangladeshi minority that
live in London exhibit 2 times higher fatality rate than normal”. Although
there is certainly the potential to use this description as an interpretable
classifier to predict higher fatality rates, the true value of this result lies
in its inherent intelligibility. That is, this description clearly outlines a
vulnerable sub-population of patients, while it additionally interprets the
effect of belonging to this sub-population. Such a description can therefore
be readily conveyed to a domain expert—that need not be a mathematical
specialist—and is thereby actionable: The policy maker among them can
increase facility availability to this minority, the medical personnel can treat
those patients more urgently, while even the general public can be more
cautious when interacting with their more vulnerable fellow citizens. At the
same time, such a result can be a valuable tool in finding potential directions
of future research.

Indeed, a later study [ZP20] identified a small region in the Homo Sapiens
genome that poses a major genetic risk factor for this disease. This haplotype
was highly prevalent in Asians, among which with the highest occurrence (63%
single and 13% homozygous) in people of Bangladeshi genetic origin, thus
explaining the previously observed anomaly in the fatality data. This case
study vividly demonstrates a desirable trait of this intermediary algorithm:
that its output must be an “intelligible” description. Such is a description
whose meaning can be easily understood by a human and it can be easily
conveyed from one person to another, and thus action can be taken based
on it. This notion is different than what both terms of ‘interpretable’ and
‘explainable’ have come to define [RCC+22] in the context of modern machine
learning. An interpretable method refers to one which makes it possible
to discern the mechanism that led from the input to the result, that is, it
is transparent as to how a decision or prediction was made; the opposite
term is un-interpretable, which is synonymous to a ‘black-box’ method (or
model). On the other hand, the goal of explainable methods is to provide
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post-hoc an intelligible result as an alternative to an otherwise black-box
model. From this perspective, an intelligible description, such as the above,
can also function as an interpretable classification model: the decision of
whether a patient is high-risk is based on whether he is Bangladeshi and
Londonese. We hence require that an intermediary algorithm must exhibit
this useful trait.

Requirement R1. Find intelligible descriptions of important parts of the
data.

While seemingly easy to fulfil, this requirement has the profound impli-
cation that in our derivation of an intermediary algorithm we have to let
go of one of the most common mechanisms that power the majority of
standard machine learning methods: that of continuous optimisation. In
contrast to using a set of continuous parameters to combine traits, satisfying
Requirement R1 requires to specify a subset of the data as a sub-population,
which is a typical combinatorial problem. What complicates matters even
more—and in fact substantially—is that it is necessary to search exclusively
among those subsets that correspond to describable sub-populations, since it
is usually impossible to find an exact description from an arbitrary subset of
patients. Thus, our task is placed within the family of constrained combina-
torial problems, which comprises a notoriously hard family of optimisation
problems.

We henceforth refer to any description that corresponds to an interesting
sub-population as a subgroup; this leaves as a natural next step to specify
what renders one subgroup more interesting than another. As previously
motivated, there is valuable information in those particular sub-populations
whose behaviour is deviating from that of the whole population. Such a
behaviour was in our previous example the exceptionally high vulnerability
of the described patients to the pathogen. This establishes that the desired
output of the algorithm we are looking for is in the form of a particular
subgroup, and more specifically one that refers to a sub-population with a
locally deviating behaviour. From this perspective, our task can be described
as named anomalous subset selection, since we require of our intermediary
algorithm to find an outstanding sub-population with a description: an
outstanding subgroup.

Requirement R2. Find a subgroup that exhibits exceptional behaviour.

In fact, we might even advance this requirement one step further. To this
end, note that Requirement R2 implies the reasonable assumption that there
exists a well-defined measure of how exceptional a subgroup is, or, in general,
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an appropriate quality measure for a subgroup. For instance, in our example
we used as such a measure the ratio of fatality rate in the subgroup compared
to the fatality rate over all patients. Once such a concrete measure is specified,
we can further define an optimal subgroup with respect to this measure:
the one that maximises the specified measure. Beside specifying the optimal
subgroup, having such a measure further allows our algorithm to provide
quality guarantees also for the sub-optimal subgroups. In other words, we can
further distinguish different candidates for our desired intermediary algorithm
based not only on the quality of their results, but also on the certainty on
how good these are. Namely, these criteria are i) whether they provide an
optimal subgroup, ii) how efficiently they compute it, or iii) whether they
can provide a bound of how close the quality of their subgroup is to the
optimal.
Each of these quality criteria for our automated intermediary algorithm

has its own merit. Looking past the obvious superiority of the optimal
subgroup, it is also desirable to provide optimality bounds for sub-optimal
results. Consider, for instance, that finding the optimal subgroup requires
prohibitive resources, in which case we would be content with a sub-optimal
subgroup—that would be cheaper to discover—as long as it comes with a
certificate of how close its quality is to the optimal one. In fact, we can
easily construe an example where it might be well preferable to employ an
algorithm that would yield on average lower quality subgroups, but equip
them with such a certificate of quality, than to use some heuristic algorithm
that may on average provide higher quality subgroups albeit never with
quality guarantees. The output of the latter, non-exact algorithm, would be
akin to an educated guess and would therefore convey little to no information
on how much higher the quality of the optimal subgroup is.
This lack of guarantees of the search algorithm can be a substantial

disadvantage. As we recall, the optimal subgroup in our example is the
Bangladeshi minority in London, which is the most vulnerable among all
others; this knowledge justifies the investment of valuable resources to
research this peculiarity or to invest available funds in infrastructure that
would support this sub-population. On the other hand, if we used a non-
optimal algorithm, it would be most likely that it would inform us of another
sub-population that may be more vulnerable than usual, however to a
possibly much lesser degree. This can deteriorate the objectivity, actionability,
trustworthiness and general usefulness of the result in several ways. First and
foremost, it leads to the potential of wasting valuable resources in sub-optimal
causes. Additionally, it does not inform of the potential sub-optimality of
the discovered result, which, in turn, hurts the trustworthiness of the this
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result. Indeed, if a policy maker were to act on this information, it would
be difficult to argue that this favouring of the discovered sub-population
follows exclusively as the result of a sub-optimal algorithm, instead of an
arbitrarily partial choice on behalf of the policy maker. In fact, one could
mistrustfully—or even legitimately—claim that the policy maker had run
this sub-optimal algorithm several times—or alternatively had tried many
sub-optimal algorithms—to then pick out of all results the one most appealing
to this actor.

From a different perspective, an algorithm that provides quality guarantees
can also be used to rule out the existence of a deviating sub-population.
Although not frequent, it is realistically possible that, within the available
sample of the population, no evidence can be found that a (significantly) ex-
ceptional sub-population exists—at least among the sub-populations that we
can described using the available data. In fact, whenever an exact algorithm
terminates without finding any proof of exceptionality, it ensures exactly of
this situation. Such a result is actionable in itself: in our example of patients,
it would then render acceptable to relocate available funds from supporting
vulnerable populations to other tasks, or to redirect research time on more
promising directions. In contrast, when a heuristic algorithm fails to find
any acceptable subgroup, we cannot distinguish between i) the non-existence
of a sub-population of interest, ii) the case where a sub-population does
exist but requires running the algorithm for a longer time, or even worse,
iii) that a sub-population exists but lies outside the reach of the algorithm
we employed. In fact, we will use one of our exact algorithms in a gently
more elaborate setting applied on an extensive dataset of committed crimes
(see Section 3.3.1) to provide evidence that “no race is more violent when it
comes to murdering young women”.

This desire for optimality guarantees calls for the use of an exact algorithm,
i.e., one that can either provide the optimal result, or alternatively provide
bounds on how lower the quality of the provided subgroup compares to the
optimal one.

Requirement R3. The result must either be optimal or come with quality
bounds.

Of course, exactness comes at a cost. More specifically, this requires the
use of carefully developed bounds that allow for the efficient optimisation of
difficult combinatorial problems, often proven to be NP-optimisation ones.
Nevertheless, exactly due to the benefits of exact solvers, in this work we
focus on the optimal solution of this task.



6 1 Introduction

1.1 Standard Machine Learning Fails our Requirements

In view of these requirements—and in particular with respect to Require-
ments R1 and R2—standard machine learning (ML) tools1 fail to provide a
solution to our needs. First and foremost, their goal is not to aid humans
in taking decisions, but instead to supplant them in the decision making
process altogether. At first sight, when vast amounts of data are provided
to standard ML tools, they do yield models able to make accurate predic-
tions that in specific tasks can match—or even exceed—the performance
of humans [Ste17a; BGB+19]. Nevertheless, we should not always take the
convenience of delegating decisions to the machine lightly, as their abilities
often fall short of that of a human, which can therefore not be replaced. This
is the case particularly in tasks that are not well-defined, involve subtleties
that are hard-to-describe, might be susceptible to biases, or can have morally
grave repercussions [Bod21].
A demonstrative case study of such shortcomings is the Google Photos

platform: a service that allows users to upload pictures and offers a feature
to tag them based on their content. This feature became the cause of
turmoil when it wrongly tagged African-American users as gorillas [Bar15]—
a pejorative remark that a human would readily recognise as a common
racial slur. This was due to a mis-classification error that was unable to
be fixed even after years of advances in models and further collection of
data, and leaving as only viable workaround the complete removal of this
and several other related offending tags [Sim18]. Even more recently, several
issues of this kind appeared once again in a similar platform [Mac21; Moo21].
Likewise, broad application domains can also be affected, with repercussions
that can go well beyond amusing or embarrassing. Mis-classifications in
tasks like facial recognition can hurt the self-identification and dignity of
individuals and even threaten their freedom and livelihood [Wae22]; such
cases have been repeatedly reported when innocent individuals were falsely
identified as suspects and wrongly incriminated [And20; Fis20]. What is
additionally alarming is that such tools often disproportionately mis-classify
non-white faces, for instance due to systematic differences in skin tone or
due to lighting conditions optimised only for Caucasians [Naj20].
Perhaps even more alarmingly, this disparity in mis-classification of sus-

1As such we consider the popular tools that solve the standard machine learning tasks
of supervised and unsupervised learning. Notable examples are linear and logistic
regression, classification and regression trees, support vector machines, or, for the
unsupervised case, expectation maximisation and k-means. In the broader sense, this
category also contains the general probabilistic models, neural networks, and a plethora
of other similarly powerful tools [HTF09].
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ceptible minorities is an increasingly occurring phenomenon that has been
attributed to unavoidable, inherent biases in the originating data. This brings
attention to yet another source of hard-to-identify systemic errors [ALM+16]
that the machines are susceptible to. As an example, we may consider a
popular automated system used in administering justice for the prediction
of recidivism2 that has repeatedly come under scrutiny for its reportedly
racially-preferential3 decisions [Mes21]. All those issues of standard ML
tools expose as a misconception the popular belief that the solution is sim-
ply a matter of more data, more powerful models, or longer training, and
instead raise the point that “artificial intelligence is neither artificial nor
intelligent” [Cor21].
Of course, this is not to say that humans are insusceptible to mistakes,

and neither to compare the average accuracy between human and machine.
Instead, it demonstrates that automated tools lack skills that are necessary
for the decision making in certain sensitive tasks, even after we are willing
to assume that only few prediction errors will be made. Therefore, in these
tasks the machines should not be entrusted with replacing the human in
the decision making process. In fact, systems used for hiring employees for
open positions are subject to state regulation [Lai21], while the ethics of
artificial intelligence in deciding the course of patients has come into question,
especially in conditions of humanely allocating limited resources [Wet21].
Importantly, this reluctance to trust such models is further exacerbated
by their high complexity, which renders them akin to opaque black boxes.
That is, regardless of how accurate the predictions of these models can be on
average, a human audience cannot understand why each particular prediction
was made individually, and much less to understand which sub-population
of individuals is favoured or disfavoured by the model.

Despite undesired, this obscurity of black-box models is neither beneficial
not unavoidable. Contrary to this, the promoters of opaque predictive tools
often defend the obscurity of their models4 by attributing it to the purported
complexity of the task [RWC20]; this task is then falsely claimed to not admit
a highly performing yet simple enough model: one that can be scrutinised by

2recidivist (noun): a criminal who continues to commit crimes even after they have been
punished. Cambridge English Dictionary, 2022.

3The COMPASS tool used in 46 of the United States reportedly “incorrectly labelled
Black defendants as “high-risk” at twice the rate as white defendants” [ALM+16].
Interestingly, this is not an artefact of model mis-classification, but instead stems from
the inherent bias in the collected training data.

4It is worth noting that, the creators of such models are incentivised to treat them as
proprietary technology and have great interest in keeping them opaque as a trade secret.
On the other hand, judges and prosecutors prefer using transparent and comprehensible
models whenever possible [Rud15].
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humans, provide intelligible predictions, and ultimately be trusted [RR19].
In fact, recent evidence disproves this rationale [Rud19]; as a demonstrative
counter-example, in the task of criminal risk prediction, a simple description
of the high-risk population has been demonstrated that can be used to classify
the potential offender as a recidivist or not, and with an accuracy that is on
par with other state-of-the-art methods [ALA+18]. Using a method outside
the standard ML tool-set, the authors show that offenders belonging to
a given sub-population are likely to be rearrested within 2 years of their
evaluation. This populations accepts the following intelligible description:

i) “persons with > 3 prior crimes”,
ii) “males between 18–20 years old”, or
iii) “persons with 2 or 3 prior crimes and between 21–23 years old”.

This description makes it easy for a human not only to apply the implied
model, but also to verify it is not riddled with systematic biases that could
lead to gross mistakes and potentially affect innocent individuals profoundly.
This not only questions the superiority in terms of accuracy of standard ML
models, but further showcases the importance of developing models that
provide an intelligible description to the human audience.
From this perspective, standard ML tools fail to provide a satisfactory

insight on these sub-populations of interest, often without offering any
benefit over methods which provide intelligible results. Specifically for the
simpler among the standard ML tools, a frequently used yet often failing
workaround [Lip18] toward getting insight on the corresponding models is
to try interpreting the model parameters. To demonstrate this process we
may study the toy dataset depicted in Fig. 1.1a that is largely inspired by
our running example of patients. Here, we measure the patient susceptibility
in number of days until recovery, which in turn depends on three traits of
the patient: i) their age class, ii) whether they have asthma, or iii) carry
a mutation that introduces susceptibility to the pathogen. Using just a
short glance in the visualised data, the human eye can quickly discern sub-
populations of patients with high susceptibility: in contrast to the general
average of 7.7 days, patients with mutation (red marks) need 13.8 days on
average, those with asthma (circular marks) 10.6, while those with both
traits need 14.7 days (!).
On the other hand, observing the coefficients of simple standard ML

models demonstrates that this approach provides neither an intelligible
description, nor the necessary insight. To show this, we depict in Fig. 1.1b
the continuous coefficients of three representative ML regression models that
we trained on the above data. These models are arguably among the easiest
to interpret, while retaining substantial flexibility: that of ridge regression,



1.1 Standard Machine Learning Fails our Requirements 9

2 4 6 8 10 12 14 16 18

ch
ild

yo
un

g
ol

d mutation
no mutation

asthma
no asthma

Sub-
Population

Days
(avg)

all patients 7.7
old patients 11.0
asthma 10.6
mutation 13.8
asthma &
mutation

14.7

Days until recovery

Pa
tie

nt
ag

e
cl

as
s

(a) Patient key traits and their susceptibility, alongside subgroups of interest.

100 101 102

2

4

6
ridge

Regularisation coefficient

intercept
age
asthma
mutation

0 0.5 1
0

2

4

6
lasso

Regularisation coefficient
10−1 100

0.5

1

1.5
Poisson

Regularisation coefficient

(b) Model coefficients of standard ML tools fitted on the above data for a varying degree
of regularisation. Although these models strive to remain simple enough for the sake of
interpretability, their coefficients provide neither an intelligible description nor a good
indication of important subgroups. Indeed, even though in these models the coefficients
of both asthma and mutation are systematically overshadowed by the less important age,
the first two features both form important subgroups, and even more so their combination.
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(c) The complete regression tree fitted on the data, listing in each node the average number
of days. The local effect of both features asthma and mutation is overtaken by the larger,
global effect of age; this delays the selection of these former, important subgroup features
and misleadingly distributes their effect under multiple branches of the latter, less relevant,
and preventing the discovery of the desired subgroups.

Figure 1.1 [Shortcomings of Standard ML]: Toy dataset demonstrating com-
mon mechanisms that cause standard ML tools to fail our requirements. A human
(and a subgroup discovery algorithm) can correctly identify important subgroups,
such as “patients with mutation” or “patients with asthma and mutation”. Standard
ML tools, however, can not only miss the important, local subgroups in their attempt
to model the entire dataset, but also yield much less intelligible results—if at all.
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lasso, and also the generalised Poisson linear model that is the model-of-
choice for survival data [CRS+12], and therefore closely matches the data
at hand. However, after inspecting these models, the closer to a description
that we can get—say, from ridge regression (α = 1)—is a result of the
form: 2.59 + 6.17xage + 3.42xasthma + 4.34xmutation, which is arguably far less
intelligible than the desired subgroup: “patients with asthma and mutation ”.
Even worse, in realistically sized data, the number of non-zero coefficients
can be prohibitively high for a human to process, or can be misleading due
to unaccounted-for dependencies between the covariates, or have negative
signs, all of which prevent the derivation of a useful description. In realistic
applications, similar complexity is also encountered by even simpler methods
that discount their flexibility in favour of their interpretability, such as
regression trees (see Fig. 1.1c). Of course, going in the opposite direction
of more powerful models—as computed by kernel methods, support vector
machines, or neural networks—only exacerbates the difficulty of interpreting
the model coefficients. Then one needs to resort to further tricks, as is for
instance the retro-fitting of one of the above simpler models locally around
a particular prediction [RSG16]. Unsurprisingly, in addition to only being
accurate around just a single prediction, these methods still yield standard
ML models, with all their disadvantages.

Even past the difficulty of describing the results of standard ML tools, there
is yet another crucial front where these tools fail to deliver: the standard
ML models have a global character versus the local behaviour that we desire.
More precisely, these ML methods focus on modelling the entire dataset,
which comes in stark contrast with a key goal of our task: that of finding an
exceptional subgroup. By definition, such a subgroup describes the behaviour
of a sub-population that is essentially a small, local part of the data, the
behaviour of which must stand out from that of the entire population. That
means that, if we were to fit some global model on the population, it would—
by definition—not be a good fit for the sub-population corresponding to any
high quality subgroup.

As a result, these global models often fail to reflect the effect of a small yet
important sub-population in the data; indeed, this relevant local anomaly
might only have a small effect when modelling the entire dataset, or its effect
might be overshadowed by other features which impact a wider part of the
data. This artefact is already evident in the coefficients of all of the standard
ML models that we encountered in Fig. 1.1b: Here, the age feature describes
a larger part of the data when compared to that of both mutation and
asthma, which causes the coefficient of the former feature to misleadingly
overshadow the coefficients of the other two. This goes against both our
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intuition and desire, which dictate that mutation and asthma describe both
a small sub-population which exhibits an important deviation from the
usual duration of sickness, and therefore constitute high quality subgroups.
Importantly, the same effect also appears in the case of other more easily
interpretable models; among them, arguably the most characteristic are
regression trees, which we train on our data and demonstrate in Fig. 1.1c.
Here, the trait age similarly overshadows the other two, which prevents the
discovery of the desired subgroups. As a result, we only encounter these traits
combined with that of age, and still with a significantly lower importance; for
instance, on the right of the tree we encounter the sub-population described
as “not young with mutation ”, which in contrast to the sub-population of
our desired subgroup “patients with mutation ” exhibits a mean of 10 days
instead of 13.8.
All in all, these arguments do not call for a complete banning of the use

of standard machine learning methods for certain sensitive tasks; instead,
they call for new automated tools that can extend the human intuition
on real-world data with complexities that readily overwhelm the human
eye. In other words, they make a case for a new paradigm of “augmented
intelligence” [CK21]5, where automated tools work to empower humans to
make decisions. In fact, the main study of this thesis is the very premise
of automatic tools that act as intermediary between data and the human
audience, by describing important sub-populations in the data.

1.2 Subgroup Discovery to the Rescue
Fortunately, there is a powerful theoretical framework whose goal is ex-
actly to find intelligible descriptions of exceptional sub-populations. This
framework is aptly called subgroup discovery (SD) [Klö96; Wro97; Web01;
LKF+04], and has proven its versatility through its very broad applica-
tions [Hel16]. Important applications have been demonstrated in material
science research [GBV+17; SBG+20], in political science [BCL+20] and
election results [GBK10] in particular, as well as medicine and bioinformat-
ics [MRS+09; HCG+11; AHM+21], just to name a few.
Our goal within this framework is akin to the supervised local discovery

of subgroups that are deemed interesting according to certain criteria, as
5The second author, Garry Kasparov, secured the chess grand master title in November
1985, but became widely known to the general public after losing a tournament to the
IBM supercomputer Deep Blue, in 1998. The authors note that in a recent worldwide
competition, where apart from human players it was also supercomputers and mixed
teams competing, the winner was a couple of amateur human players aided by 3
averagely-powered computers.



12 1 Introduction

captured by a well-defined objective function. More specifically, subgroup
discovery can be formally seen as the problem of optimising the chosen
objective function over a set of allowed subgroups, which is the constraint
enforced to fulfil Requirement R1. More specifically, the allowed subgroups
are those subsets of the dataset with descriptions that typically consist of
simple conditions that must be satisfied together, thus forming increasingly
more specific expressions [Klö02]. In our example, such conditions were:
“citizen of London” and “of Bangladeshi origin”, which combined described
the subpopulation of interest. This choice at once produces intelligible
descriptions and allows for a convenient way to efficiently optimise over the
set of all subgroups. Requirement R2 is reflected in the choice of the objective
function, which quickly makes the full versatility of this framework apparent.
Indeed, during its extensive study in the literature for about 3 decades many
objective functions have been proposed, and from very different perspectives
throughout the years.
As a first categorisation, the existing subgroup discovery methods can

be broadly distinguished based on the objective function [Atz15] that they
propose into user-centric and data-centric6. The user-centric methods aim
at choosing subgroups that are interesting according to some model of
user preferences. Notable examples of these methods use concepts from
information theory, for instance to look for subgroups that are surprising
according to a model of prior user beliefs. Such models have been derived
according to the maximum entropy framework [LKD+18], which tries to
make no further assumptions beyond the ones encoded in the adopted
belief system [Jay82]. Other methods use the Minimum Description Length
principle [vLK12] that corresponds to a particular subjective prior on how
the data have been generated, in a way that favours traits widely assumed to
be appropriate for humans, namely the simplicity of its representation [Ris78;
VLS11].

In contrast, data-centric methods use measures that assess the fitness of
each subgroup based solely on the entities of the given dataset, as we call
the objects of study within the dataset (e.g., patients). Typically, these
methods use principles from statistical theory to derive objective functions
that are based on appropriate test statistics or distribution distances. In
this setting, the aim is to find a describable sub-population within which a
specified random target variable exhibits the most exceptional behaviour
when compared to an appropriate null model for this variable; this Null

6These terms are synonymous to the originally used “subjective” and “objective” quality
measures [Atz15], respectively; we here use their synonyms to avoid confusion with our
adoption of the term “objective function” for the quality measure of each subset.
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model is derived from an appropriate sample of the true population, which
is usually the entire dataset. Hybrid methods have also been proposed, for
instance using the additional pervasive assumption that users prefer more
succinct subgroup descriptions [vLee10], which, to an extent, we also take
into consideration in our own work. Importantly, data-centric methods
can also serve as a key first step to select a set of subgroups, which are
subsequently filtered according to user-centric criteria, for instance to yield
diverse results [vLK12]. Hence, in this work we focus only on the data-centric
methods.
Another important distinction of both classes of methods7 is the nature

of the target variable. Most methods assume this to be a scalar value that
is directly provided within the dataset as an attribute of the studied enti-
ties [HCG+11]. These can take on Boolean [KLG+09], categorical [SKF+16]
or numerical values [GR09; BGG+17; LKD+18; PGB+21], as were in our
example the Boolean tracking whether the patient died, or the numerical
time until their complete recovery. Each of these cases can define a rather
broad family of works; for instance, contrastive set mining has been shown
to be the special case of subgroup discovery with Boolean targets [KLG+09],
while categorical targets are a natural multi-class extension of Boolean
ones [SKF+16].
From this setting onward the target variables give way to more general

target concepts, which are targets implicitly derived from the properties
of each entity of the entire subset. We can decry two very similar directions
with blurred boundaries to derive target concepts.

The first direction is the broad family of exceptional model mining
(EMM) [LFK08; DFK16], which was primarily motivated by the case of
multivariate target variables. Here, a particular model of data is chosen, after
which the objective function measures the difference of the model parameters
between i) those fitted on the entire dataset and ii) those fitted on the
candidate subgroup . This model may take many forms, including a linear
classifier, a simple decision tree [LFK08], or even a probabilistic Bayesian
model [DKF+10; SFK15; SBD+22]; for each model different statistics have
been proposed, such us a z-scores [LFK08] or a likelihood ratio [SFK15].
The EMM paradigm can also be seen as using a target concept that con-
stitutes a random variable derived from a set of entities, for instance that
of the correlation coefficient between two scalar attributes, and then using
an appropriate statistic for this derived random variable. This introduces

7Although the distinction based on the target variable applies to both user- and data-
centric methods, when we refer to the target variable as a random quantity the focus is
on the latter category.
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the second direction, in which the target concept is not an explicitly listed
attribute of the dataset, but is instead derived based on properties of the
entities. Perhaps the most characteristic examples are given by the case of
named community detection [ADM16; LKD+18], where the target concept
is the community-like behaviour of the sub-graph. We will encounter an-
other example from the task of named dense subgraph mining as part of the
contributions of this work, later on in Chapter 4.

1.3 Subgroup Discovery for Structured Target
Concepts

Despite the strong promises of this framework, the state-of-the-art in sub-
group discovery still leaves a lot to desire, as its applicability is limited on
target concepts with trivial or no structure.
Existing methods are oblivious, for example, to previously discovered

sub-populations, making subsequent discoveries highly redundant. At the
same time, existing methods do not respect sensitive variables, such as gender
or race, that we already witnessed to be often subject to inherent biases
that seep in the data. These methods can therefore yield subgroups which
misrepresent the sensitive population, a situation that can easily lead to
unfair treatment. In this work we will study ways to ensure that a subgroup
remains representative, so that it represents novel discoveries, that extend
prior knowledge or gross trends in the data. We will also show how our
approach can be further used to fairly describe sub-populations with sensitive
traits, ensuring no minority is misrepresented.

Another great challenge arises when the population has additional structure
in the form of relations between the studied entities. A plethora of works
treat this problem as the related community detection one, however they
either provide no descriptions, are non-exact, or use degree-based measures
that fall short of capturing robust connectedness. In Chapter 4 we first define
a measure of robust connectedness that takes into consideration the average
number of relations that must be severed for the entities in the subgroup
for it to become disconnected and show how to optimise it within the SD
framework.
When it comes to exceptional model mining (EMM) methods, despite

their flexibility they resort to heuristics to optimise the proposed objective
functions, and thus offer neither an optimal answer and neither any quality
guarantees. In addition, these methods suggest models that have to be
simple enough so that the derived statistics retain their statistical properties,
therefore leaving out the powerful non-linearity and expressibility of a positive
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(a) Bacterial species and their dye affinity.
The colour indicates the Gram stain result:
gram+ species are indicated with green and
the gram- with purple, while the affinity of
the dye is represented as the level on each
test tube.
In this toy example we model a high correla-
tion between gram+ categorisation and dye
affinity, as would be the case if we were to
study the fluorescent wheat germ agglutinin
dye [SCK90]. Here, our goal is to find sub-
groups that represent both gram+ and gram-
species equally.

(b) Naïve description:
appear only gram+.

(c) Gram attr. removed:
appear almost the same.

(d) Representative query:
both types appear equally.

Figure 1.2: Bacterial species (personification) used to study the affinity of a
fluorescent dye, beyond its known sensitivity to gram+ species.

definite kernel. As a further downside, the EMM methods often require
expensive computation procedures to fit the used models for each candidate
subgroup, which can in general quickly become inefficient, despite proposed
sampling schemes to amend the issue for certain models [MB14].
In this work we address each of these issues, which we briefly motivate

below.

1.3.1 Representative Subgroup Discovery

Precisely due to its remarkable ability to find the most exceptional sub-
population in the data, standard subgroup discovery can be very susceptible
to trends or biases within the available sample. Let us consider once more our
example of patients, where discovering the Bangladeshi minority to be highly
susceptible is normally a very desired response on behalf of the algorithm.
That is, the very same trend for Bangladeshi patients to exhibit higher risk to
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the pathogen, knowing of which is normally a desired result, can immediately
turn into a problem once we already know of its existence. Then, to be able
to perform further discoveries we must now be able to steer the algorithm
away from this known-to-be-susceptible sub-population and, instead, toward
a novel, undiscovered one.
To shed more light in this mechanism that leads the standard subgroup

discovery to failure, we remain in the field of medicine and biology, where it
is useful to study the response of large samples of bacterial species on novel
substances. Let us imagine, for instance, that we study a novel fluorescent dye
in order to understand its affinity on numerous samples, each of a different
bacterial species. Apart from the affinity of the dye on each sample, we also
have available known structural properties for the species, e.g., number of
membranes, shape, mechanism of movement, etc, among other characteristics
of interest, such as contained organelles, antibacterial resistance, etc. Beside
these traits, the dataset also lists the Gram stain [Coi06] categorisation of
each species into gram+ and gram-, which is a major first step in bacterial
classification. It thus becomes quite plausible that one of the two classes
of bacterial species have significantly higher affinity to the studied dye. In
fact, this would exactly be the case, if we were using a fluorescent variant of
the wheat germ agglutinin dye, to which it is known that the gram+ bacteria
have a substantially higher affinity [SCK90].
As posited in our example, in several cases the researcher already knows

of a major trend in the data. Let us introduce as a visualisation aid a
toy collection of bacterial species in Fig. 1.2a, gently personified for easier
depiction. If typical subgroup discovery were to be performed on this data
it would find that the bacteria to which the dye has greater affinity are
“gram+ bacteria”, which is something that we already knew, and is thus
uninformative, and therefore undesired. The problem is also not solved by
simply removing the trait of gram+, shown in Fig. 1.2b. Indeed, invoking the
same algorithm on data, from which we remove the gram classification that
we want to avoid, we would get for this example: “bacteria with external eyes
and no tentacles”. That is, yet again, we discover almost the same, known
fact, just with a different name, as shown in Fig. 1.2c.
Query Q1.a. What affects bacterial affinity, beyond Gram classification?
To go beyond what we already know, instead of ignoring the prior infor-

mation, we instead have to incorporate it in the algorithm, leaning toward a
sub-population that equally corresponds to the gram+ and the gram- bacteria.
If we were to do so, we would indeed discover the sub-population “spotted
bacteria”, which surpasses—and thereby adds to—our current understanding
of the problem.
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Interestingly, the same toy example demonstrates how biases in the data
can lead to unfair results that can lead to disparate treatment. To see this,
let us imagine that each of the entities depicted in Fig. 1.2a is a candidate
student, whose previous educational institution lies either in a wealthy
country (green) or one not so much (purple), and assume the indicated
value to be the amount of extra curricular activities of each student. In
granting a scholarship for these students, we would like to represent those
with higher engagement in extra-curricular activities, while avoiding partiality
toward wealthier countries, not only due to a desire for fairness, but also
due to the amount of extra curricular activities being highly affected by the
wealth of the originating country. If we simply asked a subgroup discovery
algorithm unbridled, it would indicate that the wealthy students were to be
preferred, either directly—by explicitly mentioning their originating country—
or indirectly—by re-describing the same group of students through other
means.

Query Q1.b. What student profile has high extra-curricular engagement,
while equally representing both origins?

One way to address both Queries Q1.a and Q1.b lies in shifting our answer
toward a pre-determined distribution of an additional control property of
interest: here, the gram categorisation of the bacteria or the student origins.
In Chapter 3 we introduce the notion of representative subgroups and will
use it to develop a method that can answer both these questions, and thereby
obtain the first method for discovering optimal subgroups that globally
representative of a sensitive trait, while remaining locally exceptional. In
other words, both above queries can be answered by a method that can solve
the following research goal.

Goal G1. Find the subgroup with the most exceptional target variable whose
control property is representative of the desired distribution.

1.3.2 Entities with Structural Relations

Some information between entities, however, cannot be adequately captured
by treating them individually, as we did so far. Indeed, in our study of
SARS-CoV-2, we know that the transmission of the virus succeeds after close
contact. We can therefore imagine a dataset in which consenting citizens
provide their demographic and medical information to an authority, but also
allow the use of electronic means to track their geo-location, for instance
through telecommunications records, their travel forms during flights, or
using a mobile application to track the social events they participated. We
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can thus use all this information to infer whether there has been a possible
exposure between any two individuals.
From a broader viewpoint, so far we treated the entities involved as in-

dependently and identically distributed samples of a statistical population.
This assumption however quickly break down when the entities of the popula-
tion were not independently generated, as is commonly assumed in machine
learning, but were rather somehow structurally dependent on each other.
This is the case in our example of SARS-CoV-2 patients when we addition-
ally consider their exposure information. Similar kinds of information arise
naturally in many aspects of the social human interactions, and being able
to discover which clusters of them form well connected sub-populations offers
valuable insight in the underlying processes.

Returning to our example, and after having encoded this information as a
graph, we can now query the following.

Query Q2. Which subgroup describes exposed super-spreaders, each of which
exposed several other super-spreaders within the same subgroup?

In other words, we are not simply content with finding a sub-population
of individuals which have spread the pathogen to several others, that may
or may not belong to the same subgroup. Neither do we look for a sub-
population of individuals that simply have a high average of exposures; this
could simply be the case if only a few super-spreaders infected a large group
of individuals, Instead, we additionally require that each person within the
sub-population has spread the pathogen to many others within the same
sub-population: each member of the subgroup must be a super-spreader with
regard to the same subgroup.

An important case study that is demonstrative for the importance of this
additional structural requirement, is the unexpectedly high rate of SARS-
CoV-2 contagion in the Gütersloh area of Germany, where more than 2000
citizens were tested positive. Having this information we can imagine a
dataset of all the positively tested residents of this area that forms a graph,
in which every node is an individual with census attributes such as their
occupation, and each edge encodes corresponds to the existence of a possible
route of exposure between the connected individuals.
Using such a dataset, an algorithm tasked with Query Q2 would be

able to discover the exemplary answer: “The workers in the refrigerated
meat preparation department of the Tönnies meat processing factory in
the Gütersloh area were each very highly exposed to each other”. We base
this answer on the reported [Nor20] breakout in the aforementioned meat
processing factory, whose refrigerated department was operated without
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necessary oversight or precaution; namely, the cold air in the refrigerated
area was circulated without appropriate filtration, and there were insufficient
isolation measures for the overpopulated canteen, where employees were in
close contact and without personal protective equipment. This discovery led
to a quick first response of measures from the authorities [Jan20] as well as
further investigations and subsequent revelations of common malpractices in
this industry [Lee20].

Queries like Q2 are highly related to the task of community detection,
which is an established tool in network understanding, and often the first
step in social network analysis. In this work, however, we not only find a
description of the community-like cluster of interest, but we also revisit the
conditions that form an interesting cluster of connected individuals. In our
example, this would be the requirement that each worker had to be exposed
to a minimum number of others in the same subgroup, on average.

We call this measure robust connectedness, since it builds on the
concept of a minimum amount of connectivity, in that it guarantees the
network to remain connected even when an adversary was allowed to remove
a given number of arbitrary edges from the network. Thus, the robust
connectedness we propose induces a stricter condition than simply measuring
the average edge-to-node ratio within the community, or, equivalently, the
average node degree of the community, which form the basis of typical
measures of connectivity. Indeed, a network consisting of a few super-
spreaders and otherwise several other vertices that only connect to the former
ones, could easily fall apart and become completely disconnected, once we
remove these few super-spreaders, despite having an astonishingly high edge-
to-node ratio. The very same network, however, would score significantly
lower in terms of robust connectedness than a more “well”-connected network
with the same, or even much lower edge-to-node ratio.

Thus, our measure is a more structurally-aware measure of connectedness
than typical metrics used in dense subgraph detection, as well as its extension,
the community detection. We hence show how to find named sub-populations
whose entities are well-connected, which thus reveals a novel type of insight
that goes beyond that offered by the simpler requirement of densely connected
entities. In essence, answering queries like Q2 can be fulfilled by solving the
equivalent research goal.

Goal G2. Find the subgroup whose entities induce a robustly connected
graph.
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1.3.3 A Generalised Subgroup Discovery Framework

Rethinking of the standard subgroup discovery once more, we may already
discern two key limitations.
First, in the typical setting, all methods are focused on scalar-valued

targets. While there certainly does exist an abundance of applications where
the target concept is a scalar variable, this precludes many applications that
are as much interesting as important, where we want to study entities whose
behaviour cannot be simply summarised by a single scalar. Such applications
could be, for example, describing a group of exceptional molecules, stocks,
or images.
To provide a more detailed example, let us imagine a collected sample

of one or more neuroimaging modalities [WZD+18] (e.g., using positron
emission tomography or magnetic resonance imaging) on the full brain scans
of predominantly healthy patients as part of a preventive healthcare program
of a hospital. As always, it is natural to assume the availability of relevant
medical information for each patient. Even though for most of the patients
these images would depict a healthy brain function, it would be of great value
to be able to ask an algorithm to describe sub-populations with potentially
abnormal structures in their brain, which potentially indicate a pathological
brain function.

Query Q3. Which patient profile has the most abnormal brain scans?

An answer to such a question can be of great value in exploring potentially
new underlying causes of brain function abnormalities [DP16], potentially
even as of yet unidentified. We can also consider the frequent cases where
the patient imaging data is extended with other data modalities, such as
transcriptomes; then, we can solely use the dissimilarity of the imaging
data as an indicator of brain abnormalities, which, through the additional
data modalities can be translated into novel associations between genes and
abnormal brain function [AKC+21]. That comes in contrast to the typical
procedure. In this, one would first have to i) focus on a specific hypothesis
for a potentially affected brain function of interest, then ii) capture this into
a scalar score that measures this abnormality for each patient, and only
then iii) study transcriptomic associations with the derived brain function
metric [ZSY+21]. We address this need for structure within the studied
entities by proposing a novel framework for subgroup discovery where we
lift the constraint of the scalar target; instead, we allow each entity to be
associated with a target variable with virtually any type of a domain, as
long as a suitable similarity function over this domain is defined.
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Returning once more to our attempt to answer Query Q3, a second
limitation of typical subgroup discovery becomes apparent. For each specific
application of the existing works in typical subgroup discovery, the expert
and the researcher has to perform several steps to design a practical method:

i) for each entity, a target variable needs to be specified,
ii) a distribution for the target must be assumed,
iii) a measure is needed to quantify the distribution distance,
iv) an appropriate optimisation algorithm for the measure needs to be

instantiated,
v) which entails a tedious and cumbersome process to develop an efficient

optimistic estimator for its practical exact optimisation.
In this work we break with this standard recipe, and instead propose

a single algorithm that obviates the need for all these steps, while it also
seamlessly allows for the incorporation of arbitrarily structured entities. To
do so, we show how to employ a positive definite kernel defined over the
structure associated with the entity. This allows for a profound paradigm
shift, where we do not anymore have to devise a specialised objective function
for some scalar score of the entities. Instead, we propose both an objective
function that can measure the distance between the distributions of two entity
samples, and an efficient optimistic estimator for this objective function, both
of which depend solely on a positive definite similarity matrix between the
entities. Thus, we can directly apply subgroup discovery on any population
of entities with an arbitrary structure, as long as there is any positive definite
kernel on this structure. Now, this simply involves plugging in our method
the resulting Gramian of the chosen kernel. In other words, our research
goal can be described as follows.
Goal G3. Find the subgroup whose entities are deemed the least similar to
those in the rest of the dataset, using an arbitrary positive definite kernel
defined over entities.

Importantly, this formulation allows us to also recover several cases of
typical subgroup discovery as a special case within our framework, simply
by using the linear kernel on the scalar target variable; in fact, this also
yields the same computational complexity as in the typical case. Another
family of kernels that, as such, can be used in our framework, can be de-
rived by first generating an embedding of the entities in Euclidean space,
and then applying an appropriate kernel on this embedding space, such as
the simple linear kernel which corresponds to the standard Euclidean dis-
tance [PV11]. Importantly, the use of pre-computed embeddings also allows
to seamlessly incorporate prior knowledge of each specific domain, as com-
puted by unsupervised manifold learning methods such as [HTF09] principal
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components analysis, multi-dimensional scaling, locally-linear embeddings,
and t-stochastic neighbour embedding (t-SNE) [vdMH08]; also included are
methods for structured data that depend on neural architectures, such as
word2vec [MCC+13], node2vec, graph2vec, X2vec [Gro20].

Of course, the generality of our approach does not come for free, but
requires the choice of an appropriate kernel. What further increases the
difficulty of the problem, is that in this novel task there are no clear cut
class labels that can be used for standard hyper-parameter optimisation; this
means that standard metrics, such as the class accuracy, cannot be applied
to select an appropriate kernel for this task. For this reason, we complete our
method by proposing a novel measure of kernel fitness that takes into account
the important parts of the available attribute information. Our measure
can thus replace the classification accuracy in a standard hyper-parameter
search, such as Bayesian cross validation. Importantly, our measure is also
differentiable and allows closed form solutions for the multiple-kernel learning
setting.
We present our framework of this modular similarity-based objective in

Chapter 5, and we also present an algorithm to solve it for any choice of
a positive definite kernel. What is more, we also discuss hyper-parameter
optimisation methods to choose a kernel for each dataset, which includes a
multiple kernel learning scenario.

1.3.4 A Flexible Random Walk Kernel

This above contribution allows us to utilise any of the extensive arsenal of
kernels on structured data, which makes subgroup discovery applicable out-
of-the-box on virtually any type of structured entities. Out of these, we lay a
special interest on graphs, due to their ability to describe a variety of entities,
and particularly in emerging fields such as molecules in computer aided drug
discovery [GDD06], protein-protein interactions in biology [YFS+20], and in
several omics analyses [LCC+21].
One of the established kernels on graphs is the family of random walk

kernels [VSK+10], which compare two graphs based on a notion of similarity
between random walks that are simultaneously performed over these two
graphs. Motivated by the needs of our work, we further study an unexplored
set of instances of this family, for the case when integer labels are available
for each node, like those arising from brain connectome analysis, in which
each graph node represents a region, whose function is similar to regions
with nearby numerical index.

This property, of integer vertex labels that indicate similar vertex structure,
can also arise naturally from other features in undirected graphs; our claim is
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hence that simultaneous walks should take into consideration this similarity
and only be performed on graph vertices that are closely related. This gives
rise to the Structural Similarity random walk (SUSAN) graph kernel that
we propose in Chapter 6. The key idea of SUSAN is that it takes into
consideration this relationship of each pair of vertices from the two graphs
during the simultaneous walks, and demonstrates its membership in the same
framework of the random walk families by an appropriate re-formulation of
this intuition. In this way, SUSAN fills the gap between the two extremes
of full connectivity and only identical connections, both cases previously
studied in the literature.

As an additional contribution, we propose ways to efficiently compute this
instance of random walks, which for sparse, low rank graphs can become
orders of magnitude faster than the naïve alternative. Importantly, when the
distance of the integer labels becomes zero after a threshold, we additionally
show that a certain block-banded matrix structure arises in the key compu-
tation of this kernel, and we provide a highly efficient C++ implementation
of its vectorised computation, that can be orders of magnitude faster than
state-of-the-art efficient implementations of the same computation, in which
this banded structure is not taken into account.
Since SUSAN is a graph kernel, its applicability is by no means limited

within subgroup discovery, but instead can be used in any machine learning
application on graphs. Therefore, we also study its classification performance
compared to a state of the art graph kernel [TGL+19] when used within
a support vector machine, and we show the regimes where its accuracy is
significantly superior in the statistical sense.

1.4 Contributions
A large part of the contributions of this work consists of novel methods that
extend the domain of applicability of subgroup discovery into the large class
of data with structured target concepts, which lies beyond what is currently
possible using existing methods. At the same time, these contributions are
not limited within subgroup discovery. These contributions are as follows.

Contribution 1. We perform an in-depth analysis of the theoretical inter-
pretation of the various objective functions used in typical subgroup discovery,
which includes the established impact function and its special cases. More
specifically, we provide a unified landscape in which we position existing
methods, including our own contributions, and make a link to the statistical
implications of common decisions in existing subgroup discovery methods,
even when this analysis is missing in the original works.
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Contribution 2. We propose a novel algorithm for the efficient and exact
optimisation of our problem and compare it to existing alternatives, while
we also provide a mathematical description of the optimisation domain.
Importantly, we re-interpret an established method from a multi-objective
optimisation approach, in which we provide a mathematical explanation of
the involved parameters—previously left up to the user intuition—and show
the structure of the resulting optima as a particular subset of the Pareto
frontier between key objectives. We use this approach to present all results
in this work.

Contribution 3. We propose the concept of representative subgroups, and
thoroughly study its application on generating descriptions that correspond to a
user-specified extent to different classes of an additional variable, that captures
special attributes of the data. To this end we also propose Representativeness
Aware algorithm (rawr), a novel algorithm for the optimal and efficient
discovery of representative subgroups. We showcase the implications and
usefulness of our method both as a means to overcome known trends, but also
to ensure fairness in the resulting subgroups.

Contribution 4. We study the limitations of the established degree-based
density measures of subgraph density, easily demonstrated through a realistic
counter example. We correct these limitations by proposing a novel measure of
density: robust connectedness, which incorporates more structural information
per edge than the former measures, and provide an intuitive interpretation
for its value. We develop Robustly–Connected Subgraphs with Descriptions
(RoSi), an exact and efficient algorithm that finds the subgroup of entities
which form the most robustly connected subgraph.

Contribution 5. We introduce the use of positive definite kernels to measure
the similarity between the studied entities, which constitutes the first kernel
method for subgroup discovery. This approach allows us to extend the frame-
work of subgroup discovery to virtually any kind of entities that go beyond
simple scalars. For use in this task we propose an intuitive and novel objective
function that is motivated by a well established statistic for the two-sample
problem. We additionally develop techniques for the hyper-parameter tuning
of necessary kernels, to enable the practical application of this method in real
world settings.

Contribution 6. We propose a novel graph kernel for use in cases where
alignment information is available for the graph vertices, which formalises
the intuition of allowing a tuneable amount of leeway in the alignment of
dissimilar vertices, based on the similarity of their labels. We additionally
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provide an efficient method to extract meaningful structure-aware vertex labels
which allow for a distance-based comparison between the labelled vertices,
and can be directly used by our kernel instead of alignment information. We
show that the resulting graph kernel is a special case of the positive definite
random walk kernels. We also propose efficient ways to compute this kernel.

Contribution 7. We make openly available all source code of our methods,
that enable their applications on practical settings. Importantly, we publish
sergio, an interactive package for subgroup discovery that makes available
most of our methods out-of-the-box, while remaining an extensible framework
for the research and development of novel methods. For the needs of this
work and as demonstrative cases, we also compile three datasets containing
stocks listed in the NYSE (Stock), drug-like chemicals (Chem), and a sample
of the twitter social media (Twitter), while we curate several others from
publicly available repositories.

Most of these contributions have appeared in the following conference
publications; an analytical listing is available in Table 1.1.

1. Janis Kalofolias et al. Efficiently Discovering Locally Exceptional Yet
Globally Representative Subgroups. In 2017 IEEE International Con-
ference on Data Mining (ICDM), November 2017

2. Janis Kalofolias et al. Discovering robustly connected subgraphs with
simple descriptions. In 2019 IEEE International Conference on Data
Mining (ICDM), pages 1150–1155, November 2019

3. Janis Kalofolias et al. SUSAN: The structural similarity random walk
kernel. In Proceedings of the 2021 SIAM International Conference on
Data Mining (SDM), pages 298–306. Society for Industrial and Applied
Mathematics, January 2021

4. Janis Kalofolias and Jilles Vreeken. Naming the most anomalous
clusters in Hilbert space for structures with attribute information. In
AAAI National Conference of the American Association for Artificial
Intelligence, 2022

The author of this dissertation is the first author in all these publications and
has been responsible for the ideation of the posed problems and the develop-
ment of the solutions to them; this included providing the theoretical proofs
that support the correctness of the proposed methods, the implementation of
the proposed algorithms and the orchestration of the appropriate experiments,
and finally taking the lead in writing the corresponding manuscripts.
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Public. Contr. Manuscript Brief Description
[KBV17] 2 Section 2.4.2 • IDDFS algorithm

• Its extensions

[KBV17] 3 Chapter 3 • Representative subgroups
• rawr exact algorithm

[KBV19] 4 Chapter 4 • Robust connectedness
• RoSi exact algorithm

[KV22] 5 Chapter 5 • Kernelised subgroup discovery
• Kernel fitness measure
• Multiple kernel learning methods

[KWV21] 6 Chapter 6 • SUSAN graph kernel
• Efficient iterative algorithms
• Prototypical C++ implementa-

tion

[KV22] 7 Appendix B • Novel datasets:
Stock, Twitter, and Chem

• sergio framework

Table 1.1: Index of the contributions within the published works of the author.
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1.5 Outline
This manuscript introduces with the desired traits of the methods that
discover interesting subgroups from a given dataset.
Next, in Chapter 2 these ideas are formalised into the framework of

subgroup discovery, its key features, common objective functions and our
contributions on optimisation algorithms, both for single and multiple objec-
tive optimisation.
Following this, in Chapter 3 we introduce the concept of representative

subgroup discovery, we motivate its necessity and provide a framework to
find the subgroup which, while being exceptional, retains a representative
control distribution.

In Chapter 4 we continue with the introduction of a novel measure of robust
connectedness, which is superior to the typically used density measure—we
then present our rawr method that finds the subgroup whose entities are
most robustly connected.
Subsequently, in Chapter 5 we introduce the first method for kernelised

subgroup discovery, which constitutes a versatile framework that only re-
quires a pre-computed Gramian; we additionally provide a measure for
the hyperparameter tuning of the involved kernel and solutions for related
multiple kernel learning.

We continue in Chapter 6 to present in depth the SUSAN graph kernel, a
member of the broad random walk kernels that allows for a flexible trade-off
between strict and looser alignments between nodes of integer-valued labels;
we also propose a novel scheme for deriving such labels in case of their
absence.

Finally, we round up in Chapter 7 with a summary of this work and reflect
critically on each proposed method and contribution. We conclude with an
outlook into the future, including an outline of potential future work.
We note that for readability and conciseness we postpone any lengthy

proofs to Appendix A. Additionally, in Appendix B we provide in-depth
technical details, such as experimental settings, implementation details and
elaborate on the details of the used datasets.
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Subgroup discovery is a powerful framework of methods that aim to reveal the
important local structure within a given dataset. Within this framework, we
focus in particular on the data-centric1 methods, whose goal is to find specific
sub-parts within a dataset that are maximally deviating when compared to
the behaviour of the rest (or the entirety) of the dataset. In this chapter we
work toward a formalisation of this task and present the general framework
for the exact optimisation of the associated objectives.
The datasets we study in this setting describe a population (or sample

thereof) consisting of n entities E, for each of which we are also given a set of
meaningful attributes X . In the previously discussed healthcare application,
our dataset was a sample of hospitalised patients and exemplary meaningful
attributes were tracking whether the patient is a smoker, their sex, age,
etc. These attributes are used to select subgroups from the population2
E: sub-populations that are both exceptional and have an intuitive name.
Formally, these attributes can be seen as functions lρ : E → Vρ, that is, to
every entity ε ∈ E each attribute lρ ∈ X assigns the value lρ(ε) ∈ Vρ.

2.1 Deriving Predicates
We describe population subsets by using the attributes X as follows. First,
the domain of each attribute is partitioned appropriately, and from each
partition we derive meaningful predicates; for instance from the attribute
“smoker” we can derive predicates “smokes”, “does not smoke”, while from the
attribute “age” we could derive ones like “under 18”, “under 40”, “not under
18”, etc. In this way we assemble a collection of m meaningful predicates

1We recall from Section 1.2 that the data-centric methods are the counterpart of the
user-centric ones, which can be seen as a—typically heuristic—extension of the former
ones. Although this formal introduction still applies to the user-centric methods, these
methods typically lack desired properties, such as statistical interpretations and exact
optimisation algorithms, and therefore remain outside the scope of our interest.

2Here, for simplicity we assume that the dataset contains the entire population. However,
even when the dataset contains a sample of the population, as long as it is a uniformly
sample populous one, we can still reasonably assume that any description that selects a
sample of the dataset corresponds to a similar subset of an entire population—thereby
a sub-population. We explicitly address this detail in Section 2.3, below.
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P . Formally, each predicate p is a Boolean function pj : E → {>,⊥}, where
> and ⊥ are the true and false conditions, respectively. More often than
not, the focus will be on the name of the predicate, in which case we use
an Iverson-like notation3 [ε satisfies ×] ≡ p×(ε), often even dropping the
mention of the entity ε; for instance, we hence represent the exemplary
predicates as [smokes], ¬[smokes], [age ≤ 18], [age ≤ 40], and ¬[age ≤ 18].
Note that in this language we do not explicitly include disjunctions,

since they do not only substantially complicate the optimisation proce-
dure, but primarily also quickly deteriorate the intelligibility of the re-
sulting descriptions. By forming the conjunction of negated predicates,
however, we can still express a subset of disjunctive statements. Note
that when this procedure is applied to predicates of the same attribute,
this includes the case of internal disjunctions [Ray99]. These can be
seen as special predicates added to the language, whose value is equal to
the disjunction of several sub-predicates, here of the same attribute, e.g.,
[13 ≤ age ≤ 18] ∨ [age ≥ 60] ≡ ¬[age < 13] ∧ ¬[18 < age < 60].

The derivation of predicates P is essentially equivalent to the discretisation
of the domain of each attribute, and different schemes can be employed
depending on this domain. Boolean attributes give rise to two predicates:
one that is equal to the attribute itself and another equal to its negation; for
categorical attributes a natural choice is to assign one predicate per category,
e.g. for a virus strain we could derive [strain = A], [strain = B], and so
on. For numerical attributes typically unsupervised methods are used and
as a pre-processing stage [MK21]; among them, perhaps the most popular is
equi-quantile discretisation, which uses bins of the same frequency. This
method is applicable both as a parametric method—by first fitting the
assumed distribution—or as a non-parametric one, which is equivalent to
empirical histogram equalisation. An equally popular method is equi-distant
discretisation, which can be seen as the special case of parametric equi-
quantile discretisation for uniform distributions. Another notable mention is
the Lloyd-Max [WKR+08] algorithm that computes the bins that minimise
the mean-squared error, and is equivalent to applying k-means clustering
for uni-variate discretisation. Although from the discretisation perspective
subgroup discovery can be seen as a supervised method, the use of supervised
discretisation has not been widely studied. Similarly limited works have
also suggested on-the-fly discretisation schemes [GR09; MK21], out of which
one sacrifices the optimality and is non-relevant [MK21], while the other

3The Iverson bracket [Ive62] is a compact representation of the Kronecker delta. Here, the
bracket retains its property of a predicate, which allows for a convenient way to concisely
represent descriptions of predicates and their conjunctions as logical expressions.
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comprises a straightforward extension4 to all our algorithms, but is beyond
the scope of this thesis [GR09]. In this work we adopt the non-parametric
variant of equi-quantile discretisation due to its versatility, where we typically
use 5 intervals; this allows the resulting ranges to be named intuitively as
very_low, low, normal, high, and very_high.

2.2 The Language of Subgroups

The predicates in P can be combined to form finer descriptions for the
candidate sub-populations; the set of all such possible descriptions comprise
the subgroup language. We now describe this set, for which we borrow
useful notions from the field of formal concept analysis.
As Boolean functions that predicates are, each of them can be combined

to form conjunctions, thus yielding a more fine-grained Boolean functions,
and thereby predicate, that describes the membership of each entity in
a sub-population. For instance, whereas [age ≥ 18] describes adults and
[sex = female] females, when combined to form [age ≥ 18] ∧ [sex = female]
they yield the finer description “adult women”. Formally, these Boolean
conjunctions can also serve as indicator functions, which then “select” those
entities from the sub-population that satisfy the Boolean condition or, equiv-
alently, that fit the corresponding description. We therefore refer to these
conjunctions as selectors and represent them as predicate subsets, always
implying that there is an associated description that can be easily read from
this predicate subset.
Each selector s ⊆ P induces a sub-population through the extension

operator ext : 2P → 2E , where

ext(s;E) := { ε ∈ E | p(ε) = > for all p ∈ s } , s ⊆ P . (2.1)

An operator to a direction opposite to that of the extension, albeit not
necessarily its inverse, is the intention operator int : 2E → 2P . This
operator assigns to every entity subset Q those predicates that are satisfied
by all entities of Q

int(Q;P ) := { p ∈ P | p(ε) = > for all ε ∈ Q } , Q ⊆ E . (2.2)

A key property of these two operations is that, once we append one or more
4This method keeps a 2-dimensional table of all combinations of upper and lower bounds
for each attribute, which are combined to prune non-promising intervals. Since the
methods we propose in this thesis provide algorithms that compute similar bounds,
this scheme is also applicable to our tasks.
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predicates to a selector s, the new extension is a subset of the original;
similarly, when we append one or more entities to an entity subset, the new
intention is a subset of the original. This property is formally expressed by
saying that the two operators of extension and intention form an (antitone)
Galois connection [GW99] between the powersets of entities and predicates

Q ⊆ ext(s;E) ⇐⇒ s ⊆ int(Q) . (2.3)

This is the property that we will later use to derive an algorithm that can
efficiently optimise over the studied subgroup languages and is will also be
the basis of a key component in the definition of a redundancy-free subset of
the established subgroup language.

We can now define useful variants of the subgroup language L. A first
attempt would be to simply include every possible predicate conjunction;
using the representation of conjunctions as predicate subsets, this yields the
definition Lall(P ) := 2P . In certain attribute configurations, however, it can
happen that the same sub-population accepts several descriptions. This can
happen when an added predicate does not further restrict the sub-population,
e.g., [pregnant] ≡ [pregnant]∧[sex = female], where being pregnant already
implies the sex. The same can also happen in more complex scenaria, when
one description implies the other; assuming, for instance, that one can
only obtain immunity from a disease by either a vaccination or naturally
recovering from a historical exposure; we can now that we get the two
equivalent descriptions [exposed] ∧ [healthy] ≡ ¬[vaccinated] ∧ [immune].
This multiplicity of descriptions creates a problematic redundancy that may
lead to reporting the same result multiple times, while it additionally imposes
a substantial yet avoidable overhead during optimisation.

One way to avoid this redundancy is to unite all equivalent descriptions
of Lall into an equivalence class and form a new language with only one
representative description from each equivalence class, thus forming a sub-
group language with no equivalent descriptions. Here we present a rigorous
adaptation of the redundancy-free language defined by Boley and Grosskreutz
[BG09]. Assuming we are given a sufficiently representative population E we
can define descriptions as equivalent ≡E when they have the same extension
in this population

s1 ≡E s2 ⇐⇒ ext(s1;E) = ext(s2;E) , s1, s2 ⊆ P . (2.4)

Thus, the equivalence relation ≡E partitions the members of Lall forming
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the quotient set5

Lall/≡E :=
{{s ∈ Lall | s′ ≡E s} | s′ ∈ Lall

}
, (2.5)

each member of which is a partition of Lall containing equivalent selectors.
Now, any set of selectors that contains at most one member from each set
in Lall/ ≡E can have no equivalent selectors, and is thus guaranteed to be
redundancy-free. We can therefore form the redundancy free language Lcl
by allowing exactly one representative selector from each equivalence class
of Lall/≡E , which we achieve as follows. We revisit the Galois connection
property and apply the intention operator on both sides of the first equation
in Eq. (2.3), to observe that

int(ext(s;E) ;P ) ⊆ s , for all s ⊆ P . (2.6)

This lets us use the (inclusion-wise) maximal element in each equivalence
class as the class representative. We define the closure operator

clos(s) := int(ext(s;E) ;P ) =
∧
{p ∈ P | ext(p;E) ⊇ ext(s;E)} (2.7)

and call its fixed points the closed selectors, which are unique within each
equivalence class. We can now define as a redundancy-free subgroup language
the one consisting of the closed selectors

Lcl(P,E) := {s ⊆ P | clos(s) = s} . (2.8)

Despite solving the problem of redundancy, however, this language contains
selectors that are not necessarily good candidates to form a description
for human audiences. More specifically, we notice from the definition of
the closure operator in Eq. (2.7) that every selector s ∈ Lcl contains all
the predicates that do not constrain its extension ext(s), which can be
prohibitively many. In contrast, we would like to be able to describe the
very same extension but using only a few predicates, thus yielding a succinct

5Here we assume all equal elements in this formulation to be included only once. A
more rigorous albeit overly complicated definition that does not repeat any equivalence
class can be given in iterative form for any set in the standard Zermelo-Fraenkel
theory with the axiom of choice (ZFC). We let L0 := {s ∈ Lall | s ≡E minLall},
Li :=

{
s ∈ Lall | s ≡E min

(
Lall \

⋃i−1
j=0 Lj

)}
and Lall/≡E :=

⋃I

i=0{Li}, where min ·
is some arbitrary element of the set ·, and always exists by invoking the axiom of
choice. Our case is much simpler, since such an element can be the minimal in terms
of lexicographic ordering of the predicates contained in each selector, which is a well-
defined total ordering for Lall. Here, since Lall is finite and all Li 6= ∅, it is also
I < |Lall|.
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description. In other words, by construction Lcl contains the inclusion-wise
representative from each equivalence class, and an improved language could
be derived by replaced this representative with a more succinct one from each
equivalence class. This gives rise to the notion of a minimal generator,
that is, a selector of which no predicate can be removed without changing
its extension. Moreover, all minimal selectors that have the fewer possible
number of predicates are called minimum generators. Note that not only
the minimal but also the minimum generators can be exponentially many
for given equivalence classes, and therefore we cannot retain the redundancy
free property of a language by simply allowing all minimal or all minimum
generators in one language.
One solution would be to use Lcl and from each closed selector derive a

minimal one, which can be easily done in polynomial time. The case for
minimum generators, however, is much more difficult, since the problem of
computing a minimum generator of an equivalence class can be shown to
be NP-hard [BG09] by a Karp reduction of the minimum set cover problem.
For instance, although in our previous example it is easy to go from both
[exposed]∧ [healthy] and ¬[vaccinated]∧ [immune] to their closure, which
contains all four involved predicates at the same time, it is very hard to
find one of the former, succinct descriptions starting from the closure itself.
Luckily, we will later show that finding a minimum generator can indeed
be performed with minimal additional overhead during the traversal of the
optimisation algorithm we propose in this work, by keeping track of the path
from which we encountered each equivalence class of Lall. This would be
equivalent to using a subgroup language Lmg that is a particular instance
within the collection of all possible redundancy-free languages that consist
only of a single minimal generator from equivalence class.
Beside the obvious implications of choosing a subgroup language on the

expressivity of the resulting descriptions, this language also defines the
domain over which we seek the optimal description, and thereby the optimal
subgroup. The next step is to formalise our intuition into an objective
function that dictates which is the best subgroup within this domain.

2.3 Measuring Subgroup Quality

The goal of subgroup discovery is to find the subgroup which maximises a
quality measure; we refer to any such measure as the objective function.
In this work we focus on the data-centric methods within this framework,
in which the property used to assess the fitness of candidate subgroups is
how exceptional any given subset of the population is. Thus, the goal of the
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objective function is to assess the exceptionality of each subset of entities6
with respect to a target concept, that is, a property of interest defined
on this subset of entities. Typically, the target concept is simply a scalar
variable defined on each entity, hence referred to as the target variable;
in this case, the exceptionality of the entity subset is assessed based on the
statistics of this variable within the evaluated subset. Formally, for the target
variable we write y : E → Vy, and its domain Vy can be either discrete or
numerical. In the simplest—and most frequent—scenarios, the value of the
target variable is simply provided in the dataset, similar to the available
attributes. For instance, in our medical example, meaningful target variables
would indicate whether the patient survived ysurv ∈ {>,⊥} or the duration
of their hospitalisation yhosp ∈ {0, 1, . . .}.

Using this target variable, we can define an important objective function,
the weighted relative accuracy (WRAcc) [TFL00], that was first proposed
for binary target variables, and has also been used with numerical targets
under the name of impact function [Web01]

fimp(Q) := |Q| · (ȳQ − ȳE) . (2.9)

Here, ȳQ := mean{y(ε) : ε ∈ E} is the mean of the target values of all entities
in the population E, ȳQ is the target mean of only those entities in the
candidate subset Q. The first intuition proposed to motivate this objective
was that it combines two concepts that in our work we will broadly refer to as
generality and exceptionality. More specifically, the fimp objective favours
larger subsets that are therefore less likely to be outliers (generality), while at
the same time preferring those with greater mean deviation (exceptionality),
which in turn makes them more outstanding. The two factors are multiplied
to preserve the scaling of the objective with respect to each component, i.e.,
doubling any factor while keeping the other constant has the same effect on
the final objective. This observation also reveals the relation to the titular
notion of impact in physics, whose result remains the same whether we
double the mass or the speed (keeping the other term constant), and where
the mass and speed serve as parallels for the size and deviation, respectively.
In this work we will extensively study a generalisation of the impact

function of Eq. (2.9): the geometrically weighted impact (GWI)

fgwi(Q; γ) := |Q|γ ·
(
[ȳQ − ȳE]+

)1−γ
, γ ∈ [0, 1] , (2.10)

6Note that the objective function is not defined exclusively on the domain of subgroups,
but can be applied on any subset of entities.
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which introduces a parameter γ that tunes the geometric weight between the
two terms of generality and exceptionality, and only uses the positive part7
[·]+ := max(·, 0) of the latter. This formulation already contains several
proposed objective functions as special cases of its tuning parameter. For
instance, for γ = 0 it becomes equivalent (in terms of maximisation) to the
lift and the relative gain [Atz15], for γ = 1/3 it gives the standardised mean
z-score [TLT08], while for γ = 1/2 we recover the original WRAcc and impact
function. Due to the central position of this function in our work, we invest a
portion of this analysis to motivate it, study its properties and demonstrate
its importance.

A more principled approach to derive objective functions comes from the
statistical interpretation of the task at hand. For this, we assume that the
target variable corresponds to realisations of the random variable Y, from
which point onward we can derive sensible statistics adapted to common
problems in statistical theory. To this end we denote PY the distribution
of the target attribute in the actual population and y(Q) the set of target
variables of entities within Q, which is considered a sample of the random
variable YQ ∼ PY |Q . At this point it becomes clear that the statistics of YQ
should be estimated based on all entities of the subgroup Q. However, we still
need to define which entities we should use to estimate the distribution of Y ,
against which the former estimate is to be compared. In this thesis we contrast
the two main approaches and explicitly reason about them using statistical
assumptions, which improves on what is standard in the literature. So far, the
distinction between the two approaches is mostly ignored [HCG+11; Hel16]
and the corresponding choice is implicitly made based on what is convenient
for the computation or the theoretical model [SKF+16], or simply let to the
intuition of the user [Atz15], for instance as part of the ‘art’ of choosing the
right objective function [LAP16]. We hence explicitly distinguish two cases,
depending on our statistical assumptions for the population available in the
dataset.

Case I: Entire Population Accessible On one hand, it might be reasonable
to assume that we know the true distribution of the population. This could

7Using the positive part of the exceptionality term is solely used for the added theoretical
convenience and does not hurt the generality of fgwi in practical scenarios; in fact other
works also adopt a similar formulation of the impact function itself [BGG+17]. The
reason for this is that all practical domains over which we perform optimisation contain
the entire population E as a candidate subset, which attains a zero impact function
fimp(E) = fgwi(E, γ) = 0, for all γ ∈ [0, 1). Therefore, no subset with a negative fimp
or fgwi could ever be an optimiser, regardless of the existence of the positive part [·]+
in the formulation of each of these objective functions.
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happen, for instance, if we assume that the dataset contains the entire
population, in which case we can easily compute important parameters
of the distribution exactly, such as its probability mass function and its
moments. This might also be a valid assumption when the distribution of
the target concept is known, for instance if we knew that the target variable
Y ∼ N (µ, σ2) is normally distributed. Then, we may assume the dataset to be
large enough to allow the empirical estimation of the distribution parameters
with sufficiently high confidence, so that we can consider these parameter
estimates as deterministic quantities. Thus, here PY is the distribution of
the target attribute in the entire dataset.

Problem 1 (Goodness-of-fit Problem). Does the sample y(Q) come from
the distribution PY? Equivalently, is PY = PY |Q , given the single sample
y(Q)?

As an example of how such an objective function can be used, assume
that Y N (ȳ, σ2,), where ȳ = ȳE is assumed to be the true mean of this
distribution. Now an appropriate statistic to find the statistic appropriate
for this problem is the z-score of the empirical mean. Its absolute value for
i.i.d. samples becomes

|z(Q)| := |
ˆ̄yQ − ȳ|
σ/
√
m

= 1
σ

√
m|ˆ̄yQ − ȳ| ∝ f

3/2
gwi(Q; 1/3) . (2.11)

In other words, optimising the GWI function of Eq. (2.10) for γ = 1/3 we get
the subset that would yield the lowest p-value for the two-tailed test with a
null hypothesis assuming a normally distributed target variable.

Still well within this regime, a different argumentation to derive a statistic
for categorical target variables comes from the use of proper scoring rules
as summaries for the subgroup statistics. To this end, Song et al. [SKF+16]
propose to assess the goodness of fit with the Brie and log-loss proper scoring
rules. These yield the corresponding divergences

dBrier(Q) :=
K∑
k=1

(pk − qk)2 dLog−Loss(Q) :=
K∑
k=1

qk log qk
pk
, (2.12)

where we assume the target variable to be categorical with K classes with
pk, qk denoting the probabilities of class k in the subgroup and the true
population, respectively

pk := E
y∼PY |Q

[
1[y = k]

]
qk := E

y∼PY

[
1[y = k]

]
k = 1, . . . ,K . (2.13)
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Their final proposed statistic is the information gain for each divergence,
which gives the above divergences multiplied by the subgroup size m. Note
that in the case of the Brier score, the resulting statistic is the multi-class
analogue of the absolute value of the z-score.

Case II: Only a Population Sample Available Another approach for our
task is to assume that the dataset is only a sample of the true population,
arguably an assumption that needs not much reasoning to justify. Since then
we do not know the true distribution of the population, we may only assume
the dataset to have a sample of it, denoted y(E) ∼ PY . This implies that to
avoid any bias between the samples, we may not share instances between
the two samples. That means that, since we should use all samples of Q to
estimate a statistic for PY |Q , we may only use the complement E \ Q to
estimate any statistic for PY .

Problem 2 (Two sample Problem). Do the samples y(Q) and y(E \ Q)
come from the same distribution PY? Equivalently, is PY = PY |Q , given
independent samples y(E \Q) ∼ PY and y(Q) ∼ PY |Q ?

We will study a very versatile statistic for this latter problem in Chapter 5.
Importantly, statistics developed for the two-sample problem can also be
applied to address the goodness-of-fit problem, where we simply use as sample
of the distribution PY that from the entire population y(E), albeit with the
danger of possibly introducing bias in the resulting statistic.
Summarising the above, not only does the data-driven paradigm of sub-

group discovery arise from well-founded statistical principles, but our adopted
objective contains the centrally positioned (absolute of the) z-score.

2.4 Optimising the Objective Function
From this perspective we can recognise subgroup discovery as an optimisation
problem, and in fact a hard combinatorial one. Formally, we can express
this optimisation problem as

Qopt := arg max
Q∈ext(L;E)

f(Q) , (2.14)

where we overload notation to denote ext(L;E) = {ext(s;E) | s ∈ L} the
set of all subsets of E corresponding to a subgroup in the chosen language.
This is a constrained combinatorial problem, and as such its difficulty not
only depends on the properties of the objective function f , but also on the
structure of the optimisation domain ext(L;E). We now present 3 algorithms
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to solve it, in increasing order of versatility, out of which the last one is the
one developed and used in this work.

2.4.1 Mathematical Programming

When the objective function allows it, we can formulate the problem of
Eq. (2.14) as a standard mathematical program. This allows the use of very
well studied algorithms available in highly optimised solvers that can be
applied to the problem with little to no extra overhead.
For the sake of simplicity we focus this first exposure on the case of an

integer linear program (ILP); later we will use the same principles to solve
both a fractional program and a quadratic one. We therefore consider first
the objective function of Eq. (2.9), from which we drop the absolute8 value.
To proceed we first assume an arbitrary total ordering ≤ of the elements
in E, so that we can express any subset Q of E = {ε1, . . . , εn} using its
indicator vector

xQ = ind≤,E(Q) :=
(
1[εi ∈ Q]

)n
i=1 xQ ∈ {0, 1}n , (2.15)

Q = set≤,E(xQ) :=
⋃

1≤i≤n
xi=1

{εi} , (2.16)

where set(xQ) is the set corresponding to the indicator vector xQ, and 1[·] is
the indicator function that yields 1 if condition · is true and zero, otherwise.
Using this notation we can now write |Q| = e>xQ and ȳQ = ey

e>xQ , where
y :=

(
y(εi)

)n
i=1 is the vector of all target values. Now our optimisation

problem can be written as

max
Q∈ext(L;E)

fimp(Q) =

max
set(xQ)∈ext(L;E)

e>xQ
(

y>xQ
e>xQ

− ȳ
)

=

max
set(xQ)∈ext(L;E)

xQ>
(
y− ȳe) , (2.17)

in which the objective is linear, since the vector in the parenthesis is inde-
pendent of xQ. All that is left to express this problem in the standard form
of an ILP is to provide a set of linear inequalities that define some polytope
which contains all combination of xQ that correspond to acceptable subsets

8Note that being able to optimise the objective problem without the absolute value is
more powerful, as we can also obtain the optimum of the
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Q ∈ ext(L;E). For this we will use an additional vector of helper variables
ps ∈ {0, 1}m that will serve as the indicator vector of the predicates that are
currently selected.

Lemma 2.1 (The language polytope). The indicator vectors of all sets of
all named entity subsets that comprise the predicate language Lall(E,P ) are
contained in the intersection of the integer lattice Zn+m with a polytope LE,P

Q ∈ ext(Lall(E,P );E) ⇐⇒ (∃ps) : (xQ,ps) ∈ Zn+m ∩ LE,P , (2.18)

where ps ∈ {0, 1}m serves as a helper variable and corresponds to the indicator
vector of a selector s ⊆ P , which in turn is a predicate subset.

The polytope LE,P itself is defined through the inequalities

−xi −
m∑
j=1

pj(1− vi,j) ≤ −1 1 ≤i ≤ n (2.19)

xi

m∑
j=1

(1− vi,j) ≤
m∑
j=1

(1− xi)(1− vi,j) 1 ≤i ≤ n (2.20)

xi ≤ 1 , pj ≤ 1 , xi ≥ 0 , pj ≥ 0 1 ≤ i ≤ n , 1 ≤ j ≤ m,
(2.21)

for m = |P | the number of predicates and vi,j := 1[pj(εi) = >] the validity of
the j-th predicate on the i-th entity. The optimal subset and corresponding
selector can be read from x and p, which serve as characteristic vectors over
the set of entities and predicates, respectively.

Proof. Let x and p be the characteristic vectors of the entities and predicates,
respectively. Now any subset Q ⊂ E and any selector L ⊂ P can be described
as points in {0, 1}n × {0, 1}m.
We first show that the first two inequalities constrain the domain of the

integer lattice exactly to the points corresponding to elements of L. The first
inequality ensures that if all selected predicates are validated by an entity, it
must be selected. Indeed, when all selected predicates are valid for εi, the
sum in the left hand side of the equality becomes 0, so the constraint is only
valid when xQ = 1.
The second inequality enforces that if any predicate that is invalid for εi
is selected, then xi must be 0. These two conditions describe exactly all
conjunctions of predicates, which coincides with the set LE,P .

In practice, most software packages for integer programming allow the box
constraints to be embedded in the specification of the variables, so that we
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can limit the required inequalities to those of Eqs. (2.19) and (2.20), thus
yielding the ILP

max x>c
s.t.: AL[x; p] ≤ bL

x ∈ {0, 1}n , p ∈ {0, 1}m
(2.22)

with c = y− ȳe and such AL ∈ R2n×n+m and bL ∈ Rn+m that encode the
linear inequalities in Eqs. (2.19) and (2.20).
Despite its convenience, however, mathematical programming can not

always be used for the objective functions desired, but can also be forbid-
dingly inefficient for more complex objectives, such as quadratic or fractional
programs. This gives rise to the need for combinatorial algorithms that can
take advantage of the special structure of the language polytope LE,P .

2.4.2 An Efficient Branch-and-Bound Method

Since subgroup discovery is a combinatorial problem, a standard method for
its optimisation is the branch and bound [MS08] algorithm. For the needs
of our work we developed a dedicated branch and bound variant that we
specialise for the optimisation over the domain ext(L;E). Below, we first
describe the key components of branch and bound methods, and complete
our specialisation in the last paragraph of this section.
The typical branch and bound approach efficiently traverses a spanning

search tree over the elements of E, for which it combines two key components
that handle the search node generation and the pruning, respectively.

Spanning Tree Generation The nodes of the search tree are dynamically
generated by the refinement operator ρ : L → 2L, which for each subgroup
in L computes a set of valid refinements, i.e., subsets of it that are also
members of L. In this way, the refinement operator induces a tree over
L—and thereby over ext(L;E)—with the added requirement that this tree
be spanning. In the following we assume some total ordering ≤ over P , e.g.,
the lexicographic ordering of their names, so that we can index the predicates
as p1 ≤ . . . ≤ pm.

When it comes to the subgroup language Lall of all predicate combinations,
a simple refinement operator can be formulated by extending a given selector
with each unused predicate. This gives a simple version of the minimal
description refinement operator

ρmd(s) := {s ∧ pi | imax(s) < i ≤ |P |} , imax(s) := max{i | pi ∈ s} , (2.23)
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whose induced spanning tree reaches every partition of equivalent description
multiple times, but always also from a minimal generator. Depending on
the flavour of branch-and-bound in which it is employed, this can be a very
useful property, when for example we seek to search over all conjunctions in
Lall that are generated by no more than a fixed number of predicates.
Depending on the attribute configuration of the population, however,

the redundancy in the search node generation can incur a considerable
additional workload. In these cases, one can choose to traverse only the
members of Lcl. This can be achieved by the redundancy-free refinement
operator [UAU+03]

ρrf(s) :=
{
s′ = clos(s ∧ pi) | s′|i−1 = s|i−1 for icore(s) < i ≤ |P |} , (2.24)

which creates a spanning tree over exclusively the elements of Lcl, thus
avoiding any redundancy. In this tree, below each closed selector is a
descendant with the same prefix pj , and only if its extension is different than
that of its parent. This is achieved by setting

s|j =
∧
{pj : pj occurs in s and j ≤ i} (2.25)

icore(s) := min{j | ext(s|j ;E) = ext(s;E)} . (2.26)

Due to this prefix-preserving property, however, even though all equivalence
classes of Lall/≡E (see Eq. (2.5)) will eventually appear on this tree, it can
be that a selector with a much more succinct equivalent will only appear in
deeper layers of the tree. For this reason, this refinement operator cannot
guarantee exhaustive search over the descriptions with limited number of
predicates by limiting the depth of the induced search tree.
The induced spanning tree of both ρmd and ρrf has as root the selector

corresponding to the empty conjunction sroot, whose extension is the entire
population E. In both cases, the algorithm traverses the spanning tree
induced by the chosen refinement operator over L, while pruning sub-optimal
branches using an admissible bound of the objective function.

Tree Pruning Since the size of the search tree is exponential in the number
of predicates, an efficient invocation of this optimisation algorithm requires
an efficient scheme to prune the sub-optimal branches. To develop such a
scheme we first observe that the refinement operator of a selector s appends
to it additional predicates; due to the Galois connection property of Eq. (2.3),
the extension of any refinement of s is a subset of ext(s;E).
We can therefore bound the value of the objective function f over all

nodes in the search sub-tree below selector s by the value of the optimistic
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estimator f̂ . This is the term used in subgroup discovery for the upper bound
of f over all subsets of the extension of the current selector Q = ext(s;E),

f̂(Q) ≥ max
R⊆Q

f(R), for all Q ⊆ E . (2.27)

Therefore, at each node of the search tree we can consult this bound and
test if it is less than the objective value of the best subgroup found so
far; if the bound is indeed less, then we can safely prune the entire search
sub-tree below s, since we are guaranteed that no subset of Q and therefore
also no subgroup in this sub-branch can improve on the best currently
found subgroup. Naturally, as the bound of the optimistic estimator gets
tighter its pruning potential increases. This potential becomes optimal when
Eq. (2.27) holds with equality; then we refer to f̂ as the tight optimistic
estimator [GRW08] of the objective function f .

Since the value of the optimistic estimator is computed for every node in
the search tree, its computation must be substantially more efficient than the
original problem Eq. (2.14). This is much easier to achieve than solving the
original constrained problem, due to both the unconstrained nature of the
bound and the additional freedom to choose any upper bound, not necessarily
the tight one. Nevertheless, there is no standard procedure for the derivation
of an efficient optimistic estimator, and it requires a considerable effort for
each corresponding objective function. In fact, this is one of the limitations
of the exact methods for subgroup discovery, and one for which we provide a
solution in Chapter 5.

Iterative Deepening Search All standard variants of branch-and-bound
combine these components as follows. Starting from the empty selector sroot
they traverse the search tree induced by the used refinement operator ρ,
while keeping track of the best objective value of all selectors encountered
so far. For each refinement of the current selector the optimistic estimator
is evaluated, and if its value is below the current best the refinement is
dropped, otherwise appended or pre-pended in the queue of active selectors.
This description pertains to both breath- and depth-first searches, both of
which have considerable downsides: During breadth-first-search the queue
of active search nodes can grow arbitrarily large, which can readily incur
a considerable memory overhead, while the depth-first variants can delve
excessively deep in sub-optimal branches.
We therefore improve on these typical approaches, by introducing the

iterative deepening depth-first search [Kor85] method, which is a variant of
the classical branch-and-bound algorithm that uses a hybrid between depth-
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Algorithm 1: Iterative deepening branch-and-bound .
Input: Result count k, depth limit dmax, approx. factor α
Output: Top-k results R

1

Truncated
depth

first
search

(D
FS)

τ ← −∞, R ← {}, ddfs ← 1
2 do
3 truncated← ⊥
4 stack← push

(
newStack(), (s0, 0)

)
// Initialise empty stack

5 while notEmpty(stack) do
6 stack, (scur, dcur)← pop(stack)
7 for sref ∈ R(scur) do
8 R← ext(sref;E)
9 f̂ref ← f̂(R)

10 if f̂ref > α · τ then
11 fref ← f(R)
12 if fref > τ then
13 R ← keepTopK(R∪ sref)
14 τ ← min

{
f
(

ext(s;E)
)∣∣∣s ∈ R}

15 if dcur < ddfs then
16 push

(
stack, (s, dcur + 1)

)
17 else
18 truncated← >

19

20 ddfs ← ddfs + 1
21 return R
22 while ddfs ≤ dmax and truncated

first and breadth-first searching. This variant iteratively invokes a truncated
depth-first search with increasing maximal depth dmax, so that shallow
optimal solutions are found early. Since the inner invocation is essentially
a depth-first search, it also requires only a minimal memory footprint of
O(|P |dmax) space, while having asymptotically the same complexity as both
algorithms.
Optionally, and to achieve even better pruning, the branch-and-bound

algorithm may use the relaxed comparison αf̂(Q) > f(Qopt), for an approxi-
mation factor α ∈ (0, 1], where a value of α = 1 yields the best subgroup.
Lower α values generally result in more aggressive pruning, but only offer
the relaxed guarantee that the discovered subgroup has a value no less than
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α times that of the best subgroup. The general outline of this algorithm
takes the form of Algorithm 1, which is the first contribution of this thesis.
More specifically, iterative deepening depth first search (IDDFS) starts

with a permissive pruning threshold and empty result set (line: 1) and
repeatedly invokes the inner truncated depth first search (DFS) (lines: 3-
22). The latter traverses the tree induced over L by the chosen refinement
operator ρ (line: 7) starting with the root selector sroot (line: 4). During
traversal, the current selector scur is popped from the stack and for each
of its refinements sref ∈ ρ(scur) we perform the following steps. First, we
compute the optimistic estimate of the refinement (line: 9); if this estimate
does not exceed the pruning threshold ατ , the refinement but also all its
sub-refinements cannot provide an acceptable improvement over the current
top-k and they are all ignored. Otherwise, if the objective value of the
refinement improves on one of the current top k, we update this latter set
as well as the threshold τ (lines: 13-14). Additionally, if the current depth
allows, we append the current refinement to the stack (line: 16). This
process repeats until the stack is empty, after which we restart the innermost
DFS with an increased depth limit while maintaining the current pruning
threshold τ . In this fashion, although consecutive DFS invocations still start
from the same root selector sroot, as time progresses better results are found
and τ increases, so that in subsequent invocations increasingly more nodes
are pruned. This process repeats until DFS completes un-truncated, i.e., all
reachable refinements have been traversed (line: 18).
From the study of the algorithm we see that the objective value and

possibly the optimistic estimator must be computed once per iteration. Since
the cost of each iteration just for the creation of the next studied refinement
happens in (amortised) linear time, it is desirable for the bound to also be
computable in close-to-linear time, in order to avoid changing the asymptotic
complexity of the algorithm.

The branch-and-bound algorithm bears similarities with adapted versions
of constraint satisfaction solvers, assuming the latter have been equipped
with an appropriate constraint propagator that would take into account
the same bound. The search tree of both algorithms can also be very
similar. Their main difference lies in the way the search nodes are generated:
in the constrained satisfaction approach a node is first created and then
the constraints are applied, which often leads to the creation of infeasible
solutions. In contrast, branch-and-bound uses node generation rules which
guarantee the traversal of exclusively all subgroups in ext(L;E).
At this point we have presented ways to efficiently optimise a given ob-

jective function over a collection of useful subgroup languages. Importantly,
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Figure 2.1 [Subgroup Objective Space]: The objective space of the 51 non-
empty subgroups out of the total 243 that are defined by the attributes of the patient
toy example (see Fig. 1.1a). Here we mark the subgroups of the Pareto frontier
and the optimal subgroup of the GWI function for different relations between the
two terms, as captured by this function for a varying γ parameter. Specifically for
γ = 2/3 we additionally mark the top-5. We observe that changing the relation
between the two terms selects a different point of the Pareto frontier: the upper-right
“coast” of points. In contrast to the full Pareto frontier, which by definition spans
the entire coast, the top-k points are redundantly close.

the methods of this section can also be generalised to go beyond the optimi-
sation of a single objective function, into the optimisation of more than one
objectives, as we present below.

2.5 Multi-objective Optimisation

All methods of data-centred subgroup discovery that we encountered so far
have employed objective functions that assumed a fixed relation between a
metric of subgroup generality and another of its exceptionality. However,
despite their established usefulness9, these methods yield a single optimal
subgroup that may often be insufficient on its own, as it might be too
general or too specific, or correspond to inaccurate or misleading statistical
assumptions. The same also holds in the particular case of the geometrically
weighted impact (GWI) function fgwi in Eq. (2.10): even though this objective
function allows the tuning of the relation between the two terms, its result

9We recall, for instance, that the GWI for a parameter of γ = 1/3 recovers the most
significant subgroup when the target variables is assumed Gaussian, which can be of
great use for medical personnel.



2.5 Multi-objective Optimisation 47

Subset Description fexc
ȳQ−ȳE

fgen
|Q|

Size
%

Trade-off
γ

Angle
θ

1. [age = young]∧ [mutation]∧ [asthma] 9.26 1 4% [0.00 − 0.15] 2.1°
2. [age 6= child] ∧ [mutation] ∧ [asthma] 7.59 3 11% [0.15 − 0.22] 7.7°
3. [mutation] ∧ [asthma] 7.01 4 15% [0.22 − 0.40] 11.1°
4. [age 6= child] ∧ [mutation] 6.26 4 15% 7 12.4°
5. [mutation] 6.06 5 19% [0.40 − 0.44] 15.8°
6. [age 6= child] ∧ [asthma] 4.26 7 26% 7 29.4°
7. [asthma] 3.26 10 37% 7 46.5°
8. [age 6= child] 2.20 18 67% [0.44 − 0.94] 70.4°
9. ∅ 0.00 27 100% [0.94 − 1.00] 90.0°

Table 2.1 [Pareto Frontier of Subgroups]: A collection of subgroups that
describe exceptional sub-populations in the toy dataset of Fig. 2.1 (marked with
circles) for a varying emphasis on subgroup generality, in increasing order of this score.
This list contains all Pareto optimal subgroups for the two scores for exceptionality
and generality. Out of these subgroups, our method selects a more concise set
of conspicuous Pareto optima; its members are indicated by the interval of the γ
parameter for which the subgroup is optimal.

is nonetheless subject to the same limitations, since this relation is still
controlled by a fixed, user-defined parameter.
To demonstrate these limitations, let us revisit the toy patient data of

Fig. 1.1a, the attributes of which allow the creation of 243 subgroups10. To
evaluate these subgroups we use the exceptionality and generality terms of the
GWI function, denoted as fgen(Q) := |Q| and fexc(Q) := ȳQ− ȳE, respectively.
Using these metrics we can now depict the (non-empty) subgroups in the
objective space, where each subgroup is represented as a point with
coordinates

(
fexc(Q), fgen(Q)

)
the values of the two terms, as shown in

Fig. 2.1. Here, we can visually inspect the quality of the subgroups, which
increases in terms of generality as we move to the top and in terms of
exceptionality as we approach the right, with the optimum of each objective
function determined by the relation between the two terms. For instance,
when these terms are combined within the GWI function with a weight

10To see this, we note that there are 5 predicates derived from the 3 available attributes; the
age attribute gives the predicates [age = child], [age = adult], and [age = old], while
the remaining Boolean attributes give the predicates [mutation] and [asthma]. Each of
these can be either included pristine, included negated, or not included at all, resulting
in 53 = 243 combinations in total, each of which corresponds to a subgroup.
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Subset Description fexc
ȳQ−ȳE

fgen
|Q|

Angle
θ

fgwi
γ = 2/3

Pareto
Optimal

1. [age 6= child] 2.20 18 70.4° 8.94 3

2. [asthma] 3.26 10 46.5° 6.88 3

3. [age = old] 2.93 9 46.5° 6.19 7

4. [age 6= child] ∧ [asthma] 4.26 7 29.4° 5.93 3

5. [age 6= child] ∧ ¬[mutation] 1.04 14 77.7° 5.89 7

Table 2.2 [Top-k Subgroups]: The top-5 subgroups for the GWI function with
parameter γ = 2/3. The top-k subgroups are often not Pareto optimal, as is here
the case already for 2 out of the top-5 subgroups. They also exhibit redundancy
by being closely positioned in the objective space; this is quantified by the small
range span by the angles of the corresponding points in the objective space, here
only 29.4–70.4. Notably, their order offers no control of their angle property.

of γ = 2/5, we discover the optimal subgroup [mutation]; this subgroup—
marked in Fig. 2.1 with a square—describes a sub-population with 6.06 days
of recovery more than normal, and amounts to 19% of all patients.
Once we consider the size of the corresponding sub-population, however,

we can easily imagine a scenario when this subgroup turns out not to be a
good fit for the intended purpose. For instance, when our goal is to introduce
rules for the protection of the associated vulnerable sub-population, covering
only 19% of the patients might be too specific and leave out important
portions of the population. On the other hand, when our goal is to allocate
limited resources, such as intensive care beds, the described sub-population
might be forbiddingly populous, and therefore a less general one would be
preferable, instead. In such cases a different relation between the two terms
is required; to achieve exactly this, one convenient way is to tweak the γ
parameter of the GWI function, which we can already see in a first overview
of the subgroups that are optimal for different values of this parameter, as
listed in Table 2.1. Indeed, if we emphasise on generality we discover the
subgroup [age 6= child] that describes 67% of the patients, while emphasising
on exceptionality yields the subgroup [mutation] ∧ [asthma] that refers to a
more specific sub-population of only 15% of the patients. From the statistical
perspective, the assumptions dictating a given fixed relation between these
two terms might be erroneous or inaccurate, thereby misleadingly indicating
that the sole discovered subgroup is truly the most significant.

Under this light, it becomes useful that the algorithm provides a collection
of subgroups which are each optimal for varying relations of exceptionality
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and generality, instead of just the optimal of a fixed relation between the
two. A common yet problematic attempt to obtain a collection of subgroups
is to compute the top-k subgroups for a given objective function. To see this
in practice, we mark in the objective space (see Fig. 2.1) the top-5 subgroups
of our example for fgwi(·; 2/3) with circles and also list them in Table 2.2. A
first issue of this approach is that one of the top-k subgroups might be worse
than another subgroup in terms of both generality and exceptionality at the
same time. This is the case already for 2 out of the 5 subgroups in the top-5
listing, and more specifically for the 3rd and 5th one, which are each worse in
both terms than the 7th and 8th of listing in Table 2.1, respectively. In fact,
the latter listing contains all Pareto optimal11 subgroups, which are exactly
those that are not dominated by another subgroup on both terms. We hence
refer to this important set as the Pareto frontier of subgroups with respect
to the two terms of exceptionality and generality.

By comparing the two listings of Tables 2.1 and 2.2 we additionally observe
yet another known issue with the top-k approach: the top-k subgroups can
be highly redundant [vLK11], which further translates into a very similar
relation between the two terms of interest. As an intuitive measure of this
relation in the objective space, we introduce the angle12 θ of the point in
polar coordinates. This additionally makes evident not only that finding
the top-k subgroups provides little control over this property, which can be
quantifiably demonstrated by the limited range of the angle θ of the resulting
subgroups. Here, this angle lies in θ ∈ [29.4 − 77.7] degrees for the top-5
subgroups, whereas the Pareto frontier spans the full range of 90 degrees.
In other words, the Pareto frontier of subgroups contains optima with a

variety between the two importance metrics, and therefore conveys broader
information for the data at hand, while guaranteeing that there is no other
Pareto optimal subgroup between any two consecutive entries. This, in
turn, provides further insight on how local modifications to the predicates of
each description affect the relative importance of the two term; for instance,
inspecting the 3rd Pareto optimal subgroup [mutation] ∧ [asthma] we see
that the best next step to increase its exceptionality is to restrict the patient
age to non-children, while to get the next most general optimal subgroup we
may replace the [asthma] restriction with an age-related one.
By computing the Pareto frontier of subgroups we essentially approach

subgroup discovery as a multi-objective optimisation (MOO) problem with

11In this paragraph we are content with intuitive definitions of these important terms,
which we complete later with their formal equivalents.

12For reasons that will become apparent later, we define this angle in the logarithmically
scaled objective space: θ(Q) := tan−1 ( ln fgen(Q)/ln fexc(Q)).
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the exceptionality and generality as its two objectives. However, the Pareto
optimal subgroups might be inconveniently many, and a more concise subset
can be useful, instead. In fact, we will later show that we can compute
such a concise subset by optimising the GWI objective function over the
entire range of its trade-off parameter γ, which results in this useful subset
of the Pareto frontier. Hence, a key part of our second contribution is our
proposal to use our algorithm of Section 2.4 to optimise the GWI objective
function over γ ∈ [0, 1]. We additionally show that our resulting method is
a MOO for subgroup discovery that selects a concise subset of these points
that can be precisely described using core concepts of convex analysis. In the
sequel we will first provide a broad overview of the existing MOO methods
for subgroup discovery, after which we provide a formal description of the
concise collection of subgroups obtained by our proposed method.

2.5.1 Related Work

Astonishingly, our treatment of subgroup discovery as a MOO problem adds
to a minimally studied perspective for subgroup discovery. The existing
works that adopt the MOO perspective are highly related to the relevant
literature on pattern mining, and we thus start our exposition from this field,
for which we distinguish primarily two classes of methods. The first consists
of evolutionary methods adapted to mining rules [PMD+11; SR11], with a
similar work on fuzzy subgroup description [dGH07]. These are heuristic
methods that are random in nature and as such provide no guarantees of
optimality—they are therefore only suitable as a first exploration of the
Pareto frontier. The second class consists of skyline pattern mining [SCR04;
UBC+17], which is a synonym coined for the Pareto frontier when applied on
itemset mining. Within this setting, the state-of-the-art method for binary
data [UBC+17] is able to mine a subset of the Pareto frontier specified by the
user as a hyper-rectangle within the multi-objective space. This method uses
a constraint satisfaction approach that prunes patterns that lie outside the
specified hyper-rectangle by converting the provided constraints to known
ones. For numerical data, the most relevant work is that of van Leeuwen
and Ukkonen [vLU13], which provide a generic algorithm that uses arbitrary
objectives; to find their Pareto frontier it traverses all possible subgroups
while pruning branches of the search tree when an entropy-based measure
of distance indicates that this branch contains only similar subgroups to
one already considered. Finally, one approach of exceptional model mining
(EMM) that is worth mentioning uses a single objective function which
measures the distance of two models based on the Pareto frontier of some
specified MOO problem [MCB21]. This method, however, only uses the MOO
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formulation to evaluate the closeness of the exceptional model within the
EMM framework, but in the end still produces the single most exceptional
subgroup.

Although our proposed method can clearly be classified as a MOO approach,
it differs from all the above in that it does not compute the entire Pareto
frontier, but only a concise relevant subset of it. We next describe this
subset and present some practical aspects for its computation. We begin our
analysis with the introduction of some useful concepts from convex analysis13
theory, and especially the study of convex polytopes.

2.5.2 Useful Concepts from Convex Analysis

A set that we will use extensively in our analysis is the cone, which is any
set that contains every positive multiple of any of its elements. Specifically,
we focus on certain convex cones14 of particular interest. Some useful simple
convex cones are the positive and negative orthants (see Fig. 2.2a [left])

Rn+ := {x ⊂ Rn | xi ≥ 0, 1 ≤ i ≥ n} (2.28)
Rn− := {x ⊂ Rn | xi ≤ 0, 1 ≤ i ≥ n} ; (2.29)

for comparison, we also describe their open variants (see Fig. 2.2a [right])

Rn++ := {x ⊂ Rn | xi > 0, 1 ≤ i ≥ n} (2.30)
Rn−− := {x ⊂ Rn | xi < 0, 1 ≤ i ≥ n} . (2.31)

Given an arbitrary set X ⊂ Rn, its normal cone NX(x) at a point x ∈ n
is the set of every normal direction w that defines a hyper-plane through x
that contains X in the negative half-space (see Fig. 2.2b)

NX(x0) := {w ∈ Rn | 〈w,x− x0〉 ≤ 0 for all x ∈ X} , (2.32)

where by convention NX(x0) = ∅ when x0 /∈ X. The recession cone RX of
a set X is the cone of all recession directions of X (see Fig. 2.2c), that is,

13In this exposure we will treat real vector spaces Rn, which are self-dual. However, we
highlight the possible extensions of the following definitions and theorems to more
general topological spaces, by differentiate between the sets that lie in the original
and its dual space through the use of the symbols X and W , respectively. We also
retain the general notation for an inner product, which allows the extension to any
finite-dimensional Hilbert space by simply plugging in the associated inner product.

14Note that not all cones are convex; as a counter example consider the union of the
horizontal and vertical planes in R2, {(α, 0) | α ∈ R} ∪ {(0, α) | α ∈ R}. This set
contains all positive multiples of its elements, but is clearly non-convex.
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(a) The positive and negative orthants Rn+
and Rn− [left] are simple examples of convex
cones; also shown their open variants Rn++
and Rn−− [right]. Here depicted for R2.
Note that all cones contain the origin.

R2
+ R2

++

R2
− R2

−−

xa

xb

xc

xd

X

NX(xa)+{xa} NX(xa) NX(xb)

NX(xc)

NX(xd)

(b) A non-convex set [left] and its normal cones [right] at its four points xa, xb, xc, and
xd. We also depict the normal cone of point xa shifted to have its origin at xa, which
demonstrates the orthogonality relation between the supporting hyperplanes [thin lines]
of the set X and the extremal rays of its normal cone.

x0
X RX

RX +{x0}

(c) A convex set X and its recession cone
RX . The recession cone translated at any
point point x0 ∈ X remains in the set, i.e.,
RX + {x0}⊆X.

conv(X)
X

X∗

(d) A non-convex set X and its polar cone
X∗. Also shown is the convex hull conv(X)
of X, which includes in X all convex combi-
nations of its elements (dashed area).

Figure 2.2: Visualisation of important convex cones and their key properties.
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all vectors whose every positive multiple can be added to any point in the
set and still result in a point of the set,

RX := {x ∈ Rn | αx + x0 ∈ X, for all α ≥ 0, x0 ∈ X} . (2.33)

Next, we prove a useful property of the recession cone.

Lemma 2.2. Let set X ∈ Rn be equal to the Minkowski sum X = S + C of
two sets S and C, where C is a convex cone. Then the recession cone of X
contains C, that is, C ⊆ RX .

Proof. Fix arbitrary points x0 ∈ X and c ∈ C. To show that c ∈ RX we
will show that the point x′ := x0 + αc also belongs to X for arbitrary α ≥ 0.

Since X is the Minkowski sum of S and C, there exist xS ∈ S and xC ∈ C
such that x0 = xS +xC , so that we can write x′ := x0 +αc = xS + (xC +αc).
It now suffices to show that xC + αc ∈ C, as this implies that x′ ∈ X by the
definition of Minkowski addition for X = S + C. We show that as follows.
Since C is a cone it contains all positive multiples of its elements, and

therefore also 2 · xC and 2α · c. However, C is also convex, and therefore it
contains the convex combination of its previous two points, 1/2 · 2 · xC + 1/2 ·
2α · c = xC + αc, which concludes the proof.

Finally, the polar cone X∗ of a set X is the set of every negative vector
that corresponds to the normal direction of a supporting hyperplane for the
set X (see Fig. 2.2d)

X∗ := {w ∈ Rn | 〈w,x0〉 ≤ 0, for all x0 ∈ X} . (2.34)

From the polar theorem we know that the polar cone is convex and closed,
and it is similar to show the same for the normal cone, regardless of whether
the set X has any of these properties.
Further, we denote as conv(X) the convex hull of any set X, which

contains all convex combinations of any point of X (see Fig. 2.2d). An
important result for the convex hull is due to Constantin Caratheodory.

Theorem 2.3 (Caratheodory). Every point in the convex hull of a set X
can be generated as the convex combination of at most n+ 1 points from X,

conv(X) =
{

n∑
i=0

αixi
∣∣∣∣∣ x0, . . . ,xn ∈ X

}
for X ⊆ Rn . (2.35)

We also use ∂X to express the boundary of X and adopt the Minkowski
addition between the sets X +X ′ := {x + x′ | x ∈ X ∧ x′ ∈ X ′}. A simple
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demonstration of Minkowski addition is the set NX(xa) of Fig. 2.2b [left],
which corresponds to translating the normal cone NX(xa) so that its origin
matches the point xa.

2.5.3 Multi-objective Optimisation Preliminaries

We now consider the optimisation domain S of a maximisation problem with
multiple objective functions that we represent as the vector-valued function
f : S → Rn. Let X = f [S] be the image of S through f . In other words,
X ⊆ Rn contains one point x ∈ X for each solution s ∈ S in the optimisation
domain, whose coordinates are equal to the value of each objective function
xi = fi(s).
Let x,x′ ∈ X be two points of X. We say that x strongly dominates

x′ if there is at least one dimension 1 ≤ i ≤ n for which xi > x′i and for all
other dimensions j 6= i it is xj ≥ x′j . Using a geometric perspective, the
same requirement can be expressed as

“x strongly dominates x′” ⇐⇒
x′ ∈ ({x}+ Rn−−

) \ {x} ⇐⇒ x ∈ ({x′}+ Rn+
) \ {x′} . (2.36)

Albeit of lesser importance in our work, for the sake of completion but also
to serve as comparison we also mention the concept of weak domination,

“x weakly dominates x′” ⇐⇒
x′ ∈ {x}+ Rn− ⇐⇒ x ∈ {x′}+ Rn++ . (2.37)

Using these notions, we now formally define the Pareto optimal points15
of the scores in X as those of its points that are not strongly dominated by
some other point in the set

FX :=
{

x ∈ X
∣∣∣ {x}+ Rn++ ∩X = ∅

}
. (2.38)

The Pareto frontier of the multi-objective optimisation problem of max-
imising f over S is the set of Pareto optimal points of X = f [S], that is of
the solution scores X of the solutions S with respect to the vector-values
objective function f . Such a Pareto frontier can be seen in Fig. 2.3b.

15For completion we also mention that one can also define the strong Pareto frontier of X
to be the points in X that are not weakly dominated by any other points of this set,{

x ∈ X
∣∣∣ {x}+ Rn+ ∩X = {x}

}
.
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Finally, of special interest is the support function of an arbitrary set,

suppX(w0) := sup
x∈X
〈w0,x〉 , (2.39)

which for ‖w0‖ = 1 gives the distance from the origin of the supporting
hyperplane with normal w0 that contains X in its negative16 half-space. In
this way it defines the supporting hyper-plane Hw0 and corresponding
(negative) half-space Lw0

Hw0 := {x ∈ Rn | 〈w0,x〉 = suppX(w0)} (2.40)
Lw0 := {x ∈ Rn | 〈w0,x〉 ≤ suppX(w0)} (2.41)

2.5.4 Computing a Concise Subset of the Pareto Frontier

We can now provide a formal characterisation of the particular subset of
the Pareto frontier that our method computes. We start with an general
important theorem.

Lemma 2.4 (Pareto frontier duality). Let X ⊆ Rn be a closed set and define
g(w0) := arg maxx∈X〈w0,x〉 to be the maximiser of its support function
and C := conv(FX + Rn−) the convex hull of its extension with the negative
orthant. Also, define B := ∂C ∩FX to be the Pareto optimal points of X that
lie on the boundary of C, and let W := R∗C be the polar cone of the recession
cone of C.

1. Then the following dual relationships hold:

x ∈ g(w) =⇒ w ∈ NC(x) ∧ x ∈ B for all w ∈W (2.42)
w ∈ NX(x) =⇒ x ∈ g(w) ∧w ∈W for all x ∈ B (2.43)

2. The maximisers of the support function coincide with the set of all
Pareto optimal points along directions W that also lie on the boundary
of the convex hull of X ⋃

w∈W
g(w) = B . (2.44)

Proof. We start with part 1 and show Eq. (2.42).
16We note that in its usual definition, the supporting hyper-plane contains the supported

set in the positive half-space. We here allow this deviation for the sake of notational
simplicity.



56 2 Subgroup Discovery

We let w ∈ W and x ∈ g(w), and we first show that w ∈ NX(x). By
the definition of the normal cone in Eq. (2.32), it suffices to show that for
arbitrary x̄ ∈ C it is 〈w, x̄− x〉 < 0.

Since C is the convex hull of FX +Rn−, by Theorem 2.3 there exist17 n+ 1
points x0, . . . ,xn ∈ FX + Rn− such that

x̄ =
n∑
i=0

αixi with
n∑
i=0

αi = 1 where αi ≥ 0, xi ∈ FX + Rn− . (2.45)

Within this expression, each of the constituent points xi belongs to the
Minkowski sum of FX and Rn−, and each can therefore be written as

xi = yi + zi, with yi ∈ FX , zi ∈ Rn−, for all 0 ≤ i ≤ n . (2.46)

However, by the original assumptions it is x̄ ∈ g(w) := arg maxx′∈X〈w,x′〉,
and since yi ∈ FX ⊆ X we have

〈w, x̄〉 ≥ 〈w,yi〉 ⇐⇒ 〈w,yi − x̄〉 ≤ 0, for all 0 ≤ i ≤ n . (2.47)

By Lemma 2.2 applied on the set C, the recession cone RC contains the
negative orthant zi ∈ Rn− ⊆ RC . However, since w ∈ W := R∗C , by the
definition of the polar cone of Eq. (2.34) the vectors w and zi are related by
the equation

〈w, zi〉 ≤ 0, for all 0 ≤ i ≤ n . (2.48)

We can now add both sides of Eqs. (2.47) and (2.48) to get

〈w,yi − x〉+ 〈w, zi〉 ≤ 0 ⇐⇒
〈w, x̄i − x〉, for all 0 ≤ i ≤ n ; (2.49)

we now multiply each of the inequalities in Eq. (2.49) by αi > 0 and then
sum them all to get

n∑
i=0

αi〈w,xi − x〉 ≤ 0 ⇐⇒ 〈w,
n∑
i=0

αixi − x
�
�

��
n∑
i=0

αi〉 ≤ 0 ⇐⇒

〈w, x̄− x〉 ≤ 0 for all 0 ≤ i ≤ n , (2.50)

17Although the Caratheodory theorem allows x′ to be described by less than n+ 1 points,
we use here exactly n+ 1 for simplicity and without loss of generality; indeed, if less
than n+ 1 points are needed, we can simply repeat a needed point multiple times and
set its coefficient to 0, until we have a convex combination of exactly n+ 1 points.
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which is what we needed to show.

We can now apply the intuition of Lemma 2.4 to develop a MOO opti-
misation framework for subgroup discovery. To this end we introduce the
vector-valued function flin : 2E → R2, each dimension of which corresponds
to each of the terms in the objective function fgwi of Eq. (2.10). Namely, flin
maps every subset Q ⊆ E to the pair of values corresponding to its size and
its mean deviation, flin : Q 7→ (|Q|, ȳQ − ȳE). Although this vector-valued
objective is still useful, we will further need its logarithmically scaled variant,
fgwi : 2E → R2, for which fgwi : Q 7→ (

log(|Q|), log(ȳQ − ȳE)
)
.

The importance of introducing the fgwi is revealed by the following observa-
tion. Consider that we use the theory of Section 2.4 to compute the maxima
of fgwi over all extensions of the subgroups allowed by our chosen language
ext(L;E), and then apply fgwi over the set of maximisers. We can show that
this yields an optimisation problem that is equivalent to maximising the
support function of the image fgwi[ext(L;E)] of ext(L;E) through fgwi:

fgwi

[
arg max
Q∈ext(L;E)

|Q|γ(ȳQ − ȳE)1−γ
]

=

fgwi

[
arg max
Q∈ext(L;E)

γ log(|Q|) + (1− γ) log(ȳQ − ȳE)
]

=

arg max
x∈fgwi[ext(L;E)]

〈wγ ,x〉 , (2.51)

where wγ = 1√
γ2+(1−γ)2 (γ, 1− γ)> is the unit-length normal direction that

corresponds to a particular choice of the γ parameter. We can now apply
Lemma 2.4 for the special case of the set fgwi[ext(L;E)] to show the structure
of the optima that result from the procedure of sweeping γ ∈ [0, 1].

Corollary 2.5. Denote S := ext(L;E) the set of allowed subgroups. Then
the set of optimal subgroups discovered by maximising fgwi over S for each
γ ∈ [0, 1] coincides with the set of all strongly Pareto optimal subgroups
whose multi-objective value vector lies on the boundary of the convex hull of
the image Xgwi := fgwi[S]:⋃

γ∈[0,1]
arg max
Q∈S

fgwi(Q; γ) = ∂ conv(Xgwi + Rn−) ∩ FXgwi . (2.52)

Of course, this result does not limit itself only to fgwi, but to any geo-
metrically weighted function and of any number of terms, after we simply
replace Xgwi with the image of the optimisation domain through the new
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f1

f2

X

(a) The image X = f [S]
of an example of solution
domain S through a 2-
dimensional multi-objective
function f .

f1

f2

X + Rn
−

FX

(b) The Pareto frontier of
f [thick line] and the ex-
pansion of X with the direc-
tions in the negative orthant
X + Rn− [filled area].

f1

f2

conv(X + Rn
−)

B

(c) The convex hull of X +
Rn− and the result set B of
Eq. (2.44).

Figure 2.3: Depiction of some useful sets that are described in Lemma 2.4.

function. In fact, all of the objective functions that we will study in this
work fall under this description, and we will extensively use Corollary 2.5
to characterise the optima of our methods. What is more, in each of the
following chapters we will present the results of the corresponding methods
over a broad range of a parameter that will serve as an equivalent to the
γ parameter that we presented here. As a result, all subgroup discovery
methods in this thesis are instances of this MOO framework for subgroup
discovery.

An additional result that will allow us to simplify the results of the following
sections is expressed as the following corollary of Lemma 2.4.

Corollary 2.6. Let x ∈ g(w) and x′ ∈ g(w′) for w,w′ ∈W with w 6= w′.
Then there is no extremal point of conv(S + Rn−) in the set ⋃α∈(0,1) g(αw +
(1− α)w′).

Using Corollary 2.6 we know that if two γ values yield the same optimiser,
then no other optimiser will be found for any γ between the former two, up
to equivalent subgroups. Practically, we can therefore merge all intervals of
γ at the endpoints of which we find the same subgroup.

When we apply our method to our toy example, we see that out of the full
Pareto frontier we only select the a smaller subset of subgroups, as shown
in Fig. 2.4. This set comprises those conspicuous points that are Pareto
optimal, but also correspond to extremal points of the convex hull of the
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Figure 2.4 [Our Concise Subset of Pareto Optima]: The Pareto frontier
(empty circles) of the objective space from our toy dataset (see Fig. 2.1), shown both
in dual logarithmically scaled axes [left] and in linear, un-scaled ones [right]. We
also highlight the subset of the Pareto frontier selected by our method (filled circles).
This set includes only extrema of the convex hull of FXgwi +Rn

− and leaves out
subgroups which are Pareto optima, but offer nevertheless minimal improvement on
other included points; this results in a more concise set of subgroups that comprises
the subset of the conspicuous Pareto optima. Compared to our approach, when no
logarithmic scaling is used, the set of extremal points of the corresponding convex
hull contains only the two trivial subgroups that correspond to the entire population
and the single most extremal point, respectively.

set FX + Rn−. Importantly, the logarithmic scaling of the two objectives, as
implied by our the choice of the geometrically weighted fgwi, has the effect
that the subset of extremal points is populous enough to capture important
subgroups. In contrast, if we were to use simpler objective functions that
would result in a weighted arithmetic mean, which is a common approach
for general MOO [CH08], we would only be able to find a much smaller
subset of these points. Similar to the argumentation of Corollary 2.5, this
subset would correspond to the extrema of the set conv(Xlin +Rn−), where we
denote Xlin := flin[S] the image of allowed subgroups through the un-scaled
vector-valued objective function flin. We depict this subset in Fig. 2.4 [right],
from which we can see that, in our example, not only corresponds to only two
subgroups, but in fact also to the most trivial ones: the entire dataset and
one containing just the single, most extreme point, and a potential outlier.
Overall, our proposed approach forms a more concise subset that retains

the salient subgroups out of the full Pareto frontier, the latter of which can
often be forbiddingly populous. Due to these benefits, in the following we
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will always adopt the multi-objective approach for treating our results, and
will always report subgroups for a varying relation between the two scores of
interest.
This concludes our extensive overview and formal definition of subgroup

discovery and the principles motivating the choice of objective functions,
including our proposed MOO framework. In the following sections we will use
the novel algorithm that we presented in Section 2.4.2 to solve several of the
limitations with typical subgroup discovery that we presented in Chapter 1.



3 Representative Subgroups

The very fact that racism degrades both
the perpetrator and the victim commands
that, if we are true to our commitment to
protect human dignity, we fight on until
victory is achieved.

(Nelson Mandela, United Nations
General Assembly address)

While typical subgroup discovery can find the most exceptional entity sub-
group, this goal is not always sufficient on its own. In several practical
scenaria, the data might be affected by trends and biases to an extent that
the most exceptional subgroup can overshadow interesting detail in the
population, or under-represent important sub-populations in the data. Then,
the discovered subgroup can range from unimportant to completely unin-
formative, or even reflect an unacceptably unfair view of the data. We first
encountered these two scenaria in Section 1.3.1 while studying the sensitivity
of a novel dye on a toy dataset of bacterial species (see Fig. 1.2). The issue
of one prominent sub-population overshadowing important novel discovery
commonly arises in real-world settings from scientific discovery and theory
development, when we seek to identify local factors that influence some
variable while desiring to control the influence of other potential explana-
tions or contributing factors. In other cases, we need to control the often
unavoidable bias in the data and prevent it from being reflected in the found
sub-populations, so that we ensure a fair representation of any sensitive
attribute, such as gender or race.
A realistic setting where trends in the data might overshadow important

subsets comes from an application in materials science, in which a common
task is to discover structural properties that characterise the difference in
the energy between the electrons of the highest occupied molecular orbital
(HOMO) and the lowest unoccupied one (LUMO). This so-called HOMO-
LUMO energy gap is a very decisive indicator of many physical and chemical
properties for many important families of materials. One such family with
broad biomedical [KAS+18] and other applications are gold nanoclusters,
i.e., materials whose molecules consist solely of gold atoms and form a
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characteristic arrangement in space with a given number of atoms. Since
the properties of these materials are greatly influenced by the parity of the
atom number, whenever we apply typical subgroup discovery on any of these
properties as a target concept, it simply discovers the subgroup of atoms with
either even or odd parity [GBV+17], which is truly an exceptional subgroup.
However, since the domain expert is already aware of the effects of atom
number parity, this subgroup is of little use. One good way to go beyond this
already known trend in the data is to steer the algorithm toward subgroups
which describe the factors that equally affect nanoclusters of both even and
odd number of atoms—that is, subgroups that are representative for both
parity classes.

As another example, in political science we are often interested in discov-
ering demographics with a high affinity to a certain political party. However,
when studying the popularity of the left party during the 2009 German
parliament elections (see Fig. 3.1), it becomes evident that there is a strong
influence of the geographical location of each voting district (see Fig. 3.1a)
due to several factors, including the common underlying historical coherence
of each region. When typical subgroup discovery is used, it recovers the
subgroup [region = East], which, despite being exceptional and accurate,
offers negligible new insight. What is more, the naïve workaround of remov-
ing the region information from the data yields a similar sub-population,
despite the fact that its description does not involve the region attribute.
The way we can resolve this problem is to require that the descriptions we
find represent both regions to the same extent. Only then do we recover
the common underlying factors that affect voting for the left party in both
regions, beyond the already known factor of geography: “voters with few
children and not very high number of businesses or cars” (see Fig. 3.1d).

From a different perspective, the usefulness of representative subgroups
goes beyond the rejection of known trends; in fact, it is the same mechanism
that can deliver subgroups that remain balanced and therefore fair, whereas
traditional subgroup discovery may inadvertently pick sub-populations with
unfair composition with respect to a sensitive trait, like race or gender. In
applications like policy development and other fairness-sensitive domains,
ethical and legal requirements might call for the distribution of policy recipi-
ents to not under-represent individuals of a minority, or to equally apply to
all classes of a sensitive trait. Consider, for example, that a committee for
the selection of student applicants seeks common underlying factors in their
previous alumni that led to professional success, in order to establish rules
for the granting of a scholarship. Let us suppose in a not-so-hypothetical
setting that the various biases in the society introduce a disproportionate
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(a) The historical membership of each vot-
ing district to eastern or western Germany
strongly influenced the voting outcome of
the left party “DIE LINKE” during 2009
German elections. District region member-
ships are marked with coloured outlines.
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Figure 3.1: Subgroups of German voting during 2009 elections with high percentage
of the left-wing party “DIE LINKE”, which is known to be strongly influenced
by the geography (a). Each block shows the cumulative distribution (CDF) and
probability density (PDF) over all voting districts for each vote percentage in
both the subgroup (red) and the global population (blue) [left]. Also shown is
the distribution of district locations [top right] and the score of the coverage fc,
tendency ft, and representativeness fr terms of the objective function, respectively
[bottom right]. Traditional subgroup discovery (b) recovers the main trend: eastern
districts support “DIE LINKE”. Removing the region attribute (c) results in a
similar subgroup. Only when explicitly controlling for geography (d) do we discover
subgroups that stand out with regard to voting behaviour, while at the same time
being representative for the whole country.
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amount of successful white males in the data, when contrasted to their
non-white or female counterparts [RC19]. Should a traditional subgroup
discovery method be used here, the sub-populations that it would return as
worthy of a scholarship would have a large overlap with the sub-population
of white males. Arguably, this contradicts the purpose of scholarships, which
should ideally be to level the field of opportunity based solely on the abili-
ties of the applicants, instead of their disproportionate availability of past
resources [19]. This therefore necessitates for algorithms that would enforce
that both genders or all races would be equally represented in the discovered
sub-populations, that should serve as the eligible for the scholarship.
This very requirement arises in numerous cases where we want to fulfil

fairness guidelines with respect to some sensitive attribute. In this case, the
constraint that all classes of this attribute must occur with the same frequency
is called statistical parity [ZWS+13] and constitutes the first and foremost
approach in mending the inherent bias in the data. Importantly, the effect
we discussed in the application of election analysis above, in which simply
ignoring or removing the sensitive attribute from the data fails to guarantee
representativeness, can also appear in fairness applications. In this setting,
recovering the sensitive variable by as a combination of the non-sensitive
variables that remain in the dataset is known as the red-lining effect [CV10].
This effect is a well-studied artefact of fairness-unaware [DHP+12] algorithms,
but also underlies the deliberate practice of gerrymandering, which is an
unethical means of gaining an substantial unfair advantage during elections
by carefully carving the voting districts [Sof16; Ste17b].

Altogether, in all the above settings, we can express the common require-
ment as being statistically representative in relation to some given sensitive
attribute of the population: that would be the Gram classification in the
dye example, the parity of atom number in the study of nanoclusters, the
region in the case of voting analysis, or the racial and gender identification
of a scholarship applicant. However, little work has been previously done
on this task. From the perspective of overcoming known trends in the data,
other approaches have focused on the notion of unexpectedness with respect
to background information [GMM+07; MVT12], where the new discovery
must be surprising when compared to a set or structures that are means to
capture prior information; none of these methods, however, can guarantee
that the results will be representative. From the fairness perspective, this
requirement has been more widely enforced, with methods ranging from data
pre-processing, model adaptation and post-processing schemes [DL19]. Out
of these, the former come with their own difficulties: e.g.: non-transparent
data modification or aggressive removal of entities, and post-processing tech-
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niques are not as efficient from the optimisation perspective of subgroup
discovery. When we now focus on the rest, there exist no methods that
provide any local models, akin to subgroups, such as the one we desire, and
when it comes to standard subgroup discovery it is neither clear how to
i) generalise to settings that go beyond a binary prediction task, or ii) how
to use in an efficient method for optimal subgroup discovery.
Therefore, in this chapter we first introduce the concept of a control

variable: an additional variable defined for each entity in the dataset,
that represents either the sensitive trait or, more generally, a classification
variable whose distribution within the resulting subgroup we wish to be
close to a given prototypical distribution. Based on this control variable, we
then propose a representativeness term that extends the impact function of
Eq. (2.9), which ensures that the sensitive trait within the subgroup matches
a pre-defined, desired distribution. We then use this objective to form a
method that solves the task of finding representative subgroups efficiently. In
particular, we propose rawr, an algorithm to compute the tight optimistic
estimator for the representativeness-aware objective function in O(n logn)
time for the popular case of a binary control and a numeric target variable,
and that can be used in our IDDFS framework (see Section 2.4.2). What
is more, our objective function introduces a similar weighting parameter to
the GWI of Eq. (2.10), which we can therefore use to traverse the subset of
the Pareto frontier defined by the two objectives of i) representativeness and
ii) typical exceptionality, according to the theory we developed in Section 2.5.
On performed experiments in real world data, we show that the pruning

capacity of our specialised optimistic bound for the novel task of finding
representative subgroups is superior by orders of magnitude than the next
best possible alternative. Alongside the minimal memory footprint arising
as a direct result of the use of our branch-and-bound framework (see Sec-
tion 2.4.2), we show that the pruning superiority of our specialised objective
function allows similar improvements in running times, and therewith rawr
makes it possible to optimally compute the most representative subgroup
in an otherwise computationally infeasible setting. Importantly, we also
qualitatively study the usefulness of the discovered sub-populations, with
several real-world settings that demonstrate the potential impact of this
method.

3.1 Measuring Subgroup Representativeness

We start by introducing some useful notation, before we proceed to formalise
our intuition into a measure of representativeness. We then incorporate this
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measure to form an objective function for assessing exceptional yet represen-
tative subgroups; we then will present rawr, an efficient implementation
of the tight optimistic estimator for our objective function, applicable for
balanced binary controls.

For the needs of the proposed task of representative subgroup discov-
ery, we assume that an additional control variable c : E → {1, . . . ,K} is
defined on each entity, similar to the target variable y : E → Vy of typical
subgroup discovery. This control variable represents a sensitive class whose
distribution within the subgroup we desire to be close to a prototypical one.
Our research goal, therefore, becomes as follows.

Goal G4. Find the subgroup Q ∈ L with
• the most exceptional distribution of the target variable, in which
• the distribution of the control variable is close to a prototypical one.

We also impose a total ordering over each entity subset Q ⊆ E, by
ordering its entities decreasingly with respect to their target value, so that
εi ≤ εj ⇐⇒ y(εi) ≥ y(εj). Hence, ε(Q)

i is the entity within Q with the i-th
greatest target value, whose target value itself we denote y(Q)

i and its control
value c(Q)

i . Out of those elements of Q with class k, we denote y(k)
i the one

with the i-th greatest target value, and by nk(Q) := |{ε ∈ Q : c(ε) = k}| their
count, which we also refer to as the k-th class count. Similarly, we define
the class probability vector p(Q) with elements the class probabilities
pk(Q) := nk(Q)/|Q|, for each class k.

For the sake of simplicity, but also since it will be of special interest in the
development of an efficient algorithm, we first focus on the case of a binary
control variable Vc = {0, 1}, and we later discuss extensions for the general
case. Additionally, we assume a continuous target variable, that is, we set
its domain to be Vy = R, although the same analysis also holds unmodified
for the discrete case.

3.1.1 The Controlled Impact Function

We now augment the standard objective function of Eq. (2.9) to also account
for a broader notion of generality than coverage: the statistical generality of
the subgroup w.r.t. the control variable. Specifically, we add a representa-
tiveness factor fr(Q), quantifying the similarity of the control distribution
between Q and E. This forms the controlled impact function

fcif(Q) := fct(Q)1−γfr(Q)γ , (3.1)
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where the γ ∈ [0, 1) parameter tunes the trade-off between representativeness
and the typical properties quantified by fct.

To be representative, the subgroup must contain—to the extent possible—
each class with the same probability as in the original dataset. As motivated
from the fairness perspective of our task, the statistical parity requirement in
our goal implies that we select subpopulations independently of the control
variable. This is equivalent to requiring that a random entity ε ∈ E from
the population satisfies

P
(
c(ε)|σ(ε) = >) = P

(
c(ε)

) ⇐⇒ d(q,p) = 0 , (3.2)

where d is some distance measure between distributions with q := p(Q)
and p := p(E). In this work, we further fix d to be the total variation
distance d(q,p) = 1

2
∑
k |qk − pk|, equal to the maximal difference between

probabilities of any set of control classes. This measure is at once intuitively
interpretable and simple enough to allow for its efficient computation, and
we therefore adopt it as our choice throughout this work.

For a better comparison of the relevant values among different datasets,
we hence normalise all terms to obtain values in the interval [0, 1], which
thus gives the form of the representativeness factors as:

fr(Q) := 1− d(p, q)− dmax
dmax

, dmax := max
R⊆E

d(p, r) . (3.3)

An important consequence of this normalisation of the representativeness
term is that any optimistic estimator for the impact function is also a valid,
albeit non-tight, optimistic estimator for the controlled impact function.
Having introduced all constituents of the controlled impact function, we

now proceed with the computation of its tight optimistic estimator. We first
introduce a transform of the domain of the original optimisation problem
from exponential to polynomial size in Section 3.1.2. We then employ this
transform in Section 3.1.3 to derive an efficient algorithm that computes
this tight optimistic estimator in O(n logn) time, for the special case of a
population with balanced binary classes.

3.1.2 Efficient Searching in the Class Counting Space

Next, we describe a transformation which aggregates the exponentially
many subsets of Q in the original optimisation problem of Eq. (2.27) into
polynomially many sets of subsets. Additionally, the maximum fcif value
attained by any subset within each of these sets can be efficiently computed.
We recall that due to their intended use within the branch-and-bound
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Figure 3.2: The class counting space (bottom) for a toy population with K = 2
control classes (top). The refinement R is contained in R(2,3), corresponding to the
annotated point.

framework, all subsets of R ⊆ Q are called refinements of Q.
For any given subgroup Q, we consider the space of all possible class count

vectors I :=
(
n1(Q), . . . , nK(Q)

)
that any refinement R ⊆ Q might assume,

I(Q) :=
K×
k=1
{0, . . . , nk(Q)} . (3.4)

This space, which we refer to as the class counting space (CCS), is a
subset of the lattice ZK , and partitions the original space 2Q into |I(Q)| =∏K
k=1(nk(Q) + 1) partitions. We call these partitions the equi-count re-

finement sets RI(Q), each of which consist of these refinements of Q with
Ik items of control class k, for each class k = 1, . . . ,K,

RI(Q) := {R ⊆ Q : nk(R) = Ik, k = 1, . . . ,K} . (3.5)

For an example of a CCS with K = 2 classes see Fig. 5.1.
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The computation of the tight optimistic estimator f̂cif(Q) := maxR∈2Q fcif(R)
of Eq. (2.27) can now be expressed as

f̂cif(Q) := max
I∈I(Q)

max
R∈RI(Q)

fcif(R) = max
I∈I(Q)

fcif
Q(I) , (3.6)

where fcifQ(I) refers to the maximal value attained over all refinements in
the equi-count refinement set RI

fcif
Q(I) :=

 max
R∈RI(Q)

fcif(R) I ∈ I(Q) \ {0}

−∞ I = 0
. (3.7)

Similarly, the maxima of the impact function, central tendency and represen-
tativeness values over all refinements within RI are denoted fctQ(I), ftQ(I)
and frQ(I), respectively.

In the next proposition we derive a closed form for the optimiser of fcif(Q)
within an equi-count refinement set RI , which can then be used to compute
fct

Q(I) and thus fcifQ(I).

Proposition 3.1. The optimal value fct
Q(I) is attained by the set

R∗I :=
K⋃
k=1

{
y

(k)
1 , . . . , y

(k)
Ik

}
, (3.8)

which contains the Ik items with the greatest target value among those with
control class k, for all classes k = 1, . . . ,K.

Proof. For readers familiar with matroids we provide a conciser proof below.
Since all sets R ∈ RI(Q) have a constant coverage |R| = ∑K

k=1 Ik, max-
imising the objective value is equivalent to maximising the central tendency
factor ftQ. We will show that R∗I attains the greatest ft value over RI(Q)
by contradiction.

Assume there is a refinement R′ ∈ RI with R′ 6= R∗I and ft(R′) > ft(R∗I).
Since R∗I contains the items with maximum y value for each class, there is at
least one sequence of refinements

(
R(0), . . . , R(T )), starting with R(0) := R∗I

and ending at R(T ) := R′, so that at each index τ we exchange a single
element between Rτ with another in Q \Rτ of the same class, but a smaller
target value. Formally, R(τ) =

(
R(τ−1) \ {ε}) ∪ {ε′}, such that c(ε′) = c(ε)

and y(ε′) < y(ε). This implies that, for each τ = 2, . . . , T we get∑
ε∈R(τ)

y(ε)−
∑

ε∈R(τ−1)

y(ε) = y(ε′)− y(ε) < 0 . (3.9)
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Dividing these sums with ∑K
k=1 Ik, turns them into means, and since ft is

increasing w.r.t. the target value mean, we have ft(R(τ)) < ft(R(τ−1)). By
transitivity, it is ft(R′) < ft(R∗I), contradicting the optimality of ft(R′), and
concluding this proof.

Using the concept of matroids, an alternative, quicker proof can be given by
observing that fctQ(I) is a linear function to be optimised over the matroid
(E,RI(Q)), which has as ground set all entities and independent set all
refinements with class count I. Then, the optimal value is attained by greedy
optimisation, which amounts to selecting the optimiser R∗I .

As a result, we can express the target value mean of the optimiser R∗I as
mean(R∗I) = ∑K

k=1
∑Ik

i=1 y
(k)
i /‖I‖1, where ‖I‖1 = ∑K

k=1 Ik is the cardinality
of each refinement in RI . Now, for any given subset Q, the impact function
fct of Eq. (2.9), when applied to any refinement R ∈ RI can be computed
using the CCS representation of its equivalence class as

fct
Q(I) :=αt

K∑
k=1

Ik∑
i=1

y
(k)
i − αc‖I‖1 , (3.10)

where

αt = 1
ν
> 0 , αc = ȳE

ν
, and ν = |E|

(
max
ε∈E

y(ε)− ȳE
)
. (3.11)

Since the representativeness factor fr(Q) depends only on the class counts of
Q, it remains constant over RI and does not affect the maximiser. Therefore,
the transformed controlled impact function can be written as

fcif
Q(I) := fct

Q(I)1−γ · frQ(I)γ γ ∈ [0, 1) . (3.12)

Notice that the value fctQ(I) can be computed in constant time for any
point I ∈ I(Q), after a pre-processing step of linear time. Indeed, assuming
the items of a candidate subgroup are in decreasing order of target values,
we can achieve this by first passing through the values and creating K
cumulative sums of target values, one for each class; after this step, the value
ft
Q(I) can be easily retrieved as the sum of indices Ik within the cumulative

sum for each class k, appropriately scaled. The controlled impact function
fcif

Q(I) can be computed with trivial extra work to compute frQ(I).
Therefore, this transform can be used in a straightforward way to derive an

algorithm to compute the tight optimistic estimator in O(nK) time. However,
a practical algorithm can benefit from further improvement, achieved in the
next section for a widespread special case of a population.
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3.1.3 A Linearithmic Algorithm for Balanced Binary Controls

We now present a linearithmic algorithm able to compute the tight optimistic
estimator of the controlled impact function of Eq. (3.1) for the widespread
case of a population E with balanced binary control classes, i.e., c : E → {1, 2}
with n1(E) = n2(E).

The rest of the analysis can be summarised in two key steps. First, we
show that there is a sub-region of I(Q) where fcifQ(I) attains its maximum
and then we present an efficient algorithm to search within this sub-region.
For this purpose we study the two factors, fctQ and frQ within the CCS.

Both these factors form sequences that exhibit an appropriate notion of
convexity for sequences, borrowed mutatis mutandis from Yucer [Yüc02]: a
sequence a : N → R, with N = {0, . . . , n} and n ≤ ∞, is called a convex
sequence over N , if for all x, y ∈ N and each λ ∈ (0, 1)

λa(x) + (1− λ)a(y) ≥ min
u∈bzc

a(u) , z = λx+ (1− λ)y . (3.13)

Further, we call a a concave sequence if −a is convex.
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We now study the fctQ values, as |Q| = I1 + I2 increases.

Definition 1 (Optimal c-t Path on I(Q)). Let π(µ) ∈ I(Q) be the maximiser
of the fct

Q value among all points in the CCS with a fixed sum µ

π(µ) := arg max
I∈I, ‖I‖1=µ

fct
Q(I) , 0 ≤ µ ≤ |Q| . (3.14)

We refer to the optimal point sequence π = (π(0), . . . ,π(|Q|)) as the optimal
c-t path.

The optimal c-t path exhibits useful properties, discussed in the following
lemma.

Lemma 3.2 (Optimal c-t path). Let e1 = (1, 0)T and e2 = (0, 1)T be the
standard basis vectors of R2.

i) Then the µ-th element of the optimal c-t path is the class count of the
first µ elements of E; formally,

π(µ) =
µ∑
i=1
eci 0 < µ ≤ |Q| and π(µ) = 0 . (3.15)

ii) Moreover, the sequence fct
Q◦π, with elements the fct

Q values computed
along the c-t path π, is a concave sequence.

— For the proof see Appendix A.1.

Lemma 3.2 allows for an O(logn) algorithm to find the optimal c-t point
π∗ := arg maxI∈I(Q) fct

Q(I), as we call the point f the CCS that maximises
the fctQ value. Indeed,

fct(π∗) = max
0≤µ≤|Q|

max
I∈I(Q), |I|=µ

fct(I) = max
0≤µ≤|Q|

fct(π(µ)) , (3.16)

where the last maximum runs over the fctQ values of the optimal path
sequence. Due to the concavity of this sequence, its maximum can be
computed in O(logn) time, using for instance the ternary search algorithm.
We now study the representativeness factor fr(Q), whose transform on

the CCS for balanced binary controls becomes

fr
Q(I) := 1−

∣∣∣∣1− 2I1
I1 + I2

∣∣∣∣ = 1−
∣∣∣∣1− 2I2

I1 + I2

∣∣∣∣ . (3.17)

We observe that the subgroups R ∈ Q that maximise this factor must have
the same control class distribution as the population. Therefore, these
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subgroups must have an equal control class count n1(R) = n2(R), and thus
belong to those equi-count refinement sets RI , for which I1 = I2. These,
in turn, lie on the so-called maximum fr

Q ray I = (a, a)T , a ≥ 0. As an
example, we depict in Fig. 3.2b the maximum fr

Q ray for the toy dataset of
Fig. 3.2a; for balanced classes, a more complete example appears in Fig. 3.3.

We now state a key theoretical proposition of this section, showing that it
suffices to search for the optimal solution on a specific triangle of the CCS.

Proposition 3.3 (Sufficient Search Triangle). The maximum of the con-
trolled impact function fcif

Q is attained at a point which lies in the (filled)
triangle T (Q) := {(π∗1, π∗1), (π∗2, π∗2),π∗}, with vertices the optimal c-t point
π∗ = (π∗1, π∗2) and its horizontal and vertical projections onto the maximum
fr
Q ray. We call this region the sufficient search triangle.

— For the proof see Appendix A.1.

The sufficiency of the SST reduces the search space by at least half, which
happens in the worst case scenario that the optimal c-t point π∗ is on
the North-West or South-East points. More importantly, we can efficiently
optimise fcifQ along specific directions within this region.
We now describe these directions. For each ordinate i2 ∈ 0, . . . , n2(Q) let

the (West-to-East) horizontal sequence be

hi2 :=
(
h(0)
i2 , . . . ,h

(n1(Q))
i2

)
=
(
(0, i2), . . . , (n1(Q), i2)

)
. (3.18)

Similarly, for each abscissa i1 ∈ 0, . . . , n1(Q) we define the (South-to-North)
vertical sequence

vi1 :=
(
v(0)
i1 , . . . ,v

(n2(Q))
i1

)
=
(
(i1, 0), . . . , (i1, n2(Q))

)
. (3.19)

When the transformed controlled impact function fcifQ(I) is computed along
the elements of certain of those sequences, it forms concave sequences, as we
show below, with the direct implication that the maximal value of fcif along
these sequences can be computed in O(logn).

Proposition 3.4 (Concavity of fcifQ along sequence). Consider the values of
the controlled impact function fcif

Q as they are computed along a horizontal
sequence hi2; these form the sequence (fcif

Q ◦ hi2)(µ), which for µ ≤ i2 is a
concave sequence preceding the maximum fr

Q ray. Similarly, (fcif
Q ◦ vi1)(µ)

is a concave sequence for µ ≤ i1.
— For the proof see Appendix A.1.

Observing the example of the concave sequences of fcifQ along the horizontal
and vertical directions shown in Fig. 3.3, we notice that we can cover the
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entire SST with an appropriate selection of these concave sequences. This
allows for an efficient optimisation procedure requiring O(n logn) time, which
is described in Algorithm 2 and operates as follows.

Algorithm 2: rawr
Input: Population E (sorted w.r.t y, descending)
Input: Subgroup Q
Output: Tight optimistic estimator f̂cif of Eq. (3.1)

1 π∗ ← TernarySearch(on fctQ ◦ π from 1 to |Q|);
2 ibeg ← min{π∗1, π∗2};
3 if π∗1 < π∗2 then
4 iend ← min{π∗2, n2(Q)};
5 for i from ibeg to iend do
6 φ← TernarySearch(on fcifQ◦ hi from ibeg to iend);
7 f̂cif ← max{f̂cif, φ};
8 else
9 iend ← min{π∗1, n1(Q)};

10 for i from ibeg to iend do
11 φ← TernarySearch(on fcifQ◦ vi from ibeg to iend);
12 f̂cif ← max{f̂cif, φ};

13 return f̂cif;

First, the optimal c-t point π∗ is computed in O(logn) time, along the
concave sequence π (line 1); this point locates the SST. If π∗ lies above
the maximum fr

Q ray (line 3-7), the points of T (Q) lie along horizontal
sub-sequences preceding the maximum fr

Q ray; the fcifQ values along each
of them form a concave sequence, whose maximum can be found in O(logn)
(ln. 6). There are at most n2(Q) such directions in T (Q), and they can all be
scanned (ln. 5-7) in a total of O(n logn) time. Similarly, when π∗ lies below
the maximum fr

Q line (ln. 8), we optimise along the vertical sub-sequences
(ln. 9-12).

3.2 Related Work

Although subgroup discovery is a well-studied problem in general, (see Sec-
tion 1.2 for an overview), we are the first to study the notion of representative
subgroups.
When it comes to rejecting already known trends, a general approach in
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pattern mining has been to discover patterns that are surprising given back-
ground knowledge, for example with regard to permutation testing [GMM+07;
HOV+09], or a maximum entropy distribution [Tat08; KB10; KVD11;
MVT12]. While seemingly related, representativeness is not guaranteed
by unexpectedness: adding a pattern X to our background knowledge does
not ensure that, relative to X, the now-most-surprising pattern will be
representative with regard to either pattern X, or to the whole population.

Another seemingly obvious relation that turns out to be much more subtle
is that to fairness in classification. A truly representative pattern implies
statistical parity with regard to the control variable, although it is worth
noting that both Dwork et al. [DHP+12] and Kleinberg et al. [KMR16]
explicitly mention that statistical parity should not be equated with fairness,
as it can potentially be “blatantly unfair” on an individual level [ZWS+13;
KMR16].

In recent work, Feldman et al. [FFM+15] studied the notion of “disparate
impact”—a legal term that says that the probability ratio of treatment (e.g.,
job offer) for the different groups must be at least 0.8—and proposed as
a general technique to remove disparate impact via data pre-processing.
In other words, unlike our approach, the global distribution is changed to
de-correlate sensitive and target attributes. Related as it may be, their work
clearly fails to extend to local pattern mining, as in the latter, it does not
suffice to model the global distribution.

Perhaps closest to our approach is the line of work by Calders et al. [CŽ13],
who studied the goal of achieving statistical parity in classification with
different methods, including naive bayes [CV10] and decision trees [KCP10].
Kamishima et al. [KAA+12] consider a form of fairness that is related to
statistical parity, although implicitly: during logistic regression a regularisa-
tion term is used, measuring the KL divergence between sensitive attribute
and prediction. Although related, it is unclear whether these methods can
be utilised in the highly demanding branch-and-bound search, typically able
to optimise over exponentially-sized discrete spaces of arbitrary subgroup
descriptor languages.

Closest in terms of pattern mining, but relatively distant with regard to
statistical parity, is the work by Pedreschi et al. [PRT08] on discrimination-
aware pattern mining. Instead of subgroups, the authors focus on mining
association rules that may only include a sensitive item if this does not
improve the confidence of the rule by more than α.
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Dataset Target y Control c α |V | |E|

Q
ua

lit
at
iv
e

baseball Salary Fr.Ag.Elig. 1.0 16 268
gold Evdw-Evdw0 Odd 1.0 19 12200
homicide Victims PerpRace 1.0 10 47236
students G3 failures 0.5 31 366
wine quality colour 1.0 12 3198

Q
ua

nt
ita

tiv
e

abalone Rings Height 1.0 8 4144
ailerons Sa RollRate 1.0 5 7108
airfoil NoiseLevel Displacement 1.0 5 1480
autompg Mpg Cylinders 1.0 8 380
bike registered atemp 1.0 13 730
california Med.Value Latitude 0.5 8 20502
compactiv usr freeswap 0.7 21 8192
concrete Strength Age 1.0 8 562
elevators Goal DiffRollRate 0.3 18 16020
forestfires Area Month 0.6 12 394
house Price P14p9 0.3 16 22784
mortgage 30YRate Mat.Rate3Y 0.8 15 1044
mv Y X6 0.9 10 40768
pole Output Att0 0.3 26 14586
puma32h thetadd6 theta5 0.7 32 8192
stock Company10 Company4 1.0 9 950
treasury X1Rate CMat.Rate3Y 0.4 15 1044
wankara AvgTmp MaxTemp 0.6 9 318
wizmir AvgTmp MaxTemp 0.5 9 1458

Table 3.1: Used datasets, for qualitative (top) and quantitative (bottom) analysis.
Listed are the number of attributes |V | and number of rows |E|, as well as running
configurations: target and control variables, and approximation factor α. The latter
is decreased by 0.1 every time binary representativeness ignorant (brig) exceeds a
timeout of 6 hours, or terminates due to exceeding 256GB of memory.
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3.3 Experiments

In this section we evaluate our extended impact function fcif, as well as
rawr, our implementation of its tight optimistic estimator. We provide
qualitative and quantitative demonstrations of superior representativeness in
the discovered subgroups, and we also report runtime measurements on a
variety of datasets.

For the sake of both these tasks we implemented1 both rawr and the
non-tight, representativeness oblivious binary representativeness ignorant
(brig), which we use as a baseline. We then run the branch-and-bound
algorithm equipped with each optimistic estimator.

3.3.1 Mining Representative Results

We now assess qualitatively and quantitatively the representativeness of the
discovered subgroups, for different values of the γ parameter. We first study
5 datasets retrieved from the UCI ML repository[DG17] and the Murder
Accountability Project2, which contain intuitively interpretable controls
(Table 3.1, top). To rule out the effect of unbalanced classes, and for our
algorithm to be applicable, we stratify the datasets over the control classes.
We then perform subgroup discovery as a multi-objective optimisation (MOO)
problem (see Section 2.5) with the scores fr and fct, as we sweep the γ
parameter (Fig. 3.4).

Obviously, a value of γ = 0 corresponds to the representativeness-oblivious
impact function fct of Eq. (2.9). Depending on the dataset and choice of y
and c, the discovered subgroups for this case may be representative, although
this is not guaranteed. However, as the γ parameter increases, the added fr
factor comes in effect, yielding consistently more representative subgroups
[top]. As expected, the fct score may drop, demonstrating that γ controls
the trade-off between the two factors [bottom]. At the same time, it is
guaranteed that no score can be increased without the decrease of the other,
by choosing a subgroup other than the discovered.

We next delve into the subgroups discovered in selected datasets. We first
focus on the Homicide dataset, which tracks homicide cases, matched with
background data on perpetrators and their victims, alongside the number
of victims per case. We use the latter as a target variable to measure
violence and seek to gain insight on attributes leading to increased violence,
as captured by binary control variables. For each studied variable, we stratify

1Our source code is available within the realKD tool bitbucket.org/realKD/.
2Available at http://www.murderdata.org/.

bitbucket.org/realKD/
http://www.murderdata.org/
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the dataset and report the discovered subgroups (Table 4.3), for increasing
γ parameter.

We first consider the effect of the Perpetrator Sex. The subgroup dis-
covered without the fr term rediscovers the unsurprising fact that males are
more violent than females. To uncover further potentially underlying factors,
we use the Perpetrator Sex as a control variable and perform subgroup
discovery using the controlled impact function. As γ parameter increases,
the discovered subgroups hold for both male and female perpetrators, leading
to the discovery that “Caucasian victims attract more violence”, and further
that no sex is more violent when it comes to older victims.

Controlling for a variable can also serve as a way to disprove the contri-
bution of a sensitive variable toward the effect. Consider for instance the
sensitive variable Perpetrator Race, appropriately controlling for which we
find that “both races are (equally) more violent when murdering younger
females”. Further observing the behaviour of the algorithm as we lift the
constraint of representability by lowering the γ parameter, we see that the
discovered sub-population remains virtually the same. This very fact provides
substantial evidence against a hypothesis that one race is more prone to
violence, at least when it comes to this subgroup. In other words, if the
race of the perpetrator was indeed a factor that affected this case, then the
algorithm would be able to increase the objective by simply restricting this
subgroup with a single added predicate that constrained the sub-population
within the specific race. From a statistical perspective, subgroup discovery
can find sub-populations, within which it becomes interesting to further
test for the dependence between the target and control variables—say if we
additionally assume a model for higher average violence by some specific
race. Overall, in this case, the fact that no better subgroup appears when
we lift the constraint for representability provides evidence that “no race is
more violent when murdering young women”.

In another example, we study an application for fair subgroup discovery.
Consider that a baseball team decides to increase its players salary and seeks
to find the factors that lead to higher income drawing experience from other
team managements. At the same time, the raise should not be unfavourable
to players who are contractually bound to one particular team, in contrast
to the Free Agent eligible players, which might earn more lest they leave the
team. Using the FreeAgencyEligibility variable as control, more objective
criteria describing high salaries are discovered.
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Figure 3.4: Scores of subgroups discovered in the qualitative datasets (Table 3.1,
top). Tuning γ effectively controls the trade-off between representativeness and
coverage–tendency.

3.3.2 Performance of our Tight Optimistic Estimator

We now evaluate the performance of the rawr implementation. To sample
a broad variety of datasets, we used all of the regression datasets from
the KEEL database [AFL+11] with a number of variables 8 ≤ |V | ≤ 40
(Table 3.1, bottom). As a target variable we used the designated regression
variable. To emulate a purported scenario of controlling for the main data
trend, we use as control the first variable that appears in the subgroup
descriptor discovered for γ = 0; if this variable is real we discretise it around
the median. Next, we stratify the dataset on the control variable. We start
with an approximation factor of α = 1, corresponding to exact computation;
when all brig invocations for a dataset fail, due to either a runtime of more
than 6 hours or exceeding 256GB of available memory, we decrease α by 0.1
and repeat.

We assess the performance of our algorithm w.r.t. the number of searched
nodes during each invocation and also the needed runtime (Fig. 3.5); we
set γ = 0.6, corresponding to a reasonably practical scenario. As our
proposed optimistic estimator is tighter, it is yielding a significantly better
pruning performance. What is more, our implementation seems to make use
of the better pruning achieved, in order to attain running times that are
comparable to those of brig, or in some cases up to 4 orders of magnitude
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Figure 3.5 [Lower is better]: Performance comparison of rawr (solid) and brig
(dashed), for runtime [top] and searched nodes [bottom] for γ = 0.6. The datasets
(x axis) are sorted in increasing time difference. On the 3 last datasets brig exceeds
the 256GB of our available memory, which prevents computing the result.

better. Further numerical results are reported in Table 3.2, for a set of
sensible weights γ ∈ {0.4, 0.5, 0.6}. These show a superiority of our estimator
especially for higher γ values, where brig is less tight.
Furthermore, note that the number of nodes is a key factor contributing

to the memory requirement of the branch and bound algorithm. As such,
even for dataset on which the computation time of these implementations
might be comparable, it is sometimes the case that the decreased number of
nodes is enabling the computation using rawr, where otherwise brig would
exceed available memory, e.g., in the last 3 datasets of Table 3.2.

3.4 Discussion

Our introduced method guarantees the optimality of the results given the
specified parameter, while optionally enabling a faster computation by relax-
ing the optimality guarantee.

The sole parameter γ of our method remains intuitive in its interpretation
(see Section 2.5) and possibly in its selection, regardless of the input, with
the zero value corresponding to a vanishing effect of our extension and a high
value an increased weight of it. Nonetheless, not every dataset is equally
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sensitive to the intermediate values and the researcher is still required to
make educated guesses based either on expert knowledge or a trial-and-error
scheme.

As a downside, our implementation of the tight estimator for our objective
function requires a dataset with balanced, binary classes. Nevertheless, the
case of binary classes is amongst the most widespread, and obtaining a
balanced dataset can be solved by using as a workaround an appropriate
stratification as a pre-processing step.
We leave as future work the investigation on how to obtain a log-linear

optimistic estimator in conditions other than balanced binary classes. We
also note that this chapter already provides an algorithm to compute the
tight optimistic estimator also for any case beyond binary classes, albeit with
polynomial computational complexity; this is still a considerable improvement
on the otherwise exponential complexity of naïve algorithms.

3.5 Conclusion
In this chapter we introduced the problem of representative subgroup dis-
covery, where our goal is to discover subgroups that are exceptional with
regard to the target variable, yet at the same time have statistical parity
with respect to the control variable. We show how we can achieve this
by extending the typically used impact function to incorporate a tuneable
representativeness factor. We propose a tight optimistic estimator for the
newly representative aware impact function, and give an efficient algorithm
to compute it in O(n logn) time. Our experiments show that our proposed
method may lead up to orders of magnitude fewer node expansions, com-
pared to the representative ignorant estimator, the direct effect of which is a
speedup of similar magnitude.
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Dataset

γ = 0.4 γ = 0.5 γ = 0.6

rawr brig rawr brig rawr brig

gold 172 101 210 99 224 121
wine 296 267 349 305 375 360
house 14 5 13 5 17 4
stock 15 8 16 10 17 12
california 3 2 4 2 4 2
pole 4 2 3 2 3 1
airfoil 9 9 7 8 9 9
concrete 4 6 5 5 6 6
elevators 3 3 3 3 2 2
puma32h 78 84 82 83 83 85
baseball 20 22 17 21 16 19
bike 5 10 5 12 6 11
forestfires 184 272 178 186 193 217
homicide 154 219 171 247 169 236
ailerons 206 317 297 486 703 797
compactiv 504 450 442 349 1299 3397
mv 3877 6837 3243 5273 2300 5026
students 19 175 63 2638 126 4768
autompg 6 3229 6 5577 11 10591
abalone 869 1307 1883 3876 3639 17575
wankara 1 116 1 2543 1 13977
mortgage 56 ∞ 198 ∞ 12568 ∞
treasury 1 1 1 1 1 ∞
wizmir 5 3 2 1648 3 ∞

Table 3.2 [Lower (bold) is better]: Runtime comparison of rawr and brig
over different γ parameters for all datasets, sorted in increasing time difference.
Using brig on the last 3 datasets exceeds our 256GB of memory, so results are not
available.
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ho
mi

ci
de

γ Subgroup describing Q fr(Q) fct(Q)
Control: Perpetrator Sex

( 0 , 0.09 ] Crime=Murder, Vict.=White, Perp=♂ 0.00 0.002
( 0.09, 0.75 ] Vict.=White 0.89 0.002
[ 0.75, . . . ) Vict.Age= ¬V.Lo, Vict.=White 0.99 0.001

Control: Perpetrator Race

( 0 , 0.6 ] Crime=Murder, Vict=♀, Perp.= ¬V.Old 0.90 0.002
[ 0.6 , . . . ) Crime=Murder, Vict=♀, Perp.= ¬Old 0.98 0.002

Control: Vict. Sex

( 0 , 0.09 ] Vict=♀, Perp=♂, Perp.Age= ¬V.Hi 0.00 0.003
( 0.09, 0.47 ] Vict.=White, Perp=♂, Perp.Age= ¬V.Hi 0.90 0.002
( 0.47, 0.8 ] Vict.=White, Perp=♂, Perp.Age= ¬HI 0.98 0.002
[ 0.8 , . . . ) Vict.=White, Perp.Age= ¬HI 0.99 0.002

ba
se

ba
ll

Control: Free Agent Eligibility

( 0 , 0.09 ] OnBase= ¬V.Lo, F.A.Eligible= 3 0.00 0.083
( 0.09, 0.33 ] OnBase=HI 0.69 0.047
( 0.33, 0.8 ] Batting= ¬V.Lo, OnBase= ¬Lo 0.88 0.042
[ 0.8 , . . . ) Batting=¬V.Lo, OnBase= ¬Lo, Fr.Ag.= 7 0.97 0.029

Table 3.3: Discovered subgroups for a varying γ parameter, for the datasets
homicide (above) and baseball (below). Increasing γ produces more representative
subgroups.
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Everything is connected.

(Alan Moore, V for Vendetta)

Up until now, in the subgroup discovery methods we studied we assumed that
all entities of the dataset were independent with one another and identically
distributed (i.i.d.). Despite its convenient, however, in several important
applications this is an assumption that we cannot afford to make, since there
is additional structural information between the entities that is crucial for
an interesting result. Of particular interest is a versatile kind of structural
information that can be captured in the form of pair-wise relations between
entities. These pairwise relations can, in turn, be modelled as a graph,
whose vertices represent entities and whose edges represent the existence of
a pair-wise relation between the corresponding entities.

This natural way to represent pair-wise relationships between entities arises
naturally in numerous applications, for instance in the study of resource
allocation, social interactions, or knowledge representations, just to name
a few. In such applications a particularly useful information is conveyed in
the subgraphs that are exceptionally well-connected, and discovering such
subgraphs has therefore attracted a lot of attention across different scientific
domains. A large part of this attention has been focused on discovering
dense subgraphs, and numerous methods are available that can report these
subgraphs by simply listing them a bag-of-vertices, that is a list of the vertex
identifiers that partake in the dense subgraph. From the perspective of this
dissertation, it should already be evident that such methods suffer a major
drawback: that the do not convey intuitive information to a human audience
of what these vertices have in common—they lack an intelligible description.
As we established, without the additional constraint that the discovered
subgraphs have such a description, their vertices can be arbitrarily chosen
to maximise the selected measure. Apart from being difficult to interpret,
however, the resulting vertex subsets are possibly not even interesting to
begin with. We therefore approach this task from the perspective of subgroup
discovery, thus requiring that we can only select well-connected subgraphs
that are also describable. For instance, the description of the most well-
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(a) complete bipartite graph
edge/vertex ratio: 3.2—coreness: 4.

(b) 6-regular graph (also a 6-core)
edge/vertex ratio: 3—coreness: 6.

Connectedness Measure
Graph

bipartite (a) 6-regular (b)

intuitively connected weakly < robustly
removed vertices until edgeless 4 � 19

edge-to-vertex ratio 3.2 >7 3
average coreness 4 �3 6

(c) Comparison of connectedness metrics.

Figure 4.1 [Edge-to-vertex ratio vs. robust connectedness]: Out of these
two graphs with the same number of vertices, the bipartite graph a has more edges
then the 6-regular graph b, and is therefore more densely connected in terms of the
edge-to-vertex ratio. Nevertheless, graph b is much more robustly connected than
graph a, since we can make graph a fully disconnected by removing just its 4 central
nodes, whereas to achieve the same for graph b we need to remove 19 vertices (!).

connected subgroup found within data borrowed from the Internet Movie
Database (IMDB) reveals that “the mainstream movie crew members with
lengthy experience have collaborated together more than usual in the movie
industry”.

Moreover, in this work we depart from the notion that subgraphs with high
edge-to-vertex ratios are interesting per se, as is assumed in most established
dense subgraph methods [ATM+12; PBV14; GGT16; PA18]. Despite its
appeal at first glance, it is a rather naïve measure of whether vertices ‘belong
together’, as it only considers numbers of edges rather than their structure.
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As an example, let us consider the two toy graphs of Fig. 4.1, each of which
has 20 vertices. The bipartite graph on the left has a high edge-to-vertex
ratio, but is arguably not very robustly connected; that is, we can fully
disconnect it by only removing the 4 central nodes. In contrast, the graph
on the right has a lower edge to vertex ratio, but is robustly connected: to
disconnect it, we would have to remove virtually all but one vertices, which
amounts to 19 vertices. A structure like the leftmost graph can frequently
arise when within a sub-population there are a entities that have a large
outreach, even though the rest of the sub-population has a considerably
lower standing—a very fitting example can be a group of social network
members that follow a few influential figures in a social network. Although
knowing of such a group of members can be useful in certain scenarios, the
function of each is very different within the subgraph and; that is, apart
from these few influential figures connecting them, they can otherwise have
little in common, thereby not even forming a sub-population worth our while
in the first place. On the contrary, the entities of the rightmost subgraph in
Fig. 4.1 are all equally well-connected with each other and constitute a more
coherent sub-population; this structure is likely to arise as the result of an
important mechanism, which therefore signifies a subgroup worth discovering.
As an example, we mention once more the list of movie crew members that
have each collaborated tightly with one-another. Importantly, as we can
also see in this example, such a sub-population is robustly connected, that is,
it retains its characteristic structure even after removing quite a few of its
members.

We hence study the problem of discovering robustly connected subgraphs
that admit an intelligible description. We propose a score for the robust
connectedness of subgraphs based on the notion of k-coreness, which underlies
our intuition from Fig. 4.1, and use it within the framework of (multi-
objective) subgroup discovery. Interestingly, we further establish our method
within the plethora of works of the field, by demonstrating that, even
though the existing description-agnostic methods can later be endowed with
descriptions, these correspond to subsets of arbitrarily low quality in terms
of the adopted measures. In this work we also develop a tight optimistic
estimator that we use within our IDDFS framework (see Section 2.4.2) to
efficiently find the optimal subgroup in the language of closed selectors Lcl
(see Eq. (2.8)), thus giving rise to our RoSi method.

Extensive experiments on large and diverse real-world graphs show that
RoSi performs very well in practice, discovering meaningful subgraphs while
competing ones run out of time and memory. Finally, we also compare
with state-of-the-art methods which do provide descriptions, and therefore
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k-core
k-core component

H1(1) H2(1)

H1(4)

H2(1)

H(0)

H(1)

H(2)

H(3)

H(4)

Figure 4.2 [Higher coreness coincides with higher density]: The core de-
composition of a graph hierarchically groups its vertices into increasingly denser
subgraphs. Here H(k) denotes a k-core and Hi(k) the i-th k-core component.

provide a qualitative comparison between their result of a subgroup with
high edge-to-vertex ratio, against our novel measure of robust connectedness.
These experiments also show that the above example is not esoteric: the
densest subgraph that the recent method LDENSE [GGT16] discovers from
DBLP is one with high average density but a robustness of 0, indicating that
its robust connectedness is even lower than the robust connectedness in the
entire graph (!).

4.1 Core Decomposition: k-Cores and their Coreness

Before we study the main measure we are going to use, we introduce the notion
of k-cores [Bic10]: a useful measure of structural connectedness for each
vertex that reveals important structural properties of each vertex [SEF16].

Assume a graph G = (V,E) and a vertex subset U ⊆ V , whose connectivity
we want so study. This vertex subset U defines on G the induced subgraph,
i.e., the subgraph G[U ] := (U,E(U)), where E(U) := {(v, u) ∈ E | u, v ∈ U}
is the set of all edges with end-points in U . For a vertex v, we denote by
N(v) := {u ∈ E | (u, v) ∈ E} its neighbours in G and its degree, i.e., the
number of its neighbours, by δ(v) := |N(v)|. When a quantity refers to the
induced graph G[U ] we indicate the inducing vertex set as a subscript. For
instance, δU (u) denotes the degree of vertex u in the induced graph G[U ].
A k-core component of a graph G is an (inclusion-wise) maximal con-

nected subgraph of G whose vertices U have all a degree of at least δU (u) ≥ k.
The subgraph comprising all k-core components of this graph is called its
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k-core H(k), and the k-core vertices E(k) are the vertices of the graph’s
k-core. The last two definitions are then related as H(k) := G[E(k)].
The annotated k-cores of the example graph on Fig. 4.2 show that the k-cores
are nested to form a hierarchy over the vertices. We also define the k-shell
of G as the set of vertices that lie in the k-core but not in the k + 1-core
(same-coloured vertices in the figure). In this way, the k-shells define a
partitioning over the vertices: the core decomposition of G, which assigns
to each vertex v a core number (or coreness)

κ(v) := max {k | v ∈ E(k)} , for G, and (4.1)
κU(v) := max {k | v ∈ EU(k)} , for G[U ] , (4.2)

equal to the greatest number k such that this vertex lies in the k-core of
G, where EU(k) are the k-core vertices of G[U ]. Note that by definition
G[V ] ≡ G, and hence κE(v) ≡ κV (v). Finally, the graph degeneracy
K := maxv∈E κ(v) is the maximum coreness over all the vertices of the
graph.

Note that graph coreness is related to various definitions of density [SEF16]:
high coreness indicates better connectedness. For instance, the minimum
coreness in a graph lower bounds the number of edges that have to be
removed for the subgraph to become disconnected.

4.2 Measuring Robust Connectedness

We can now lay the basic notation for the study of connected entities
within the subgroup discovery framework. We study sets of entities, for
which we are given attribute values as well as structural information in the
form of connections between them. Solely for this chapter, and to remain
aligned with the established norms in graph-related context, we replace our
notation for an entity to be that of V . Hence, we consider vertex-attributed
(multi-)graphs G = (E,E,X), where the vertices V correspond to entities
and the edges E to connections between them. The set of vertex attributes
X := {x1, . . . , xp} comprises assignments xi : V → Xi from vertices to
a continuous or categorical domain Xi. These attributes can be used to
simply describe subsets based on logical expressions of vertices v ∈ V like
s(v) ≡ [age(v) ≥ 18] ∧ [sex(v) = ‘female’].

Our goal is to identify such logically described sets of vertices U ⊆ V that
are relatively large but also more robustly connected than G as a whole.
That is, we aim to identify significant parts of the graph that stand out
due to their connectedness. Note that size and connectedness are inversely
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Figure 4.3: The average sub-
graph coreness κ̄U ≡ κ̄U(U) may
be misleadingly overestimated
when it is computed on the whole
graph κ̄E(U). Here, subgraph Gr

is denser than Gl with κ̄Ur = 2 >
0 = κ̄Ul . However, counting the
edges of G, the subgraph densi-
ties falsely indicate the opposite
relation. The same artefact ap-
pears to an even greater extreme
for the naïve measure of edge-to-
vertex ratio.
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on density
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related: while it is easy to construct a small U with highly connected vertices,
a large U must also include loosely connected ones. We hence maximise their
(weighted) multiplicative trade-off, called density impact, defined as

fdi(U ; γ) := fc(U)(1−γ)
fd(U)γ with γ ∈ (0, 1) , (4.3)

where γ is a trade-off parameter that tunes the importance between the
coverage term fc(U) := |U |/|V |, i.e., the portion of the graph covered by the
subset U , and the density term fd(U), which increases as the vertices in U
become more robustly connected. This objective function bears similarities
to the geometrically weighted impact function of Eq. (2.10), where the
exceptionality measure is replaced with a density-aware one. Therefore, it
boasts similar advantages (see Section 2.3), and, importantly, also allows for
a multi-objective optimisation approach for our task (see Section 2.5).
We can now employ the useful notion of coreness to formally define the

very same measure of density that we encountered in Fig. 4.1 to quantify
robust connectedness. Namely, we define the average coreness of G and
G[U ], respectively, as the mean coreness of its vertices

κ̄V := κV
|V | and κ̄U := κU

|U | with κU :=
∑
v∈U

κU(v) for U ⊆ V. (4.4)

We hence quantify the amount to which a vertex set U is more robustly
connected than G by the coreness density

fd(U) := κ̄U − κ̄V , (4.5)

which completes the definition of the density term of Eq. (4.3).
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4.3 Discovering Robust Describable Subgraphs

Our goal is hence to identify large and robustly connected vertex sets which
have an intelligible description. Formally, we can specify our problem as
finding the subgroup that maximises

s∗ ∈ arg max
s∈L

fdi(U ; γ)(s) , (4.6)

where fdi(U ; γ) is the family of objective functions defined in Eq. (4.3). This
problem can be optimised exactly using the general framework of our IDDFS
algorithm, as presented in Section 2.4.2. This algorithm, in turn, requires an
efficient optimistic estimator, which we derive below.

4.3.1 The Tight Optimistic Estimator

To derive an optimistic estimator for our objective function, we need to show
that it satisfies the bound of Eq. (2.27). A first such bound can be derived
by adapting ideas from rule mining (or subgroup discovery) on numerical
unstructured data [GR09]. Here, each entity v has a real-valued target
attribute y, and our aim is to find a describable subset U ⊆ V in which the
mean value of y is maximal. Using coreness as the target attribute, the
formal objective in this task becomes a static version fsdi of our fdi:

fsdi(U) = |U ||V |

[∑
u∈U

κ̄(u)− κ̄
]
, (4.7)

where vsi are the vertices of U in descending order of κ(vsi ). For this objective
function the tight bound is already known to be [BGG+17]

f̂sdi(U) = max
0<i≤|U |

i

|V |

[1
i

i∑
j=1

κV
(
vsj

)
− κ̄V

]
. (4.8)

The static measure fsdi, however, systematically overestimates the subgraph
density, as visualised in Fig. 4.3, since it also considers the connections to the
rest of the subgraph instead of just the subgraph of interest. This intuition
leads to the following observation that is key for the rest of our analysis: the
average coreness is monotone1 with respect to the inducing vertex set.

1More formally, the average coreness is monotonously increasing over any monotonously
increasing sequence of the vertex power-set 2V , directed by the set inclusion relation ⊆.
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Lemma 4.1. Let T ⊆ U . Then κ̄U(T ) := |T ||V |
∑
v∈T

κU(v) ≥ κ̄T .

Proof. By construction of the induced subgraphs of T and U we have E(T ) ⊆
E(U) and for all vertices v ∈ T it is NT (v) ⊆ NU (v) or equivalently δT (v) ≤
δU (v), and therefore κT (v) ≤ κU(v). Adding these inequalities over all
vertices u ∈ T proves the claim.

In other words, since fsdi overestimates fdi, we can use the tight optimistic
estimator f̂sdi of fsdi also as an optimistic estimator of our own measure, albeit
a non-tight one. In fact, this tight bound of fsdi can be derived with little
work from the existing literature [BGG+17], once we use as target property
the core values of G. This gives

max
T⊆U

fdi(T ) ≤ max
T∈U

f sdi(T ) = max
0<i≤|U |

i

|V |

[1
i

i∑
j=1

κV (vj)− κ̄V
]
, (4.9)

where v1, . . . , v|V | are the vertices of V ordered in decreasing core value.
Notably, this bound can be adjusted to accommodate the trade-off parameter
γ.
However, the bound of Eq. (4.9) only considers the core values of the

entire graph, which we showed to overestimate the coreness of the induced
graph in ¸Fig. 4.3; therefore, this bound can be rather loose in practice (see
Section 4.5), and so we limit its use solely as a baseline. We hence derive
an improved optimistic estimator for our objective function that considers
the coreness of the induced subgraph, and additionally becomes tight under
common conditions. At the core of this optimistic estimator lies a tight
upper bound for the total coreness κU of Eq. (4.4) over all subsets of U , as
we derive next.

More specifically, we can compute the maximum of the total coreness κT
that can be attained over all subgraphs G[T ] induced by a vertex subset
T ⊆ U . We decompose this maximum computation as

κ∗U := max
T⊆U

κT = max
1≤i≤|U |

κiU , (4.10)

where we first maximise over those T ⊆ U with cardinality i

κiU := max
T⊆U , |T |=i

κT (T ) . (4.11)

To compute the maximum κiU over all subsets with fixed cardinality we
first arrange all vertices v1, . . . , v|U | of U in order of decreasing coreness
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κU(vi) and then we observe that κiU is upper bounded by the partial sums
κ̂iU = ∑i

j=1 κU(vj).
We now study the sequence of these partial sums κ̂iU as follows. Due to

their ordering, the vertices are selected one k-shell of G[U ] at a time in
decreasing order of k, so that within each k-shell the value of κ̂iU increases by
a constant k. This constant changes right after each k-shell (or equivalently,
k-core) is exhausted. There are KU + 1 such complete core addition
(CCA) indices: each corresponds to exhausting the vertices of a k-core and
thus coincides with the size of a k-core. We denote these as nk := |EU(k)|
for each k-core 0 ≤ k ≤ KU + 1.
Note that κ̂iU increases linearly between two consecutive complete core

addition indices nk+1 ≤ i ≤ ni by exactly k. Thus, κ̂iU is a piece-wise linear
sequence in i, whose pieces switch at indices i = nk. The value of κ̂iU at each
such index can be computed as the cumulative sum of k-shell sizes, each
weighted by k; to compute the rest we use linear interpolation:

κ̂iU :=


∑KU
λ=k λ(nλ − nλ+1)

i = nk
0 ≤ k ≤ KU

(i− nk+1)κ̂nkU + (nk − i)κ̂nk+1
U

nk+1 − nk
nk+1 ≤ i < nk
0 ≤ k ≤ KU .

(4.12)

Since κ̂nkU = κ̂
nk+1
U + k(nk − nk+1), the above is simplified as

κ̂iU = (i− nk+1)k +
KU∑
λ=k

λ(nk − nk+1) , nk+1 ≤ i ≤ nk. (4.13)

Equation (4.13) reveals κ̂iU to be piece-wise linear (and concave) function
due to the monotonically decreasing increments k. This is demonstrated
in Fig. 4.4a. Each element of the sequence κ̂iU can now serve as an upper
bound for the maximum total coreness κiU over all subsets of U with fixed
cardinality i.

Proposition 4.2 (Piece-wise Linear Estimate). For the piece-wise linear
function of Eq. (4.13)

i) κiU ≤ κ̂iU , for all 0 ≤ i ≤ |U |
ii) κiU = κ̂iU , for i ∈

{
0, n0, . . . , nKU

}
— For the proof see Appendix A.2.

Using the first part of Proposition 4.2 we can upper bound the value of
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f sdi over all subsets of U with cardinality i by

φ̂U (i; γ) :=
(
i

|V |

)1−γ ( κ̂iU
i
− κ̄V

)γ
. (4.14)

Hence, the solution of Eq. (2.27) for fdi(U ; γ) can be written as

max
T⊆U

fdi(T ; γ) ≤ φ̂∗U (γ) := max
0<i≤|U |

φ̂U (i; γ) . (4.15)

Finally, we replace Eq. (4.14) into the one above and then use Proposition 4.2
(part ii)) to show that our final bound is tight. To share intuition of its
tightness, we plot the proposed optimistic estimator for γ = 1/2 (Fig. 4.4b).
Note that as γ deviates from this value, the guarantee for tightness can be
lost (Fig. 4.4c).

Corollary 4.3 (Optimistic Estimate). The quantity φ̂∗U (γ) is an optimistic
estimator of fdi(U ; γ). In addition, φ̂∗U becomes tight for γ = 1/2.

φ̂∗U (γ) := max
0<i≤|U |

(
i

|V |

)1−γ ( κ̂iU
i
− κ̄V

)γ
. (4.16)

— For the proof see Appendix A.2.

Our proposed bound of Eq. (4.16) can be computed in linear time: the
k-core decomposition of G is O(n) [BZ03], and the maximum in Eq. (4.16)
compares |U | values, each computable in O(1).

4.4 Related Work

Dense Subgraphs and Communities. The typical objective in dense subgraph
discovery is to find the subset of vertices in a non-attributed graph that
induces the subgraph with the highest edge-to-vertex ratio, a measure that
has been shown to accept both an exact max-flow based polynomial time
optimisation algorithm [Gol84] and a greedy 2-factor approximation [Cha00]
with linear complexity. Extending this rather simplistic measure, an abun-
dance of works reinterpret density to take into account structural information,
for instance, high triangle counts [Tso14], measures based on large and/or
dense k-cliques [Tso15], quasi-cliques [TBG+13], k-plexes, k-clubs, and k-
cores [SEF16], just to name a few (for a survey see [LRJ+10]).
In the related yet different community detection, one imposes the addi-

tional constraint that the discovered subgraph must be disconnected with
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the bound is tight, tightness of the bound over all i follows (Corollary 4.3).
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(c) As the parameter γ deviates from the value of 1/2 the (appropriately scaled) bound
loses the above piece-wise linear property. It thus becomes possible that the maximum
over all i lies on a non-CCA index, where the bound is not guaranteed to match the actual
maximum; then tightness may be lost. Here shown the bounds φ̂∗U (i; 1/4)4 and φ̂∗U (i; 3/4)4

with their respective maxima.

Figure 4.4: Optimistic bounds for the total coreness and the objective value over
all subsets T ⊆ U with fixed cardinality |T | = i. Here computed for the full vertex
set U = V of the example graph in Fig. 4.2. The bounds of both quantities coincide
with the respective maximum value at each complete core addition (CCA) index
i ∈ {n5, . . . , n0} (circled points).
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Method Task Desc. Model Exact Structure
SD-Map∗ [ADM16] CD 3 local 3 3

DCM [PBV14] CD 3 local 3

CoPaM [MCR+09] CD global 3◦

Gamer [GFB+10] CD global 3◦

PICS [ATM+12] DSD global
AMEN [PA18] CD local

LDENSE [GGT16] DSD 3 mixed 3

SCPM [SMZ12] DSD 3 local 3

RoSi (ours) DSD 3 local 3 3

◦ The structure is only used to compare against a threshold and does not further partake
in the quality of the subgroup.

Table 4.1: Comparison of related work.

the rest of the graph, which usually incurs the need for combinatorial op-
timisation [FH16]. Note that RoSi solves the former task, by adapting a
k-core–based measure for mining named vertex subsets.

Moving on to methods which use graph attributes, we first classify them as
those using graph attributes to steer a density optimisation scheme toward
cohesive subgraphs, i.e., subgraphs with similar attributes, or others that
seek the densest out of a set of subgroups, to which RoSi also belongs.
Cohesive Subgraphs. CoPaM [MCR+09] applies subspace clustering on the
vertex attributes to find maximal connected subgraphs that contain vertices
with similar attributes, whose density surpasses a given threshold. Similarly,
Gamer [GFB+10] discovers non-redundant sets of subgraphs, which must
be connected γ-quasi-cliques for a given parameter γ. Note that for both
methods the respective density score only needs to surpass a user-defined
threshold and does not contribute to the quality of each subgraph any further.
More recently, AMEN [PA18] introduces an attribute-aware variant of the
established modularity measure [FH16] to detect ego-net–shaped communities
with similar attributes. These last three methods score each mined pattern
individually. In contrast, the subgraph clustering PICS of [ATM+12] uses
low entropy splits of the binary adjacency and attribute matrices to form
vertex clusters with similar concentration of edges and binary features. We
compare RoSi to the most recent works of both subspace and subgraph
clustering.
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Name

Nodes Edges

Attr. α κ̄No. Kind No. Kind

Facebook◦ 4037 user 170174 friendship 20 1 52.1
Google+◦ 78393 user 28312689 friends 10 0.1 366.7

Delicious• 1867 user 15328 contact 50 0.3 11.0
Lastfm-Artists• 1892 user 25434 artist 15 1 14.6

Twitter◦ 51246 user 1735925 follower 14 1 35.7
DBLP 17488 author 97070 co-auth. 113 0.3 8.5
IMDB 23700 crew 1134676 collab. 55 0.8 50.9

GATTWTO 177 country 230777 trading 27 1 1606.7◦

Amazon◦ 16641 record 162815 purchase 145 0.7 13.9
Lastfm-Songs• 251272 song 1179317 similarity 50 0.5 5.2

Sources: ◦SNAP repository •HETREC Workshop •Million Song Dataset
◦Multi-graphs may have degeneracy K ≥ |E|.

Table 4.2: Overview of dataset statistics.

Subgroup Discovery. As a subgroup discovery task, RoSi belongs to the
data driven methods that use an implicit target concept. That means that the
measure of exceptionality is not based on a target variable that is explicitly
listed in the dataset, but is instead computed implicitly based on the robust
connectedness property of the subgroup entities. Perhaps the closest to our
work within this family is SCPM [SMZ12] which uses a structured density
measure based on quasi-cliques that must be sampled from each subgraph
to estimate how many of its vertices these cliques cover. This method
needs many hard-to-specify parameters, is only approximate and, as our
experiments show, slower than RoSi. Although faster, LDENSE [GGT16] is
a greedy search for the describable subgraph with the highest typical density
(i.e., edge-to-vertex ratio). Less related are methods solving the community
detection problem, instead. For instance, Atzmueller et al. [ADM16] also use
a branch-and-bound scheme for exhaustive search using target concepts for
community detection, such as a local variant of modularity that is computed
only on the subgraph (LMDL) and the inverse conductance (COIN).
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Figure 4.5 [Coreness vs. Coverage]: Increasing the coreness–coverage trade-off
parameter γ yields smaller but more robustly connected subgraphs.

4.5 Experiments

In this section we empirically evaluate RoSi.2 We consider 10 datasets that
together span multiple domains and different kinds of represented entities and
relations from public sources with up to thousands of vertices and millions of
edges. These consist of both graphs and multi-graphs, and describe various
types of networks: social, similarity, co-occurrence, collaboration networks,
among others.
For the needs of our comparisons we implemented and embedded in our

own framework the methods of LDENSE, COIN and LMDL. We also used
the provided sources for the methods PAICAN, SCPM, PICS and AMEN.
All experiments were run for at most 36 hours, similarly to the time allowed
for our own algorithms. Exceptions include the PAICAN algorithm which
failed to converge3 in all of our datasets, possibly due to their size.
Where more parameters were required, we experimented with several

settings and chose the best results overall. Such a case was not only COIN,
for which we tried several minimum supports, SCPM, where we experimented
with clique sizes of 4, 10 and 100 while kept minimum supports as the ones

2Code and data are available at https://eda.mmci.uni-saarland.de/prj/rosi/.
3More specifically, after either the first, or just a few iterations, the yielded ELBOW of
the score degenerated to a value of nan.
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reported in the presenting paper [SMZ12]. One problem of this method was
the overwhelming number of results that it was providing (> 100), or the
complete lack thereof, and we seemed to be lacking intuition on what good
values would be for a dataset a priori. In the section below, we report the
results of this experimental procedure.

4.5.1 The Generality–Connectedness Trade-Off

We next demonstrate the effect of the trade-off parameter γ, which offers at
once a smooth and intuitive mechanism to tune the importance between the
size (coverage) and the connectedness (density) of the discovered subgraph.
We study datasets with highly diverse base predicates that allow the greatest
flexibility in the resulting descriptions, and mine the top result for increasing
values γ ∈ {0.1, 0.15, . . . , 0.9} and plot the coverage and connectedness of
the topmost result (Fig. 4.5).
Continuously increasing parameter γ leads to smaller and more densely

connected subgraphs—it thus intuitively steers the results toward more
general or more connected subgraphs, and allows us to explore a compact
subset of the Pareto frontier defined of the two scores of generality and
density, as discussed in Section 2.5. Thus, the output of this method is a
collection of subgroups for each dataset, as shown in Table 4.3.

4.5.2 Pruning Efficiency

We first study how the efficiency of RoSi is affected by the pruning potential
of the proposed induced-joint (4.16) (UJ) against the global-joint (4.9)
(GJ), which is the standard algorithm available from literature and here
serves as a baseline. For the experiments we use the default trade-off
parameter of γ = 1/2, along with the representative choices of γ = 1/3 and
γ = 2/3, corresponding to increasing the importance of coverage and robust
connectedness, respectively. When the computation time (for UJ) exceeds
7 hours, we lower the approximation factor α by 0.1 or decrease the depth
limit, favouring a deeper search when possible. We report the wall-clock
times and traversed nodes in Fig. 4.6.
We first focus on the running times (Fig. 4.6a) to note that with one

exception f̂UJ outperforms the baseline, which often does not even terminate.
This becomes even more pronounced once for any given dataset we consider
the performance across all 3 selected values of the trade-off parameter: in
this case there are several datasets for which f̂UJ achieves at least an order
of magnitude better performance for some value of γ.
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(b) Visited nodes during search.

Figure 4.6 [Lower is Better]: Efficiency of the optimistic estimators: higher
pruning efficiency translates to less expanded nodes and thus shorter running times.
Experiments exceeding a runtime of 36 hours (dotted line) are faded out.

This higher efficiency of the proposed bound is due to its higher pruning
capacity. Indeed, both optimistic estimators have linear time complexity,
and thus the only factor that differentiates the performance of the two is
the number of expanded nodes during search (Fig. 4.6b). Since for each
dataset the order of predicates P is fixed, without pruning, the sequence of
traversed nodes would be the same. Within this sequence, pruning allows
to skip sub-optimal branches of nodes, which leads to smaller or larger
advances, when the bound is looser or tighter, respectively. Importantly,
during approximate search (α � 1) pruning becomes overzealous: then a
bound might skip a good node, which a looser bound would “fail” to skip;
this occasionally leads to an advantage for the looser bound, later on. This
is more likely to occur as α lowers. In our experiments this only happens for
Lastfm-Songs (γ = 2/3) when the baseline gains a slight advantage, which is
no surprise given the low approximation factor of 50%.

As a side-note, we also observe that a deeper search depth allows a better
margin for a tighter optimistic estimator to thrive. Indeed, the only case
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where the pruning superiority of f̂UJ is not pronounced is for the DBLP dataset
(for γ = 2/3), where the algorithm only reaches a depth of 3, the lowest among
all datasets (Table B.1).
Overall, the experiments corroborate the theoretically expected superior

pruning of the proposed f̂UJ and show that it readily translated to shorter
running-times. Note that RoSi is a variant of IDDFS, and as such is very
frugal in its memory usage. If used in a BFS setting, a looser bound would
run into memory issues much faster than a tighter one.

4.5.3 Connectedness versus Density

Here we compare RoSi to representative works in terms of both our pro-
posed robust connectedness and also typical density (edge-to-vertex ratio).
Although our task is dense subgraph discovery, we also compare against more
loosely related approaches for community detection.

We first compare against state-of-the-art methods which describe the found
patterns: LDENSE [GGT16], SCPM [SMZ12], and two target concepts for
community detection from subgroup discovery on graphs: COIN [AM11])
and local modularity (LMDL [ADM16]). We plot the best results of each
method in Fig. 4.7a. RoSi scores the highest in terms of robust connectedness,
while in terms of density it is on par with the rest.

We further compare RoSi with two recent methods for cohesive subgroups:
PICS and AMEN, neither of which do not provide descriptions. Since these
methods output several patterns, we show all discovered vertex sets in the
Pareto front of the two metrics (Fig. 4.7b) with empty circles, designating the
absence of a description. Although rarely, other methods may score a higher
density and even robustness than RoSi, as their optimisation not constrained.
To put them in perspective, however, we further mine the closest subgroup
in terms of Jaccard distance to the one provided by each algorithm, and link
to it the unconstrained solution with an arrow. As expected, these solutions
score lower than those of RoSi.

4.5.4 Intelligible Subgraph Descriptions

To qualitatively assess our results we mine the top describable subgraph
for the IMDB dataset which offers attributes that are easily interpretable,
consisting of movie cast members which are connected when they have
collaborated in at least one movie. In Table 4.3a we track the top description
over varying steps of 0.1 ≤ γ ≤ 0.9.
Starting with larger subgraphs (high γ) we read the first result as: the

drama movie cast has a robust connectedness of 1.8 collaborations on average
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more than what is usual in the entire industry. Moving into denser graphs, we
find that established actors (i.e., debuting before ’96) collaborate more with
each other. Here, also a negated predicate is informative: the London BFI
festival is known to nominate more diverse films, with cast harder to have
collaborated with each other, therefore removing it increases connectedness.
We further find that additionally producing a movie in the US leads to
substantially higher connectedness. Overall, the discovered patterns reveal
an interpretable story.
Similarly, Table 4.3b lists discovered subgroups from the Lastfm song

similarity dataset. These reveal that the few live recordings are dissimilar,
most likely due to the higher noise levels involved in live venues. We also
find out certain genres to offer greater variation in their songs, e.g., metal,
indie, experimental, punk, and alternative rock, exemplary genres known for
novel sounds and breaking norms. Lastly, we identify genres with many more
similar pieces within them than the average, for instance the 18 thousand
oldies and the thousand dance-party 70’s songs.
We also report selected informative subgraphs discovered from another 4

datasets (Table 4.3c). Interesting findings include that the Google+ social
network contains a community of photographers, which have 140 other
photographers as friends on average more than the dataset average; similarly,
in Twitter, the followers of the American artist Hayley Williams are exceeded
by 120 connections the average connection in the dataset, and even more so
fans who refer to YouTube itself. From the DBLP dataset we notice that the
people publishing in the ICDM conference have a slightly higher tendency
to cite other people of the same field. Finally, finally the discoveries of the
GATTWTO dataset show that the member countries of the GSP trade agreement
use on average 253 more trade routes ore than what is usual.

4.6 Discussion

Our experiments show RoSi to be feasible even on large graphs and to yield
meaningful and easily interpretable results. Nevertheless, it comes with weak
points, discussed below.
Our measure leverages the structural properties of k-cores to create a

coherence measure suitable for subgroup discovery. However, an easily shown
property of a k-core H(k) is that if its vertex count n is relatively higher than
its core number n ≥ λ(k+1) then it can consist of up to λ k-core components
H1
k , . . . ,H

λ
k , all of which are disconnected between them. Therefore, our

measure does not enforce that the described entities are all (well) connected
together. However, this is no shortcoming of our method, as our goal is not
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to name individual connected components or communities. Instead we seek
to discover factors which lead to higher coherence of—possibly separate—
groups of entities, in terms of conjunctions of vertex attributes, which is well
achieved.
This caveat means that, for instance, our discovery from the Google+

network (in Table 4.3c) does not indicate that all of the 2835 photographers
are friends with each other, which would be a very hard constraint to satisfy.
Rather, this discovery means that photographers tend to form robustly
connected clusters, whose average minimum edge-connectedness exceeds the
network average by 140. Should connected subgraphs be required, this can
always be enforced as a post-processing step.
Importantly, despite relying on first order moments of core values, our

measure is not particularly susceptible to outliers. This is due to several
graph dynamics that together counter-act the outlier sensitivity. First, higher
k-cores need more vertices to “collaborate” together, and thus higher k-cores
purely due to outliers become increasingly unlikely. Second, low k-cores are
unlikely to occur in the results due to outliers because our score aims to find
subgraphs with deviating coreness, and low-coreness graphs are highly likely
due to the power-law-like distribution of coreness in real-world graphs, which
comes in addition to coreness being positive.

4.7 Conclusion

In this chapter we studied the problem of finding robustly connected sub-
graphs that are easily described. For this we first formally define the concept
of robust connectedness as the property possessed by graphs that contain
node clusters that are difficult to shatter; we then propose a measure for this
property based on the k-core decomposition of a graph.

We subsequently adapt our novel measure for its use in subgroup discovery,
which gives rise to the coreness impact function, that incorporates the notions
introduced in Section 2.3. We additionally provide an efficient algorithm to
compute its tight optimistic estimator, which enables the use of our IDDFS
algorithm to efficiently optimise our objective.

Our experiments show that, although our problem is inherently exponential,
RoSi can analyse real-world graphs with up to millions of edges and tens of
thousands of vertices within reasonable time. This is largely to the efficiency
of the tight optimistic estimator that we derived for our measure, which is
only of linear computational complexity. This makes our optimistic estimator
optimal, in the sense that it does not change the complexity class of each
iteration, as discussed in Section 2.4.2.
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Importantly, our results are meaningful and come equipped with intelligible
descriptions, which establish its clear superiority when compared with alter-
native methods. These alternative methods either provide no descriptions,
or only provide approximate or implicit ones.
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(a) Comparison to methods which provide descriptions.
Among all subgroups, RoSi is always the rightmost, as it finds the optimum one in terms
of robust connectedness.
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(b) Description-less methods: a hollow mark designates their result: a subset of entities
without a description. Arrows point to the closest (describable) subgroup in terms of
Jaccard similarity.
The (unnamed) subsets that these methods find can score higher than our result in both
density notions, as in case of the Facebook dataset [right], since they are unconstrained.
However, post-hoc fitting of the closest description gives an unpredictably scoring subgroup,
which is always worse than that of RoSi in terms of robust connectedness, since our method
computes the optimal subgroup in this regard. In our experiments, these methods happen
to score lower than our result also in terms of vertex-to-node ratio.

Figure 4.7 [Upper Right is Better]: Comparison of the two metrics for density:
edge-to-vertex ratio and our robust connectedness, on different datasets. RoSi
is not only able to discover subgroups with the highest robust connectedness, as
expected, but it also scores on par with competing methods also in terms of the
typical edge-to-vertex ratio.
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US Movies Dens.
[0.10 − 0.30] 3 20,579 (86.8%) 1.8
[0.30 − 0.40] 3 3 19,150 (80.8%) 7.6
[0.40 − 0.45] 3 3 3 15,057 (63.5%) 11.9
[0.45 − 0.60] 3 3 3 3 3 11,455 (48.3%) 17.1
[0.60 − 0.90] 3 3 3 3 3 3 6,843 (28.9%) 27.1

(a) Discovered subgraphs from IMDB.

γ Description Songs Dens.
[0.10− 0.20] [¬seen_live] 250,168 (99.6%) 0
[0.20− 0.30] [¬experimental] 238,682 (95.0%) 0.1
[0.30− 0.35] [¬metal] 232,272 (92.4%) 0.2
[0.35− 0.40] [¬metal]∧‡ 213,803 (85.1%) 0.4
[0.40− 0.45] [¬experimental]∧[¬metal]∧∗ 189,054 (75.2%) 0.8
[0.45− 0.50] ◦∧[¬ambient]∧•∧[¬metal]∧‡∧

[¬alternative_rock]∧[¬punk]∧∗
155,446 (61.9%) 1.3

[0.50− 0.70] [oldies] 18,089 ( 7.2%) 17.4
[0.70− 0.75] ◦∧[¬90s]∧[oldies]∧[¬hard_rock] 15,842 ( 6.3%) 19.2
[0.75− 0.85] [¬00s]∧[oldies]∧•∧∗ 15,953 ( 6.3%) 19.1
[0.85− 0.90] [¬seen_live]∧[party]∧[70s]∧[dance] 862 ( 0.3%) 35.5
◦[¬seen_live] ∧ [¬experimental] •[¬hard_rock] ∗[¬indie] ‡[¬indie_rock]

(b) Discovered subgraphs from dataset Lastfm-Artists.

Dataset γ Description Entities Dens.
Google+ [0.10 − 0.90] [job=photographer] 2,835 ( 3.6%) 138.9
Twitter [0.10 − 0.85] [@yelyahwilliams!] 740 ( 1.4%) 119.9

DBLP [0.10 − 0.35] [vna:ICDM] 9,022 (51.6%) 0.1
GATTWTO [0.25 − 0.55] [tra:GSP] 110 (62.1%) 253.5

(c) Discovered subgraphs of special interest.

Table 4.3: Discovered subgraphs for different trade-off parameters γ.



5 Kernelised Subgroup Discovery
In this chapter we revisit the core goal of (data-centred) subgroup discovery:
finding the describable sub-population of entities whose distribution is the
most deviating from what is considered usual. As we saw, the existing
methods in this field have only quantified this deviation for simple target
variables that were almost exclusively scalar. Thus, the use of the existing
methods is limited to datasets with little to no structure. Instead, in this
chapter we will treat entities that are each associated with an arbitrary
structure. This relaxation allows for a much more flexible setting than what
just a scalar attribute could accommodate. In fact, within the previously
studied framework, we adopt a new perspective in which the structure
associated with each entity becomes, itself, the target variable.

Equivalently, we consider datasets whose entities themselves are arbitrary
structures; these structures can be represented in a flexible form and consist
of multiple dimensions, that can even vary from one entity to the other. Such
entity structure can be, for example, proteins, molecules, graphs, images,
time series, or effectively any out of the limitless variety of structures on
which a meaningful positive definite kernel can be defined. As usual, we also
assume that a set of relevant attributes is available for each of the given
entities. More specifically, these attributes should (indirectly or explicitly)
capture interesting traits of the studied entities, using which it is possible to
meaningfully group them. Our aim is, hence, to extend the applicability of
typical subgroup discovery on such datasets. Applying such a method we
can then find that particular named subset whose structure deviates as much
as possible, either from the rest of the dataset or from the entirety of it.
As an example, consider the active research field of computer-aided drug

discovery, where molecules are scrutinised based on their structure and general
chemical properties, in order to find potential drug candidates. A great
amount of information on chemical properties for molecules is available, or
can be inferred with relative ease via simulations based on the molecule shape,
e.g., electronic density, number of atoms, benzene rings, etc; importantly,
such chemical and structural properties of molecules can be captured by an
appropriate kernel on molecule shapes. However, only a relatively small set of
drug-like substances has been meticulously annotated with their drug-related
properties by lab specialists. These latter properties could be suggestive
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(a) Entities of a toy dataset with
structure a point in R2 [left].
These points lie on a low-
dimensional manifold, as revealed
when we project them along the
first 2 eigenvectors of a Gaussian
kernel Gramian [right].
Alongside are shown the validities
of two predicates p1 and p2.
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y

v1

v 2
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(b) The subgroup p1 ∧ ¬p2: the
most exceptional within the sub-
group language of p1 and p2. We
measure the exceptionality of a
subset in Hilbert space, as the
difference of the subset mean
(coloured mark) to the dataset
mean (black star). Although the
marked cluster is more excep-
tional, it has no description and
is not considered. x

y

v1
v 2

mean

subgroup p1 ∧¬p2
furthest cluster

Figure 5.1: Toy example of points with structure in R2 along with their two
predicates p1 and p2, that model suggestive traits (a). Although the human eye
can easily distinguish clusters in this toy dataset, this is not trivial for a machine
learning model. We therefore measure the exceptionality in Hilbert space, where its
value can be easily measured as the difference of subset means (b).

traits like toxicity, bio-availability, affinity to a specific target, etc, which can
be highly indicative of the fitness of a substance for a medical condition. It
would then be of great use to find groups within the available drug dataset
that stand out with respect to their shape-based properties, but that at
the same time share a common set of drug-related, revealing traits. Thus,
by harnessing the power of subgroup discovery, in this paradigm we shift
from the discovery of a list of molecules, like paracetamol, ibuprofen, etc, to,
instead, a set of common traits of them that intelligibly describe this set;
for instance, such a finding could be “‘painkillers with high bio-availability
and low toxicity describe drugs with outstanding molecular properties’”. The
usefulness of such a discovery can be that important deviations within a
known class of drugs can be a target of further scrutiny, that focuses on
conspicuously deviating parts fo this class, or give indications of potential
improvement of pharmaceutical properties.
This paradigm deviates from having one single studied suggestive trait
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like toxicity, for which one could typically fit a classifier on a set of structure-
related attributes, as is achievable with several methods from supervised
learning. Instead, in our setting we search for these subsets of molecules
which are interesting due to a difference in general structure, as assessed by
a positive definite kernel, while always retaining an intelligible description.
More specifically, we generalise subgroup discovery to find the subgroup whose
average representation in the associated Hilbert space is most deviating from
the representative of the usual data. Consider, for example, the toy dataset of
entities with structure in a two-dimensional vector in R2, which is depicted in
the top-left of Fig. 5.1a. By a quick glance on the arrangement of these points,
one can probably already guess that these points have a low-dimensional
structure, and in fact one that can be very well captured by a Gaussian
kernel; indeed, this structure is revealed once we project these points along
the first two eigenvector directions of the kernel Gramian. We also assume
the availability of two suggestive traits, which we mark with the predicates p1
and p2, respectively. In this scenario, although finding exceptional subgroups
is very problematic in the original space, using the Gaussian kernel we can
perform the same task quite easily in the Hilbert space. Doing so, we find
the subgroup p1 ∧¬p2 (depicted in Fig. 5.1a) which is the optimal among all
those subsets that have a description.

It also becomes important to define what are the structural properties that
the kernel should deem relevant for its similarity assessment, or, in other
words, how to choose an appropriate kernel. Typically, the kernel—or its
parameters—are chosen based on methods like cross validation, which, in
turn, requires the availability of a clear cut metric that should be optimised.
Despite, however, the several attributes available in the dataset, there is
no sensible way to single out one of them as a regression or classification
variable, and therefore we cannot directly use standard metrics like regression
loss or accuracy. We hence make two key assumptions:

i) The entity properties included in the dataset are axiomatically relevant
to the specific application, by the mere fact that they were included to
begin with; by extension, relevant are also the predicates derived from
these properties.

ii) Additionally, the similarity of the entities in two subgroups, defined each
by a logical expression of these predicates, is related to the similarity
of these logical expressions themselves.

We use these assumptions to propose a fitness measure of a kernel for our task,
that at the same time takes into consideration all available predicates derived
from the entity properties. We then use this measure within established
hyper-parameter optimisation methods to select a good kernel for our task,
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and additionally study schemes for multiple kernel learning where simpler
kernels are linearly combined into a more fit one.

Thus, the main contributions of this paper can be summarised as follows.
• We propose a family of objective functions on subsets of entities,

such that a set with outstanding structural characteristics stands out,
where a positive definite kernel is consulted for the similarity of these
structural similarities.

• We provide an upper bound for our objective functions that can be
used for its efficient combinatorial optimisation within our IDDFS
algorithm.

• We provide methods to tune the hyper-parameter of the involved kernel,
which takes into account all available properties of the dataset equally.

5.1 Preliminaries

In this chapter we study datasets whose entities are each associated with
additional information that can be used to evaluate a similarity between
these entities. This additional information replaces—and in fact generalises—
the role of the target variable of typical subgroup discovery, as it can have
virtually any structure, such as graphs, time series, or images, and naturally
also scalars as a trivial special case.
More precisely, now the entities are assumed to have a given structure

that we use to compare them through special functions κ : E ×E → R that
map any pair of entities to a real value that measures the similarity between
them. These functions are called positive definite kernels and have useful
properties, the relevant of which we briefly study below.

5.1.1 Positive Definite Kernels

Positive definite kernels are a broad family of well-behaving functions that
generalise the inner product between two entities. These entities belong to
the same domain X , which can contain anything from scalars and vectors,
to virtually any of much more complex objects, such as time-series, images,
graphs, or molecules. In this way, the positive definite kernels define useful
similarities between practically arbitrarily structured objects, which can be
seen as a generalisation of the cosine similarity.

Formally, a positive definite kernel κ : X → R is a symmetric function1

1The field of reals is sufficient for the needs of this work. However, all these definitions
carry on to the field of complex numbers C after simple adaptations, mainly the
replacement of the transpose operation with that of the Hermitian adjoint.
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that generalises positive definite functions over X , so that for any finite
X = {x1, . . . , xn} ⊆ X it must be

n∑
i=1

n∑
j=1

cicjκ(xi, xj)
!
≥ 0 , for any c1, . . . , cn ∈ R ⇐⇒ (5.1)

K
!
� 0 , [K]i,j := κ(xi, xj) ; (5.2)

in the more compact definition of Eq. (5.2) we used the Gramian matrix
K ∈ Rn×n of X, defined as the symmetric matrix whose elements are the
values of the kernel for each combination of pairs from X.

As a direct result of this definition, it can be shown that for each positive
definite kernel there is i) an associated Hilbert space H of real functions
and ii) a feature map φ : X → H, such that

κ(x1, x2) = 〈φ(x1), φ(x2)〉H , (5.3)

where 〈·, ·〉H is the inner product of the Hilbert space. Equivalently, every
feature map to a space of real functions defines a positive definite kernel.
This latter fact has the important implication that any function that gives a
representation of an object as a vector defines a positive definite kernel. This
includes a multitude of examples of embeddings for text, images and other
structures, and, importantly, also all representations that can be learned
through a neural network pipeline.

For any finite subset X ⊆ X , we can also represent the value of the kernel
as a finite decomposition of it into the Gramian eigenvectors2. This essentially
provides a convenient representation of the elements of X in the associated
Hilbert space H, that reveals their relation in a Euclidean-like distance. The
most accurate low-dimensional representation of these points is provided by
using the coefficients of the eigenvectors with the largest eigenvalues. We
will extensively use this representation to elucidate the structural relation of
the entities in the discovered subgroups of this chapter.

5.2 Most Outstanding Named Entity Subset
We now work toward shaping the intuition of our goal into a formal problem.
Our task can be interpreted as the need to find the particular subset Q ⊆ E
that has the maximally deviating distribution from either that of the whole

2In fact, by Mercer’s theorem there is also an (uncountably) infinite extension to this:
when the domain X admits a well-behaving (Radon) positive measure, it also admits a
spectral decomposition into no more than countably infinite eigen-functions [SS16].
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dataset or from the distribution of the complement Q̄. The first requirement
is compatible with the assumption that our dataset comprises the entire
population, and therefore its statistics correspond to the true statistics from
which the sought after subset is to deviate. On the contrary, if we assume E
to be just a sample of the true distribution of the population, then in our
assessment we may not include the sample E, and must consider only the
distributional distance between Q and Q̄ := E \Q. We hence refer to the
first problem as anomalous discovery and to the latter as contrastive. The
next step is to specify a way to measure the distributional distance between
the two sets, with respect to a positive definite kernel.

5.2.1 Maximum Mean Discrepancy

Exactly for this task Gretton et al. [GBR+07] provide a special case for a
known result from real analysis [Dud02, Lemma 9.3.2]. This informally states
that for any two (Borell) probability measures p, q, defined over a space X
with a metric, it is p = q if and only if when we transform all elements of
X , their mean under p is equal to the mean under q, for all transformations
that come from a dense enough space, like the set of bounded continuous
functions over X .

Gretton et al. [GBR+07] propose to use the unit ball in the Hilbert space
of a reproducing kernel which serves as a dense enough space which satisfies
the above lemma. The resulting measure between two distributions p, q is
the Maximum Mean Discrepancy (MMD)

MMD(p, q) := ‖µ(p)− µ(q)‖H , (5.4)

µ(·) := Ex∼·[φ(x)] , µ̂(P ) = 1
|P |

∑
x∈P

φ(x) (5.5)

where φ : X → H is the feature map of a given kernel on X and µ is the
mean of the points in H that the elements of X are mapped to through φ.
The mean is either of the entire space under p or (approximately) over a
finite subset P ⊂ X that was itself sampled under p. More relevant for our
needs is the (squared) biased empirical estimator of MMD, which for two
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sets Q, Q′ is

M̂MD
2
(Q,Q′) = 1

|Q|2
∑
ε,ε′∈Q

κ(ε, ε′)−

2
|Q||Q′|

∑
ε∈Q,
ε′∈Q′

κ(ε, ε′) + 1
|Q′|2

∑
ε,ε′∈Q′

κ(ε, ε′) , (5.6)

where κ(ε, ε′) = 〈φ(ε), φ(ε′)〉H. We hence adopt the measure of Eq. (5.6) for
the quantification of the dissimilarity of Q and its pair.

5.2.2 An Objective for our Task

In contrast, however, to the setting for which the MMD was developed, we
need to evaluate as candidate sets Q ∈ L all those that result from a named
combination of the dataset attributes. This means that without proper
scaling, selecting just an outlier could trigger a false discovery. We therefore
adapt the M̂MD by multiplying it with a scaling factor a(|Q|), which depends
only on the size of Q, and can be interpreted as a size prior. This yields our
objective function

J(Q;κ, γ) := aγt (|Q|)·M̂MD
2
κ(Q,Q′t) , γ > 0 , (5.7)

where t = ano and t = con indicate the anomalous and contrastive assump-
tions, respectively, for which we define

aano(m) := m Q′ano := E

acon(m) := m(n−m)
n

Q′con :=E \Q .
(5.8)

The scalar γ is a tuning parameter that controls the relative importance
between the prior on the subset cardinality and the deviation component of
the objective.

Note that we are not limited to using the given priors and any reasonable
choice will do. Our own is based on the intuition that larger sets are less
prone to be outliers and are generally more informative. In the contrastive
case, due to the symmetry J [ano](Q) = J [ano](Q̄) we wish for |Q| to be far
from both extremes, while for t = ano, larger sets are harder to compare
as structurally different from the whole dataset, and our simpler choice is
enough. Additionally, in this case (and for γ=1) we can write

√
J(Q) =√

|Q|‖µ̂(Q) − µ(E)‖H, where µ̂ is as defined in Eq. (5.4). Since we also
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assumed that E is the full population, µ(E) is the true mean and therefore
our score resembles (the square of) the z-score of the empirical mean estimator
µ̂(Q), where the difference to the mean is replaced with the norm in the
Hilbert space.
We now reformulate our objective to reveal its structure, make it more

convenient for what follows, and to further show that both problems differ
only in the choice of the set cardinality prior at(|Q|).

Lemma 5.1. Let mQ := |Q| be the cardinality of any entity subset. Then
we can write our objective of Eq. (5.7) as

J(Q;κ, γ) = aγ−2
t (mQ)zQ>KzQ , (5.9)

where K ∈ Rn×n is the Gramian Ki,j := κ(εi, εj) and

zQ := xQ −
mQ

n
e , (5.10)

for e := (1, . . . , 1) ∈ Rn the vector of all ones and xQ := (1[εi ∈ Q])ni=1 the
characteristic vector of set Q; here we denote 1[·] the characteristic3 function.

We can now formalise our problem as follows.

Problem 3. Given dataset E with attributes yielding the predicates P and
with structure captured by kernel κ, solve

max
Q∈L

J(Q;κ, γ) . (5.11)

This is a hard combinatorial problem and can be solved optimally by the
classical Branch and Bound algorithm which we list in the supplementary
material. For the efficient use of this algorithm, however, an appropriate
upper bound is necessary.

5.2.3 An Upper Bound for our Objective
We now derive an upper bound for Eq. (5.9) that can be computed in linear
time, assuming an one-time sorting operation with a time complexity of
O(n logn).

Formally, we seek a function f̂ : 2E → R that when evaluated at an entity
subset Q ⊆ E computes an upper bound of the objective over all subsets of
its argument, f̂(Q) ≥ maxR⊆Q f(R). Such a bound can be computed in two
steps: first we can bound the objective exclusively over all subsets R ⊆ Q

3That is, 1[·] = 1 if the condition · is satisfied and 0 otherwise.
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with a fixed cardinality mR, and then we can compute an upper bound for
all subsets as the maximum of all cardinality-constrained maxima. We hence
seek an upper bound of the sub-problem

f̂t(Q;κ, γ,m) ≥ max
R⊆Q , |R|=m

J(R;κ, γ) . (5.12)

Since now the size mQ remains constant, we can derive a bound for each
sub-problem as follows. Let ei denote the i-th vector of the standard basis,
i.e., the vector with a single one at the i-th position, and define e:m := ∑m

i=1 ei.
Let v1, . . . ,vk be the eigenvectors of K with rank k ≤ n and corresponding
eigenvalues λ1 ≥ . . . , λk. Further, denote vi↑[Q], vi↓[Q] the vector with those
entries of vi for which the characteristic function of xQ is non-zero, sorted
in increasing and decreasing order, respectively.

Lemma 5.2. Given any integer constant ρ < k, an upper bound for the
problem in Eq. (5.12) is

f̂t(Q;κ, γ,m) =

aγ−2
t (mQ)acon(mQ)

( ρ∑
i=1

λi min {ui, ~ui}+ λρ+1~uρ+1

)
, (5.13)

where ~ui := max
{

0, 1−∑i−1
j=1 uj

}
and

ui :=

(
max

{
e:m>vi↑[Q], e:m>vi↓[Q]

}
− m

n e>vi
)2

acon(m) . (5.14)

We can now compute a bound f̂t(Q;κ, γ) over all subsets R ⊆ Q using
Lemma 5.2 as follows.

f̂t(Q;κ, γ) = max
m∈{0,...,mQ}

f̂t(Q;κ, γ,m) (5.15)

≥ max
m∈{0,...,mQ}

max
R⊆Q, |R|=m

J(R) ≥ J(Q) . (5.16)

In the supplementary material we provide an algorithm that uses this
approach to compute an upper bound in O(nρ) time, which is linear when ρ
is considered a small constant.
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5.3 Hyperparameter Optimisation

We now present methods to tune the hyper-parameters of the kernel to be
used for the similarity assessment of the entities in our dataset. This process
must be carried out in such a way that preserves important information for
the task of anomaly detection or clustering, as introduced in Section 5.2.2.

However, there is no explicitly defined target variable available for classifi-
cation or regression, and hence it is not possible to use standard schemes
from supervised learning for this sub-task. Instead, we are given a set of
predicates P , each of which can be seen as a classification variable. We
therefore make two key assumptions in the derivation of our methods: 1)
the attributes of the datasets and thereby the predicates derived from them
are relevant to the task for which the dataset was created, and 2) two sub-
sets whose predicate description is similar should themselves be similar. We
therefore seek a method which takes into consideration all predicates at the
same time without favouring just a single one or a few of them, and that
admits a meaningful interpretation of predicate conjunctions.

5.3.1 Measuring the Fitness of a Candidate Kernel

We now consolidate these assumptions into a method to assess the fitness of
a candidate kernel κ : E × E → R.

The first obstacle is that we require to evaluate the performance of a kernel
over entities, using ground truth over predicates. An straightforward way
to induce a similarity over entities using their predicates is by using the
intentions of each entity as a feature.

κlp(ε1, ε2) := | int(ε1) ∩ int(ε2)|√
| int(ε1)|| int(ε2)| , (5.17)

This is equivalent to the normalised intersection kernel, or the linear kernel
over the characteristic vectors of the entity intentions. In addition to the
downsides of the linear kernel, this kernel loses discriminating power when
the number of predicates is small, and increases the complexity of the method
to that of the number of entities, typically larger than the set of predicates.

Instead, our method relies on three key steps: first, we capture the similarity
of each predicate to the others using a Tanimoto kernel [Tan58], which
operates on the predicate set P . Then, we 2) use a kernel over sets to
compute the candidate kernel, whose domain is the set of entities E, to
define one over P . Finally, 3) we assess the fitness of the candidate kernel,
as the alignment of the previously derived kernel and the Tanimoto kernel.
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This process yields a fitness value for any candidate kernel on E, which can
subsequently be used as a proxy by a method to either select one kernel out
a family thereof, or to create a composite kernel.

The Tanimoto kernel [Tan58] is the usual name of the Jaccard Index when
used as a kernel, and in its original form operates on the power-set of a
ground set κTan : 2E × 2E → [0, 1], here on the space consisting of all entity
subsets. We can therefore apply it on the set of predicates P through the
use of the extension operator

κTan(p1, p2) := | ext(p1) ∩ ext(p2)|
| ext(p1) ∪ ext(p2)| , p1, p2 ∈ P . (5.18)

The Tanimoto kernel is known to be positive definite [Gow71] and captures
the normalised amount of shared structure between sets, which makes it a
natural choice to assess predicate conjunctions. We can therefore use κTan
to measure the similarity of P . Owing to the assumption of meaningful
selection of predicates, we hence treat their similarity as ground truth.
The candidate kernel κ operates on two entities. In order to compare it

with the ground truth we need to transform it into a kernel that operates
on sets of entities. Arguably the most appropriate choice is the kernel mean
map [MFS+17] of κ. This is in turn also a positive definite kernel, and is
based on the same assumptions used in Section 5.2.1 to derive the MMD:
that each set contains i.i.d. samples of a distribution, which is mapped in
the Hilbert space to the mean of the mappings of each element in the set.
This is exactly the kernel that induces the MMD distance4, and therefore
fits naturally to our assumptions. When this kernel is applied on any two
predicates p1, p2 ∈ P it becomes

κmm(p1, p2;κ)= 1
| ext(p1)|| ext(p2)|

∑
ε1∈ext(p1)
ε2∈ext(p2)

κ(ε1, ε2) . (5.19)

We now need a means to compare the ground truth similarity of predicates
to the one induced by the candidate kernel κ through the kernel mean map
embedding over the same predicates. For this we use an established similarity
measure of two kernels, the kernel alignment [CSE+02]

algn(K1,K2) := 〈K1,K2〉F√
‖K1‖F · ‖K2‖F

, (5.20)

4To see this, note that the distance induced by a kernel is d(p1, p2) := κ(p1, p1)+κ(p2, p2)−
2κ(p1, p2), which can be verified to match Eq. (5.6).
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where K1, K2 are the Gramians of the two kernels and 〈·, ·〉F the Frobe-
nius inner product5. This measure resembles the cosine similarity of the
two Gramians with respect to the Frobenius inner product, and it is 0 ≤
algn(K1,K2) ≤ 1, where the lower bound is due to the definiteness of
the Gramians. The upper arises from the Cauchy-Schwarz inequality, and
therefore algn(K1,K2) = 1 ⇐⇒ K1 ∝ K2.

Combining all the above, we define the kernel fitness of κ

kernfit(κ;P ) := algn
(
KTan(P ),Kmm(P ;κ)

)
, (5.21)

where P ⊂ 2E is a set of predicates, KTan(P ) is the Gramian of the Tanimoto
kernel over P , and Kmm(P, κ) is the Gramian of the kernel mean map
κmm(p1, p2;κ) for each p1, p2 ∈ P and with κ the candidate kernel over
entities.
We can now use the kernel fitness defined in Eq. (5.21) to select the

best out of a family of kernels on E, for instance by an appropriate global
optimisation scheme, such as grid-search or—as in our experiments—Bayesian
optimisation.

5.3.2 Multiple Kernel Learning

A special case of measuring kernel fitness arises when the family of kernels we
evaluate is a (positive) linear combination of a collection of constituent kernels.
In this case, there exists a non-negative vector of coefficients α ∈ R[+]p
such that the candidate kernel can be written as κα := ∑p

ι=1 αικι; then the
(squared) kernel fitness of Eq. (5.21) becomes

kernfit2(κα) = 1
‖KTan‖2F

α>vv>α
α>Wα

, (5.22)

where W ∈ Rp×p with W � 0 and v ∈ Rp, defined as

Wi,j :=〈Kmm(κi),Kmm(κj)〉F
vi :=〈Kmm(κi),KTan〉F

, i, j = 1, . . . , p . (5.23)

When the components κι are guaranteed to be orthogonal Cristianini et al.
[CSE+02] provides an optimal solution for α, which amounts to using a
vector of coefficients whose elements are proportional to the alignment of
each component. In practice, however, our candidate kernels can be not
only non-orthogonal, but also highly correlated, which makes the W matrix

5It is 〈K1,K2〉F = Tr
[
K1
>K2

]
and ‖K‖2

F =
∑

i,j
K2
ij .
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badly conditioned or even non-invertible. For these cases we modify the the
solution that is optimal in the orthogonal case, into what forms the following
heuristic.
We keep adding the components, considering them in decreasing order

of their alignment. At each step, the added components are weighted with
coefficients which are proportional to their fitness, which can be shown to be
kernfit(κι) ∝ (αιvι)2/Wι,ι. In the end we pick the top-most coefficients from
the beginning until the index that maximises the kernel fitness. Although,
when orthogonal components are added the resulting alignment can only
increase [CSE+02], adding a component that is correlated with an already
added one may lower the resulting fitness. Thus, our selection scheme results
in a sparse selection in case of highly correlated components, while it remains
optimal in case of orthogonal ones.

5.4 Related Work

This method can be seen as the kernelisation of typical subgroup discovery.
Indeed, Eq. (5.7) can be seen as a generalisation of the GWI of Eq. (2.10),
where the generality term is replaced with a general scaling function at and
the exceptionality term with the MMD measure, which contains the former
as the special case in which the chosen kernel is the trivial linear one.

This makes our method also related to exceptional model mining (EMM),
which, as we recall from Section 1.2, assesses the exceptionality of the
subgroup as the difference between the coefficients of two fitted models, one
on the dataset and the other on the subgroup. These models either require a
well defined relation between the target variables (e.g., measuring correlation,
using tests, etc), or one target must function as a classification label, so that
a linear model can be trained over the rest of the variables. In contrast, is
not limited by this, since we use the MMD statistic that can directly detect
differences in the entity distributions. In addition, in EMM a new model
must be estimated at each iteration, which can be rather costly for large
problems, whereas in our case we simply need to pre-compute the kernel
Gramian, after which the computation per iteration succeeds in linear time.
Perhaps more importantly, the EMM methods do not provide an optimistic
estimate and are therefore not able to efficiently perform exact optimisation.
In fact, the paradigm of EMM could also benefit from the use of kernels, but
to the best of our knowledge, this case has not yet been studied.

For the optimisation of our task our general problem cannot be expressed
as a standard mathematical program, due to the dependency on the scaling
function at, and we therefore use our IDDFS algorithm (see Section 2.4.2).
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What can be computed as an integer quadratic program is the sub-problem
Eq. (5.12) in computing our optimistic estimator, which is only restricted
by a cardinality constraint. As we show in Appendix B.2.2, however, this
computation is prohibitively inefficient, and in fact up to several orders of
magnitude slower than our full optimisation pipeline.
We note that, due to its resemblance with the Rayleigh quotient, our

problem also seems at a first glance relevant to its maximisation and minimi-
sation schemes, by simply inverting the fraction. However, although several
methods can solve the unconstrained Rayleigh quotient [Kon80; LSL12], our
cardinality constraint makes them non-applicable to our problem. Also note
that, contrary to continuous optimisation, it is not easy to first solve for the
transformation z and then solve for the x in the unit box. Indeed, these
methods rely on the particular structure of the 0-1 box, which is violated
by the transformation we require. In fact, exactly because of the arbitrary
scaling function a, generic bounds are not applicable, even the known naïve
ones [Sho87]. A simple method could sort the values of the matrix, but our
proposed bound is tighter and more computationally efficient, which makes
a comparison equivalent to creating a straw man to later defeat.
When it comes to hyper-parameter optimisation, several methods have

been proposed for un-supervised tuning parameters, which can be used for
kernel clustering [LMA+16], or for general clustering [Mei18]. These methods
however often require multiple clusters instead of just two, and also ignore
the predicate information.

5.5 Experiments

We implement and evaluate our method on real world datasets, and here we
demonstrate the results.

5.5.1 Datasets

Despite the abundance of structured datasets (e.g., containing images, graphs,
time-series, etc) and similarly many with tabular data, there is a substantial
scarcity of datasets with both such information at the same time. We
thus compile three datasets that come close to practical tasks from drug
discovery, finance and social sciences, and demonstrate related aspects from
our hyper-parameter optimisation methods in Section 5.3.1. We next quickly
outline the nature of these datasets, and we delegate detailed parameters to
Appendix B.2.

In Chem we compile a dataset of drug-like molecules based on the ChEMBL [GBB+12]
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database. These molecules constitute substances with potential pharmaceu-
tical usage and their predicates are derived from suggestive pharmaceutical
traits [MHA+10] annotated by human specialists, while their structure is
assessed with a pre-computed kernel available through the PubChem in-
terface [CTP10]. In Stock we describe stocks of companies listed in the
New York Stack Exchange with indicative financial traits of each company,
alongside a time-series of daily prices; these are used to assess stock similar-
ity through extracted Rocket features [DPW20]. Finally, Twitter contains
Twitter ego nets [LK14]: small subgraphs of the interaction network centered
around selected individuals. Their attributes are followed users and used
hash-tags. We compare their graphs using the state-of-the-art Wasserstein-
Weisfeiler-Lehman kernel [TGL+19].

5.5.2 Kernel Hyperparameter Tuning

Except for the Chem dataset, which comes with a pre-computed kernel
provided by the PubChem interface, we need to specify hyper-parameters
for the kernels of our datasets. We therefore demonstrate here the methods
introduced in Section 5.3.1, for both settings of single parameter and multiple
kernel learning.
For the Twitter dataset we use the state-of-the-art WWL [TGL+19]

kernel, κwwl, which requires the specification of a single scalar parameter
γwwl. We choose this parameter by optimising the kernel fitness of Eq. (5.21)
using Bayesian optimisation with a Gaussian process prior [SLA12] evaluated
at 120 points (Fig. 5.3). For Stock each of the 1000 extracted Rocket
features [GBB+12] yields a radial basis kernel whose σ parameters are
individually tuned with the same procedure, resulting in a collection of
equally many candidates for multiple kernel learning, which are highly
correlated. To then combine these features into a single kernel we use the
algorithm described in Section 5.3.2, which results in a sparse combination
of only 4 sub-kernels (Fig. 5.4a).

As a measure of fitness for this method we also compare the average recall
of the classification of each predicate as a classification variable, using a
kernel with a parameter trained at each point. We show that the kernels
chosen with kernfit yield significantly higher scores than when maximising
the alignment of the linear predicate kernel in Fig. 5.3b for a broad range of
γwwl values, and for the optimal multiple kernel coefficients arising from the
two methods in Fig. 5.4b.
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5.5.3 Necessity of Constrained Optimisation

We further motivate our method by demonstrating the necessity of con-
strained optimisation. Since unconstrained clustering is description-unaware
it is extremely unlikely to yield a describable subset in the first place. Find-
ing for it the closest description may also result in a low-quality subset.
In Fig. 5.5 we show the centroids of the optimal named subset Q, a local
optimum Qkm found by kernel k-means initialised with Q, and the closest
named QJac in the Jaccard sense to Qkm. Unsurprisingly Qkm scores the
highest in our objective but has no description, while the naïvely found
named one has 5 times lower quality than our optimum.

5.5.4 Efficiency of Computation

To optimise Problem 3 we use our branch and bound variant, for which a
key factor deciding its efficiency is the ability of the optimistic estimator to
prune the search space. That means that a key measure of this efficiency for
a given dataset is the number of states it visits. Since there are no baseline
optimistic estimators for our novel objective, as a comparable measurement
we show (Fig. 5.6) the percentage of visited states over those required by an
exhaustive search. Our optimistic estimator remains practically efficient even
for higher rank matrices. Also, since we can only expressed our objective as
an integer quadratic problem (IQP) for a fixed cardinality (see Eq. (5.12)),
the full problem would require solving O(n) hard IQP sub-problems. As we
show in the extended version of this work, our method is superior to the IQP
approach.

5.5.5 Discovered Subgroups

A selection of discovered subgroups is listed in Table 5.1, while the points of
their subsets are depicted in Fig. 5.2 alongside the first two eigenvectors.

Quantitatively, we notice that the size of the discovered subsets is controlled
by the tuning parameter γ, with a corresponding lowering of the measure of
dissimilarity in H.

Of special interest is the occurrence of the predicate [sector = energy] in
several top subsets, indicating that the stock prices in this sector were the
most deviating from the rest. Since we chose the price sequence in the data
to cover the years of the pandemic, they highly overlap the period of heavy
restrictions imposed in transport, which has been extensively reported to
financially impede this sector.
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5.6 Discussion

In our derivation of the objective function we relied on the maximum mean
discrepancy, which is a statistic able to discern the differences between any
two distributions when the kernel is characteristic, at least asymptotically.
However, one should be careful not to misinterpret or overlook an important
subtlety: that the discovered subgroup is not necessarily the one that is
the most significant, a concept that we already addressed in Section 2.3.
Instead, it is the optimal with respect to the specified balance of generality
and exceptionality, which does, under certain cases6, coincide with the most
statistically significant one.
On the same note, efficient characteristic kernels do not exist for certain

structures, for instance graphs. Indeed, having a polynomial characteristic
kernel would amount to being able to solve the subgraph isomorphism
problem, which is known to be NP-hard. Nevertheless, this is rarely a
practical hindrance, as is evidenced by the great success of such kernels in
general machine learning tasks.
When it comes to the complexity of our objective function itself, it is

O(nk), where k is the rank of the Gramian. This makes our method stand
out due to its worst case quadratic computational complexity, whereas typical
objectives in subgroup discovery require linear time. In practice, however, it
is often the case that the Gramian is low-rank, for instance when the linear
kernel is applied on low-rank data; otherwise, it is always possible to use a
low-rank approximation of the Gramian, for instance using an appropriate
Nystrom approximation.

5.7 Conclusion

In this chapter we provide all key components for a method that is able to
find subgroups from datasets of entities with virtually arbitrary structural
information. To achieve this we first propose an objective function that is
based on the maximum mean discrepancy statistic, appropriately adapted
for the subgroup discovery setting.

The proposed objective function employs a positive definite kernel to assess
the similarity of each entity, and altogether provides the means to detect the
exceptionality of a subgroup, while it also allowing to specify the importance
of the subgroup generality.

6This happens when the structure of the entities is a Gaussian-distributed scalar, the
linear positive definite kernel is chosen, and we select a weight of γ = 1. Then, our
objective becomes optimisation-wise equivalent to the absolute of the z-score.
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Since the peculiarity of our problem does not permit a direct use of
standard solvers, we use our IDDFS algorithm, for which we develop an
efficient optimistic estimator, that becomes tight when the Gramian is close
to rank-1. We show that a tight optimistic estimator can also be formulated
as a series of integer quadratic programs, but demonstrate that our approach
is up to orders of magnitude faster than this alternative.
To complete the practical applicability of our method, we also propose a

novel measure of kernel fitness, which we use to tune the hyper-parameters
of candidate kernels. Our study also includes the setting of multiple kernel
learning, for which we also provide a heuristic method that yields sparse
sub-kernel combinations.

Importantly, we present results that show both that our method is practical
and that its discovered subgroups are meaningful to a human user.



5.7 Conclusion 125

γ Subset Description |Q| MMD
[0.00− 0.50] [49 ≤ price] ∧ [sector = Energy] ∧

[10 ≤ mktCap]
0.005 0.2767

[0.50− 0.60] [1.9 ≤ lastDiv] ∧ [sector = Energy] ∧
[9.8 ≤ mktCap]

0.008 0.2315

[0.60− 0.90] [sector = Energy] ∧ [activelyTrading] ∧
[4.8 ≤ volAvg]

0.074 0.0548

[0.90− 1.00] [sector = Energy] ∧ [activelyTrading] 0.082 0.0500
[1.00− 1.25] [10 ≤ price] ∧ [0.52 ≤ beta] ∧

[0.00017 ≤ lastDiv]
0.529 0.0064

[1.25− 3.60] [10 ≤ price] ∧ [0.52 ≤ beta] 0.691 0.0045
[3.60− 8.00] [10 ≤ price] 0.834 0.0023

Table 5.1: Selected subsets from Stock and their metrics.
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Figure 5.2: Selected discovered named subsets.



126 5 Kernelised Subgroup Discovery

10−6 10−5 10−4 10−3 10−2 10−1 100

0.2
0.4
0.6
0.8

1
Optimum

γwwl

A
lig

nm
en

t

kernfit(·) algn(κlp, ·)

(a) Values of γwwl for which κwwl was tested for its alignments.
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Figure 5.3: Tuning the scalar parameter γwwl for Twitter, tested at 100 points
selected through Bayesian optimisation [above], and the recall of predicate validities
using the kernel for the given γwwl (average of 50 splits per predicate) [below].
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Figure 5.4: Multiple kernel learning for Stock: top-ranking sub-kernels are added
until the resulting alignment stops increasing [left], and classification recall of the
optimal kernel, compared against the naïve linear predicate kernel κlp.
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Figure 5.6: Efficiency of the optimisation in terms of visited search states during
the branch and bound algorithm, as the matrix rank k of the Gramian increases.





6 A Structure-Aware Graph Kernel
We wish to discuss a structure for the salt
of deoxyribose nucleic acid (D.N.A.). This
structure has novel features which are of
considerable biologic interest.

(Rosalind Franklin, Nature, 1953)

Using the methods of Chapter 5 we can apply the powerful tool of subgroup
discovery on any domain of entity target variables, simply by defining an
appropriate positive definite kernel over this domain. In fact, this is only
but a single application of positive definite kernels, as they can additionally
extend any machine learning method that is based on inner products but
also on distances, using the so-called kernel trick [Sch00]. This trick allows
these standard tools to take into account the underlying structure between
the data—for instance, whenever they lie in a low-dimensional manifold—but
also to accommodate data whose entities are themselves complex structures.
One of the most flexible and generally useful domains with structure that
can accommodate the dataset entities is the domain of graphs, and we hence
focus on the particular case of positive definite kernels defined over this very
domain.

Graph kernels are known for almost two decades, and are notorious for their
high requirement of computational resources. In this chapter we show how
we can not only improve the flexibility, but in certain cases also the efficiency
of a popular kind of graph kernels. Our kernel, similar to most graph kernels,
can be expressed as an R-convolution [Hau99], which can be seen as an
extension of the notion of convolution that operates on kernels defined on
sub-structures of these graphs, and in a way that preserves the positive-
definiteness of those kernels. Our kernel belongs to the family of random
walks kernels, which have been among the first such formulations [GFW03],
and through their more recent generalisations [VSK+10] they still remain
relevant for certain configurations [KJM20].
Intuitively, given an alignment φ between the vertices of one graph to

those of another, one can count the number of simultaneous random walks
between the two graphs. These are random walks performed on two graphs,
starting from one vertex in one graph and one vertex in the other; then
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they advance the vertex of each graph one edge at a time in lockstep, so
that at each step the vertices of two graphs respect the given alignment φ.
Of course, in general such an alignment is not available. The random walk
kernels avoid the dependency on any one particular mapping between the
vertices of two graphs by instead considering all simultaneous walks over
all possible alignments, between the vertices of one graph and those of the
other.
The number of all such walks can be elegantly formulated in terms of

linear-algebraic operations, thus allowing the use of a variety of algorithms
for its computation, while being very flexible: they allow to incorporate
arbitrary distributions over the vertices of the graphs as starting and stopping
points of the walks, different weights for different walk lengths, node and edge
similarities encoded as kernels, as well as the possibility to incorporate edge
labels [VSK+10]. This allows, for example, to down-weigh vertex alignments
in the random walks between vertices that we know (or strongly suspect) to
be dissimilar.
Recent work [NML+18; TGL+19; SHW+21] suggests that (non-random-

walk) kernels that align vertices based on structural properties improve
predictive performance on several datasets. Examples of such properties are
the coreness of vertices, vertex degree, or Weisfeiler-Lehman labels. In these
cases, vertices with the same or similar value share a similar structure and
should arguably be aligned in a random walk kernel using a suitable kernel
on structural property values.

In this work, we additionally focus on the case that very dissimilar vertices
are not just down–weighed, but are not allowed to be simultaneously visited
by a random walk at all. Assuming that a good estimation of vertex similarity
was available then one would expect that the count of walks that respect such
vertex alignments would preserve or improve the accuracy of the walk, while
the other walks might be considered noise. In many cases this results in more
fine grained similarity functions that give high similarity to graphs that have
many simultaneous random walks that respect structure, e.g., simultaneously
travelling through similarly dense regions.
Consider the two small graphs G,H in Fig. 6.1. Assume we know that

vertices with label 1 are dissimilar to label 3 vertices, but those with label
2 are somewhat similar to both. The vanilla random walk kernel would
consider the full product graph in Fig. 6.1c, modelling vertex alignment using
a kernel function on vertices. On the other hand, the actual information that
is relevant in this scenario is represented by the much smaller product graph
of Fig. 6.1b, while considering only identically labelled vertices as matches
would arguably lose too much information, as shown in Fig. 6.1a.
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Figure 6.1: Two small graphs G,H with structural labels 1, 2, 3 indicated as
colours. Considering only vertex pairs of identical labels as in (a) arguably [GFW03]
results in too sparse product graphs. The product graph (c) considered by the
generic random walk kernel [VSK+10] includes all pairs of vertices. Our proposed
kernel may disallow the mapping of label 1 to 3 and can then be computed on (b).

We thus capture this assumption as a restriction of the allowed align-
ment during the simultaneous walk, and encode this as a vertex kernel of
bounded support on structure-aware ordinal labels, which can be extracted,
for instance, from structural properties of the vertices. For the resulting
random walk kernel, we present a computational method that is not only
asymptotically, but also practically faster than alternative computational
methods. This superiority increases as we enforce stricter assumptions and
only allow alignments of closer labels. In practice, this restriction formally
corresponds to using a vertex kernel with a smaller support. If (almost)
complete alignment information is available, such as, for example in brain
activity networks [SJX+17], our method can be computed in up to quadratic
time, in contrast to the cubic time of the generalised framework. This further
improves accordingly when using sparse graph representations.
Our contributions of this chapter are as follows:
• We propose a fast algorithm to compute random walk kernels based

on bounded support vertex kernels.
• We thus study the gap between the rather restrictive choice of Gärtner

et al. [GFW03] and the general framework of Vishwanathan et al.
[VSK+10].

• We describe a class of bounded support vertex kernels for integer-valued
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structural attributes.
• We study the performance of several such attributes when used within

our framework.
• We empirically show significant improvements on some datasets, while

generally being on par with the vanilla random walk kernel.
Although we present this work as a stand-alone kernel, perhaps a more im-
portant goal is to show that even for datasets on which we do not outperform
the vanilla kernel in terms of accuracy, we still attain shorter running time.
Additionally, our work can also improve state-of-the-art kernels that use
random walks as a component [NV20].

6.1 Preliminaries

We begin with an overview of the necessary concepts that we make use of in
our analysis and introduce the relevant notation. For conciseness we first
define [n] := {1, . . . , n} to be the set of the first n positive naturals; we then,
additionally, define [n]0 := {0, 1, . . . , n}.
In this work we consider undirected graphs G = (V,E). The set of edges

can also be represented as the adjacency matrix A ∈ Rn×n, which has
entries [A]i,j equal to 1 if (vi, vj) ∈ E, or 0 otherwise, where we assume
a fixed ordering v1, . . . , vn of V . To describe edge-weighted graphs we
straightforwardly replace the adjacency matrix with its weighted version.
Since G is undirected, the adjacency matrix is symmetric: A = A>. For two
matrices A′ ∈ Rn′×m′ and A′′ ∈ Rn′′×m′′ , we write their Kronecker product
as A′ ⊗ A′′ ∈ Rn′n′′×m′m′′ ; similarly, for A′,A′′ ∈ Rn×m we denote their
Hadamard product as A′ ◦A′′ ∈ Rn×m. In the following analysis we generally
consider a pair of graphs, G′ and G′′, in which case we implicitly refer to
property p of the first graph as p′ and of the second as p′′.

6.1.1 Counting Simultaneous Walks over Aligned Vertices

The basic random walk kernel applied on two graphs G′ = (V ′, E′) and
G′′ = (V ′′, E′′) is equal to the number of simultaneous walks between them.
More precisely, assume a mapping φ : V ′ → V ′′ between the nodes of the
two graphs; then, a simultaneous walk would only be allowed to traverse an
edge e = (u′, v′) ∈ E′ only whenever an edge also exists in G′′ between the
mapped vertices of it (φu′ , φv′) ∈ E′′. Equivalently, we could visualise such
a walk as one over the graph Gφ with vertices (u′, φu′) for all u′ ∈ V ′ and
edges Eφ :=

{(
(u, v), (φu′ , φv′)

) | (u′, v′) ∈ E′ ∧ (φu′ , φv′) ∈ E′′
}
.

The random walk kernel avoids the dependency on any one particular
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such mapping φ. To achieve this, it considers all possible mappings by
performing a simultaneous walk on the graph with vertices the Cartesian
product V× := V ′×V ′′ and edges the union over all possible vertex mappings

E× :=
⋃
φ

Eφ =
{(

(u′, u′′), (v′, v′′)
) ∣∣ (u′, v′) ∈ E′ ∧ (u′′, v′′) ∈ E′′} ; (6.1)

this configuration results in the direct product graph G× := (V×, E×). Impor-
tantly, a walk on G× is equivalent to a simultaneous walk on graphs G′ and
G′′. Indeed, consider advancing a walk on G× from node (u′, u′′) ∈ V×: we can
interpret this as first randomly selecting a mapping φ which i) respects the
current node φu′ = u′′, and for which ii) Eφ contains at least one edge with
an endpoint (u′, u′′); then traversing one of these edges from Eφ at random.
As a small parenthetical remark, in this work we propose to down-weigh—or
outright exclude—certain of these alignments φ.

6.1.2 The Random Walk Kernel

The adjacency matrix A× of G× is equal to the Kronecker product of the
adjacency matrices of G′ and G′′ [Wei62], A× = A′ ⊗A′′. Additionally, the
i-th power of the adjacency matrix Ai of a graph contains in its element[
Ai
]
i,j the number of walks with exactly i steps from the i-th to the j-th

vertex of the graph. Hence, the number of all such walks can be written
as e>Ai

×e, where e = (1, . . . , 1)> is the vector of all ones. The random walk
kernel that counts all simultaneous random walks is thus defined as

k(G′, G′′) =
∞∑
i=0

γie>Ai
×e , (6.2)

where the constants γi ensure the convergence of the series [GFW03].
Among different choices for the sequence γ, two special cases arise, which

allow the analytic computation of the series in Eq. (6.2). The geometric
sequence γgeom(i) := λi defines the geometric random walk kernel, while
the power series coefficients of the exponential function γexp(i) := 1/i! define
the exponential one. Using symbolic forms these are

kgeom(G′, G′′) := e>(I − λA×)−1e and
kexp(G′, G′′) := e>exp (λA×) e ,

(6.3)

where, in the former, λ takes any value small enough so that ‖λA×‖ < 1, as
is necessary for the geometric series to converge, while in the latter, λ serves
as a positive parameter.
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The random walk kernel of Eq. (6.2) as proposed by Gärtner et al. [GFW03]
has been extended or adapted in several ways. Borgwardt et al. [BOS+05]
use a kernel on vertices and edges to define the edge similarities of the
direct product graph. Additionally, the random walk can be equipped with
starting/ending probabilities and weighted matrices. These can all expressed
as instances of the general random walk formulation [VSK+10]

k(G′, G′′) =
∞∑
i=0

γ(i)q>Wi
×p , (6.4)

where p = p′ ⊗ p′′ and q = q′ ⊗ q′′ are start and stop probabilities on
vertices and W× contains generalised edge similarities, as computed by a
kernel between the edges of the two graphs. These generalisations can now
be incorporated in the analytic expressions of Eq. (6.3); this gives

kgeom(G′, G′′) := q>(I− λW×)−1p and
kexp(G′, G′′) := q>exp (λW×) p ,

(6.5)

where the parameter λ plays a similar role as in Eq. (6.3). Now, the
formulation of Eqs. (6.4) and (6.5) allows for a vertex kernel that encodes
the similarity of vertex combinations in the generalised edge similarities.

6.1.3 Computing the Random Walk Kernel
In theory, the geometric and exponential kernels of Eq. (6.2) can be computed
by solving a linear system and computing a matrix exponential, respectively,
each of which operate on a matrix that is easily derived from A× = A′ ⊗A′′.
In practice, however, both these operations are cubic in general, and since
W× ∈ Rn′n′′×n′n′′ , they would require an excessive computation of O(n6).

To this end Vishwanathan et al. [VBS06] note that the spectral decomposi-
tion of A× can be efficiently computed as S×D×S>×= (S′⊗S′′)(D′⊗D′′)(S′⊗
S′′)>. This allows one to compute Eq. (6.3) as q>S×

(∑imax
i=0 γ(i)Di

×
)
S>×p,

where the—otherwise cubic—operation need only operate on the diagonal
matrix D×. As an additional benefit, the spectral decomposition of each
adjacency matrix may only be computed once for all graph pairs; then the
entire Gram matrix needs only O(n2m2imax +mn3) time for m graphs.

Alternatively, the same work used the Conjugate Gradient iterative solver
to compute kgeom of Eq. (6.3). Each iteration performs a matrix-vector
operation with a Kronecker matrix by employing the identity

(A′ ⊗A′′)x = vec(A′′mat(x)A′>) , (6.6)
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where the operation vec : Rm×n → Rmn creates a vector by concatenating
all columns of a matrix and mat : Rmn → Rm×n is the inverse operation.
Using this identity within iterative methods requires O

(
n3k

)
computations

per kernel entry, assuming k iterations.
However, when a vertex or an edge kernel is used, as in the general

framework of Eq. (6.4), the matrix W× does not have a Kronecker decom-
position. Then, these and other proposed methods are not applicable any
more, and iterative methods must be used, which are based on repeated
matrix-vector operations. These methods also allow using an edge kernel as
long as it has a known feature representation on a finite d-dimensional Hilbert
space [VSK+10]; the matrix-vector operation is then performed on each of
the d dimensions of feature vectors, which needs O

(
n3d

)
computations.

As a workaround, the resulting similarity matrix can be approximated
by its nearest Kronecker product, although not without downsides: the
additional complexity of a rank-1 singular value decomposition on the full
matrix [Loa00], as well as the potential of arbitrary quality degradation due
to the involved approximation.

6.1.4 Graph Concepts

As usually, N(v) := {u ∈ E | (u, v) ∈ E} are the neighbours of a vertex v and
δ(v) := |N(v)| its degree. The induced subgraph G[U ] := (U, {(u, v) ∈
E | u, v ∈ U}) of a vertex subset U ⊆ V is the subgraph of G with vertices
U and those edges of E with both endpoints in U . Similarly to Section 4.1,
we also denote δU (u) the degree of vertex u in the induced subgraph G[U ].

In our kernel we will also make use of the concept of graph coreness, the
structural property of vertices that was introduced in Section 4.1. We recall
that a k-core component of a graph G is an (inclusion-wise) maximal
connected subgraph of G whose vertices U have all a degree of at least
δU (u) ≥ k. The subgraph comprising all k-core components of this graph is
its k-core H(k), with vertices the set E(k).

The example of a core decomposition of Fig. 4.2 shows that the k-cores are
nested to form a hierarchy over the vertices, so that the k-shell of G is the
set of vertices that lie in the k-core but not in the k + 1-core (same-coloured
vertices in the figure). In this way, the k-shells define a partitioning over
the vertices: the core decomposition of G, κG : V → [K]0, which assigns
to each vector v its core number (or coreness) κG(v) := {k | v ∈ E(k)}.
Importantly, the core value of each vertex in the graph is a structural property
of this vertex, that is subject to stronger structural constraints than its degree,
due to the additional requirement that we count edges that must belong to
the same k-core.
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6.2 Structure-Aware Vertex Similarities
We now introduce the main object of our study: a random walk kernel that
uses a vertex kernel based on structural attributes of the vertices, namely
their degree or coreness. This vertex kernel can be combined with any other
vertex kernel and/or an edge kernel, thus remaining fully flexibile.

The reason underlying our use of structural graph properties is twofold.
First and foremost, very frequently, the available graphs come without any
vertex label information. Even when vertex labels are available, however,
they might either not offer sufficient flexibility on their own, or be unsuitable
as the basis of assessing the alignment of random walks. For instance, when
the vertex labels are noisy, the number of random walks can vary greatly,
especially when the “hub”-vertices of one graph are mislabelled. Additionally,
often times the available labels are too coarse, as is the case of binary
variables. At other times, the labels might not admit a sensible way to
compare them, beyond the simple test for their equality, as is typical for
labels of categorical nature. In all these cases, simply allowing the alignment
of exclusively the vertices with the same label might turn out to be too
restrictive, and greater flexibility would be desired, instead. Therefore, the
available vertex labels can be enhanced (or simply replaced) with derived
structural vertex properties, such as vertex degree or vertex coreness; these
properties are typically not subject to labelling noise and allow for a natural
way to compare vertices with unequal but similar values, since a similar
value also indicates a similar structure. Of particular interest is the case of
the vertex coreness, which is efficient to compute and indicates a notion of
“robust connectedness” in a graph [Sei83], as we demonstrated in Chapter 4.
Using vertex coreness or similar values as vertex labels can further enables
the use of a multitude of available kernels on scalars for the evaluation of
vertex similarity. Choosing a smoother amongst them allows for greater
resilience against edge or label noise,1 while retaining the discriminating
potential of these labels, which offers a good middle ground between using a
too restrictive or too loose vertex alignment.

6.2.1 The Structural Similarity Random Walk Kernel
The use of such derived values for this purpose is an extension that can be
incorporated in the random walk kernel of Eq. (6.4) by using as edge weight
matrix W× the values of a particular edge kernel kE : V ′2×V ′′2 → R on any
pair of edges (u′, v′) and (u′′, v′′) with u′, v′ ∈ V ′ and u′′, v′′ ∈ V ′′. First, let

1There are some graph classes and perturbation models for which this seems necessary if
the structural similarity is defined by coreness [AV13].
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us use n′ = |V ′|. Using the above trick, we can now express this operation
by defining the edge similarity matrix to be

[W×](i−1)n′+r,(j−1)n′+s = kE
(
(v′i, v′j), (v′′r , v′′s )) . (6.7)

Here, the edge similarity kernel kE can be decomposed into two constituents,

kE
(
(u′, v′), (u′′, v′′)) :=

kadj
(
(u′, v′), (u′′, v′′)

)
kstruc(u′, u′′)kstruc(v′, v′′) , (6.8)

where kadj is a kernel on graph edges and kstruc the structurally-aware vertex
similarity kernel. In place of kadj we can use any kernel, as long as it satisfies
the constraints of Section 6.1.3: that is, one that must have a known and
low-dimensional representation. Nevertheless, for the sake of notational
simplicity, during our analysis we adopt the linear kernel on the graph
adjacency entries; then the Gram matrix of this kernel becomes equal to the
Kronecker product of the two adjacency matrices2

kadj
(
(v′i, v′j), (v′′r , v′′s )

)
:=
[
A′
]
i,j

[
A′′
]
r,s , (6.9)

Kadj =A′ ⊗A′′ . (6.10)

Without loss of generality, we can consider the structural vertex kernel kstruc
as a kernel katt over the image of a feature map lG : V → X that extracts
structure-aware properties from the vertices of each graph, i.e.,

kstruc(v′, v′′) := katt
(
lG′
(
v′
)
, lG′′

(
v′′
) )
. (6.11)

As its Gramian goes over all pairs V ′ × V ′′, it has a rank of 1, and we can
express it using only a vector k ∈ Rn′n′′ :

Kstruc = kk> , with (6.12)
k(i−1)n′−r := kstruc(v′i, v′′r ) . (6.13)

Finally, the edge similarity matrix can be written in vectorised form as

W× = (A′ ⊗A′′) ◦Kstruc . (6.14)

2The Gramian of any edge kernel kadj that satisfies the mentioned constrains can be
expressed (or approximated) as the sum of several Kronecker products similar to
Eq. (6.10), with one term for every dimension of the Hilbert space representation of
the kernel. With little added effort, the following theory can be extended, albeit with
an accompanying increase in computational complexity.
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One important result of the above observations is that, together, they allow
us to adapt the identity of Eq. (6.6) to accommodate the special structure
required by our kernel.

Lemma 6.1 (Matrix-Vector Operation). The matrix-vector operation of the
edge similarity matrix of Eq. (6.14) can be computed in O(n′2n′′ + n′n′′2) as

W×x = vec
[
T ◦ (A′′(T ◦mat[x]

)
A′′>

)]
, (6.15)

where T := mat[k] is the matricisation of Eq. (6.13).

— For the proof see Appendix A.4.

For greater insight, we note that the matrix T can be regarded as the
lower off-diagonal block of the vertex kernel Gramian, as applied on the
concatenation of the vertices of the two graphs [v′1, . . . , v′n′ , v′′1 , . . . , v′′n′′ ]; that
is, we can define its entries as

[T]i,j = kstruc(v′′i , v′j) = katt
(
lG′′
(
v′′i
)
, lG′

(
v′j
) )

. (6.16)

A closer look into this formulation reveals that, when there are elements of
T for which the involved vertices are not considered similar according to
kstruc, this matrix becomes sparse; then, we can exploit the structure of the
zero entries of this matrix to avoid substantial parts of the matrix-vector
computations W× · x that have no effect on the final result, yielding a more
efficient computation.

Corollary 6.2. Let at most τ pairs (v′, v′′) have a non-zero similarity accord-
ing to kstruc, i.e., |{(v′, v′′) ∈ V ′ × V ′′ | kstruc(v′, v′′) 6= 0}| = τ ≤ n′n′′. Then
the matrix-vector operation of Eq. (6.15) can be computed in O

(
(n′ + n′′) τ

)
.

A special instance of the above arises when the structural attributes
extracted from the graph vertices lie on a set of discrete scalars, and since lG
can be an arbitrary function, we can assume without any loss of generality
that lG ∈ {1, . . . , L} =: [L]. Particular interest lies in the case when we use
an integer kernel katt that is of bounded support, i.e., when there exists a
δ ≥ 0 such that katt(i, j) = 0 for all |i− j| > δ. We refer to this threshold δ
as the kernel bandwidth.
We hence call Structural Similarity random walk (SUSAN) the

random walk kernel that uses as vertex kernel kstruc a bounded support kernel
katt, the latter of which is defined over integer-valued structural attributes
that are derived from the graph vertices—typically the vertex coreness. In
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this case, the resulting vertex similarity kernel can be expressed as

kstruc(v′, v′′) = katt
(
lG′
(
v′
)
, lG′′

(
v′′
))
kv(v′, v′′) , (6.17)

where kv is either a pre-existing vertex kernel to be incorporated, or can be
simply assumed to be the constant function and be therefore omitted. The
resulting kernel remains both positive-definite and of bounded support. Due
to its last property, the kernel considers only potentially beneficial relations,
while gaining special structure that enables a significantly more efficient
computation.

6.2.2 Avoiding Inconsequential Calculations

We now study the useful special structure of SUSAN and analyse its com-
putational complexity. First, and without loss of generality, we assume the
rows and columns of each adjacency matrix to be arranged so that they
correspond to vertices in increasing order of lG(v). This gives rise to the
block representation of the adjacency matrix A of graph G as

A =

A1,1 · · · A1,L
... . . . ...

AL,1 · · · AL,L

 , (6.18)

where each block Ai,j contains the (possibly empty) block of all edges (u, v)
from vertices with lG(u) = i to those with lG(v) = j, and L is the maximal
value of lG. It will be of help to define the size of each block as Ai,j ∈ Rbi×bj ,
where bi := |{u ∈ V | lG(v) = i}|. We can now compute the exact number of
non-zero elements τ of T, by observing that this matrix becomes a banded
block matrix with block-bandwidth δ, and whose each block has equal
elements.

Lemma 6.3 (Operation Complexity). The matrix-vector operation W×x for
the SUSAN kernel whose vertex kernel has a bounded support with bandwidth
δ can be computed in exactly

c = (2n′+2n′′+1)
K′∑
i=0

b′i

min(K′′,i+δ)∑
j=max(0,λ−δ)

b′′j − n′n′′ (6.19)

floating point operations, which is O
(
(δ+ 1)(n′+ n′′)B2), for B the maximal

size among all b′k, b′′k. In contrast, a naïve computation requires 2n′n′′(n′+n′′)
such operations.
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— For the proof see Appendix A.4.

When we use the SUSAN kernel equipped with coreness values as vertex,
we can complete Lemma 6.3 by providing a lower bound for the calculated
computational complexity. This is based on a worst-case instance of a graph
that attains the largest possible block size B defining the size of a block, at
least in the case of coreness.

Lemma 6.4 (Block Size Lower Bound). Let G be a simple graph on n
vertices. Then there exists a k-shell with at least

√
n vertices.

Proof. Suppose there are at most b vertices in any k-shell of G. Note that
the κG-shell is equal to the κG-core of G. Hence the κG-core of G contains
at most k vertices. Any k-core must contain at least k + 1 vertices, hence,
κG ≤ k − 1. Assuming that all b-shells for b ≤ κG are nonempty, this implies
that there are at most k · k vertices in G. Thus, there must exist at least
one k-shell with at least

√
n vertices in G.

Hence, according to Lemma 6.3, no better bound than O (δ(n′ + n′′)n) =
O
(
δn2), where n = max(n′, n′′) can be given for the SUSAN kernel.

6.2.3 Selection of the Structural Attribute
Although within the context of the SUSAN kernel we can plug in any integral
structural attribute, the greatest efficiency comes with small bandwidths.
For this reason, two natural such properties arise as particularly helpful: the
vertex degree and its coreness, which can both be computed at virtually no
cost.

As a side-note, the choice of the vertex kernel may also affect the matrix-
vector complexity c. By using the vertex degree, a bound on the non-
zero entries of each adjacency matrix row also arises, given the degree
that each block belongs to. Combined with the bound for the non-zeros
of the matrix T, we can replace the innermost sum in Eq. (6.19) with∑min(L′′,i+δ)
j=max(0,i−δ) min(i, bi). In the case of coreness the quantity c can be bounded

from below as c ∈ o((n′ + n′′)
√
n′
√
n′′)

)
, even with a bandwidth of δ = 0,

since there always exists a k-shell with at least
√
n′ vertices in any simple

graph G′ (see Lemma 6.4).

6.2.4 Selection of the Attribute Kernel
Note that, in order to ensure positive definiteness for the SUSAN kernel, all
its constituents must also be positive definite, and therefore also katt. We
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hence define a class of bounded support positive definite kernels that can be
used in the role of katt, to assess the similarity of integer-valued structural
vertex properties.

To fully specify katt as a positive definite kernel it is sufficient to define
its feature mapping φ on some Hilbert space. For a given bandwidth δ and
an arbitrary shape vector s ∈ Rbδ/2c+1 we can define such a feature map
φδs : Z→ Rω, whose image contains (countably) infinite-dimensional elements
with indices λ = . . . ,−3/2,−1,−1/2, 0,1/2, 1, 3/2, . . .:

φδs(i)λ :=


sd|i−λ|e 2|i− λ| ≤ δ, δ odd, 2λ odd
s|i−λ|+1 2|i− λ| ≤ δ, δ even, λ ∈ Z
0 otherwise .

(6.20)

The image of φδs is a (countably) infinite-dimensional vector space that
becomes Hilbert through the natural inner product. Thus, a positive definite
kernel katt over Z can be defined as

katt(i, j) :=〈φδs(i) , φδs(j)〉Rω :=
∞∑

λ=−∞
φδs(i)λ · φδs(j)λ , (6.21)

and can be easily verified that it has bounded support with bandwidth δ.
Additionally, it also belongs to the class of shift invariant kernels; i.e., its
value only depends on the difference of its entries: katt(i, j) = katt(|i− j|),
where we slightly abused notation. Since we assume that the structural
properties are captured as an integer by the structural labels lG, shift-
invariance is a natural property that avoids making any further assumptions
on these structural properties.
Note that not all shift-invariant bounded support functions are positive

definite, but any function in the form of Eq. (6.21) is. Out of these, arguably
the simplest one arises when s is the constant vector with elements si = 1√

δ+1 .
This choice yields the kernel whose graph resembles a triangle

katt(i, j) = max
(
0, 1− |i− j|

δ + 1
)
, (6.22)

and is also the one we adopt to complete Eq. (6.17).

6.2.5 Computation of SUSAN

Among the contributions of this work is a proof-of-concept implementation
of the main BLAS3 components of the matrix-vector operation W×x of
the SUSAN. This implementation uses the key observation formalised in
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Lemma 6.3, and therefore has a complexity that is upper bounded by that
of its naïve computation.
We recall from Section 6.1.3 that fast algorithms are available for the

vanilla random walk kernel. However, when using a vertex and/or edge
kernels, like in the case of SUSAN, these methods cannot be applied, since
the similarity matrix W× does not have a Kronecker decomposition. Then
iterative methods have to be used, all of which rely on an efficient computation
of the matrix-vector operation W×x.
We complete the work of [VSK+10] by applying the iterative method

of Al Mohy et al. [AH11] to compute the exponential version of SUSAN.
This method involves a truncated Taylor expansion, in which the order is
computed for the required accuracy based on a bound on the norms of the
matrix. We empirically study the convergence of this method in Section 6.3.1.

With this we establish that both practical algorithms for the computation
of the SUSAN kernel benefit from a more efficient implementation of this
matrix-vector operation.
Note that an additional advantage of our algorithm is that it only needs

to store the τ elements of the x vector. This not only improves the cache
locality of the data during computation, especially in the case of small δ, but
can also improve the convergence of the used solver (c.f., Section 6.3.1).

6.3 Experiments

We now evaluate our proposed algorithm to compute the random walk
kernel for bounded-support vertex kernels, as well as the utility of several
structural similarity measures within this framework. In particular, we
consider coreness, vertex degrees, and application specific structural vertex
similarities. SUSAN is implemented3 in C++ and Python.
As an example of data with application specific vertex similarities, we

use three brain connectome datasets [SJX+17]: these represent connections
between brain regions (as vertices) that are consistently labelled by integers
across patients. Furthermore, close-by labels indicate functional proximity4.
These, as well as the other datasets considered below are publicly available
at Kersting et al. [KKM+16].

3Available at https://eda.mmci.uni-saarland.de/prj/susan/
4Vertices with similar labels have a much higher than expected probability of being
connected by an edge in these datasets, which in turn implies a high correlation
between the EEG time series of the two regions. We observe (cf. Section 6.3.2) that a
nontrivial bandwidth on the labels increases the kernel performance.



6.3 Experiments 143

6.3.1 Efficiency

To evaluate the theoretical advantage of our implementation on real-world
datasets, we first compare our algorithm for computing SUSAN against a ran-
dom walk kernel with a vertex kernel of unbounded support. To this end, we
compute the vanilla random walk kernel with an appropriate iterative method
for each kernel kind (see Section 6.2.5), as the faster methods of [VSK+10]
are then inapplicable. We hence obtain an implementation-independent
measurement by comparing the time required to compute SUSAN using the
same implementation for both our algorithm and the baseline matrix-vector
operation. For simplicity, and since the matrices of these datasets are of
small dimension, we assume full matrix storage. We do note, however, that
highly optimised implementations of the baseline matrix–vector operation
(MVO) could outperform our proof-of-concept algorithm in certain hardware,
despite its theoretical superiority.
On each brain connectome dataset, and for an increasing bandwidth

parameter δ, we use the iterative schemes of Section 6.2.5 to compute
both the exponential and the geometric SUSAN kernels. In the top row of
Fig. 6.2 we compare the elapsed wall-clock time when using our proof-of-
concept implementation of the matrix-vector product against the baseline
computation to compute the same kernel. We see that for both kernels and
for small bandwidths a speedup of up to an order of magnitude is attained;
with increasing δ the runtime slows down to that of the naïve algorithm.

Although the key contributing factor in the more efficient computation is
a faster MVO computation, we also study the required number of iterations
as a potential secondary factor of efficiency. Therefore, in the bottom row
of Fig. 6.2 we compare the average number of MVOs for SUSAN against
those for the vanilla random walk kernel, using the same iterative method
as above. We observe that the conjugate gradient solver (geometric variant)
converges faster for the lower bandwidth vertex kernels, primarily due to
the lower dimension of the problem in the case of SUSAN. Since, however,
the difference in required MVOs is smoother than the running time, there
seems to be an additional factor in play. We conjecture this to be the low-
pass property of the vertex kernel of SUSAN, which seems to impose more
smoothness in the Krylov Space that this solver uses.

6.3.2 Accuracy

Next we investigate the predictive performance of bounded bandwidth struc-
tural vertex similarities combined with random walk kernels. We show that
using a bounded bandwidth kernel does not deteriorate performance com-
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Figure 6.2: [Top] Relative time performance of SUSAN vs. random walk with
unbounded vertex kernel (100%). [Bottom] Absolute number of matrix-vector
operations (MVOs) required for the iterative computation of SUSAN.
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Figure 6.3 [Higher is Better]: Classification accuracy and standard deviations
of SVM classifiers on benchmark datasets (geometric variants). Provided for the
sake of completion, as these datasets do not yield rich enough structural vertex
properties.

pared to the vanilla random walk kernel and other related state-of-the-art
graph kernels. We instantiate the (exponential resp. geometric) random
walk kernel with integer kernel on vertex labels as described in Section 6.2.4
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using coreness (SUSAN-C-E, resp. SUSAN-C-G), vertex degree (SUSAN-Deg-E,
SUSAN-Deg-G), and Weisfeiler-Lehman labels (SUSAN-WL-E, SUSAN-WL-G). We
compare against vanilla random walk kernels (RW-E, RW-G), the Core Frame-
work kernel (CFr-E, CFr-G) [NML+18], as an alternative to combine random
walks with degeneracy, and against the Wasserstein-Weisfeiler-Lehman ker-
nel [TGL+19] as a representative state-of-the-art alternative, without using
vertex labels (WWL-NoLab).

We evaluate each candidate kernel by the accuracy of a C-SVM classifier
[FCH+08] equipped with it. We compute random 80%/20% train/test splits,
using stratified random sampling. On each training set we use a 3-fold
cross validation to identify optimal hyper-parameters of each kernel using
a grid search with 15 samples. For every random walk kernel we search
the λ parameter in the range λ ∈ [10−6, 5] for the exponential and in
λ ∈ [10−5, 1] for the geometric variants. For the WWL kernels we use the
values λ ∈ [10−5, 10], as suggested by the authors. The SVM regularisation
parameter is selected from C ∈ [10−3, 105]. Both λ and C are sampled using
a logarithmic scale. For the truncated versions of our kernels we use grid
search over the set δ ∈ {0, 1, 2, 3, 4, 5, 10, 15}.
For the sake of completeness, we first report results on standard graph

kernel benchmark datasets in Fig. 6.3. Our kernel is never significantly worse
than the Core Framework or the vanilla random walk kernel on these datasets.
However, it is significantly better than the latter on the IMDB-Binary dataset
(p = 0.012). This indicates that the computation can be sped up without
hurting predictive performance.

Figure 6.4 reports results of our kernel variants and competitors on brain
connectome graphs. It shows that our bounded bandwidth kernel with
Weisfeiler-Lehman labels achieves highest predictive performance on average
on OHSU, our kernel with coreness highest performance on Peking_1 and
its geometric variant on KKI. To estimate the statistical significance of
these results, we repeated each process from the beginning on a fresh split
of each dataset, for 30 iterations and use Welch’s two sample t-test with
significance level p = 0.05. Table 6.1 shows the p-values of two tests,
comparing SUSAN-C-G and SUSAN-C-E to the competitors. There is no
statistically significant performance difference between the SUSAN variants
and the vanilla random walks, except for the Weisfeiler-Lehman based kernels
that perform (comparatively) well on OHSU, and poorly on Peking_1. When
compared to the core framework kernel, SUSAN seems mostly on par with it,
except on Peking_1 where CFr-E performs poorly in comparison, and KKI,
where SUSAN-C-G is significantly better than its core-framework equivalent
(p = 0.0027). Due to the increased computational effort of the core framework
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Figure 6.4 [Higher is Better]: Classification accuracy and standard deviations
of SVM classifiers on brain connectome datasets.

(cf. Section 6.4) using our kernel and coreness is hence beneficial.
Finally, to assess the usefulness of degeneracy as a vertex label extractor in

the case of no label information, we also compare it against the WWL kernel
without label information (WWL-NoLab). We find that SUSAN performs well
when compared with other methods without vertex information, and even
significantly outperforms the state-of-the-art for the KKI (p-value=0.02). To
the same end, we also report the results for the WWL kernel, in which we
replace the default use of degrees with coreness (WWL-Core), with occasionally
better performance.

For the sake of completeness we also compare against the full WWL (WWL).
Unsurprisingly, WWL outperforms SUSAN, since the latter is not given access
to label information.

6.4 Related Work
Gärtner et al. [GFW03] introduced Random Walk kernels, initially with
a runtime of O

(
n6). Notably, their kernel already allows to incorporate
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integral vertex labels in a way that corresponds to the trivial bandwidth
δ = 0 in our setting. Vishwanathan et al. [VBS06; VSK+10] proposed
several iterative methods which reduced the computational complexity to
O
(
n3). They generalized this to a framework for random walk kernels which

can incorporate nonuniform starting and stopping probabilities on vertices,
different weights for different walk lengths, node and edge similarities encoded
as kernels, as well as the possibility to incorporate edge labels. However, their
framework cannot benefit from bounded support vertex kernels. Kang et al.
[KTS12] propose to speed up random walk graph kernel computation using
a low rank approximation of the adjacency matrix W× of the product graph,
which in turn can be computed implicitly by low rank approximations of
A′ and A′′. They obtain a runtime of O

(
Kn2r4 + r6 +mr

)
for K different

labels, where r is the rank parameter. In contrast, our method is exact (up to
numeric precision) and runs in O

(
δnB2) for bandwidth δ ≤ K and B ≤ n.

Structural vertex labels have been used before to define graph kernels. For
a recent broad-scoped survey, see Kriege et al. [KJM20]; we focus here on
the combination of random walk kernels and structural properties. Mahé
et al. [MUA+04] first propose to use Morgan indices as vertex labels in
random walk kernels. Nikolentzos et al. [NML+18] introduce a graph kernel
framework based on core decompositions. They suggest to compute kernels
of the form k(G′, G′′) = ∑∞

k=0 kbase(H(k)′ , H(k)′′) explicitly, which increases
the complexity of the kernel computations by a factor K. In this work,
however, we use the structural information given by the core decomposition
to speed up the kernel computations. We thus don’t fall into their framework;
notably, our kernel tends to get faster when many core values are present
and allows more fine-grained control over vertex alignments.

6.5 Discussion

Among other contributions, this work focuses on the little studied domain
within the family of random walk kernels with respect to the treatment of
vertex labels, where existing methods either only consider identically labelled
vertices [GFW03] or do not take into consideration vertex labels in order to
remain efficient. This is due to the existence of a simple decomposition for
the matrix W× of Eq. (6.15) in the above trivial cases. Hence, it remains
an interesting research question whether a similar decomposition would be
possible for the general case, despite the fact that currently no known such
decomposition exists for the generic Hadamard transform, that we show is
required twice in the general case.

For use within our framework we provide a shift invariant positive definite
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kernel on integers that has bounded support. This raises the question of
whether the structural difference between vertex labels can be reflected
sufficiently solely between the difference of their values, without taking the
actual values into consideration; in other words, how reasonable is it to
assume that a 4-core as similar to a 7 core as it is to a 1-core.
For the needs of this work we provide an optimised implementation for

the case of non-sparse matrix storage, which remains competitive for certain
configurations even to highly optimised BLAS3 libraries. We note, however,
that the proper use of the intrinsic peculiarities of each architecture is a
grand technological feat that exceeds the scope of this work, as it requires
often times vectorised assembly instructions specialised for each architecture.
This complexity is even more pronounced in the case of sparse matrices,
although theory predicts similar computational advantages.

6.6 Conclusion

In this chapter we proposed a random walk kernel for graphs with vertices
equipped with labels, and in specific such labels that can be compared based
on another kernel defined on the vertex labels. We use this kernel on labels to
specify the amount of alignment allowed during the counting of the random
walks, which completes the two known extreme cases, and for certain cases
offers superior performance.
Additionally, we showed how we can compute our kernel using iterative

solvers, both in the case of geometric and exponential variants, and we
demonstrated experimentally the convergence rate in real world settings. In
the special case where the vertex labels are integers, we showed that the main
matrix-vector computation required by the iterative solver can be written
in a compact block form. When the kernel defined on the vertex labels is
of bounded support, we showed that this matrix-vector formulation can be
significantly sped up by avoiding inconsequential computations and provided
an exact computation of the required floating point operations. Therefore,
under certain conditions on the distribution of vertex labels, we can achieve
even a linear computational complexity (with respect to the graph vertex
count), instead of the typical cubic one of the generic random walk kernel.
This performance is predicted by Lemma 6.3 and also shown experimentally.

Additionally, for cases where vertex labels are not available, we proposed a
scheme to extract structure-aware integer vertex labels based on the coreness
of each graph vertex. This scheme makes it meaningful to not only compare
their values, as small difference in label value indicates similar structure,
but also to impose a threshold beyond which no alignment between the
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involved vertices is allowed, thus resulting in a bounded support kernel on
vertices. In fact, we also provide a meaningful integer positive definite kernel
of bounded support that can be used for such labels, which altogether forms
SUSAN, which is the main object of study, while its constituent theoretical
contribution have significant impact also independently.

We demonstrate that SUSAN can be more efficient to compute in specific
cases, but also that it exhibits competitive performance to significant im-
provements in terms of accuracy on benchmark datasets, even compared to
other state-of-the-art graph kernels.



7 Summary and Conclusion
The primary premise of this thesis has been that important subgroups within
the data convey valuable information to a human audience. Therefore, these
subgroups necessitate a theoretical and practical framework to efficiently
discover, which is embodied by subgroup discovery. This is a framework
that complements powerful methods in machine learning, since the latter
serve a very different goal: that of globally modelling data in order to
automate decisions, with much less focus on providing intelligible results to a
human. In contrast, we motivated the value to a human audience of providing
intelligible descriptions for subgroups: interesting local sub-populations that
are akin to “nuggets” in normally vast amounts of data. We demonstrated
our claim by describing the sub-population which exhibited the most severe
SARS-CoV-2 symptomatology out of studied British patients: the subgroup
of the Bangladeshi minority in London. We discussed how this finding was
corroborated by discovering a mutation in the Bangladeshi genealogy, and
showcased the clear benefits that a describable sub-population can bring
to human audiences, for example of how this aided the battle against the
pathogen.
Having established the value of subgroup discovery, we proceeded with a

thorough overview of typical methods in the literature that we later completed
with a formal in-depth analysis. For this, we adopted a statistical perspective
to classify the existing methods in a common landscape, even though most
of the original works did not place themselves in the statistical landscape
but instead often provided just an intuitive justification of key decisions in
their methodology. More precisely, we re-interpreted the established impact
function as a distance between two statistics: one over the subgroup and
another over a sample that is used to estimate a Null model used for assessing
the exceptionality of the subgroup; we then described the implication of each
of the two optimal choices for this latter sample, as the one derived by the
assumptions of either the i) goodness-of-fit problem or ii) the two-sample
problem, and discussed when should each of the two approaches be used.
Importantly, we extensively studied a generalisation of the impact function:
the geometrically weighted impact (GWI) fgwi, and brought attention to its
two components: the generality and exceptionality.

Further, we mentioned that these two components appear in the objective
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functions of existing methods in the literature, but in each case with a
fixed relation between them. From this standpoint, we studied further the
GWI, and showed that the optimal subgroups discovered for the values of
its trade-off parameter γ ∈ [0, 1] are Pareto optimal with respect to these
two components. We also proved that by this method we can find all the
Pareto optimal points that lie on the convex hull of the logarithmically
transformed values of the two components of generality and exceptionality.
This result essentially enables our optimisation algorithms to function as a
multi-objective optimisation method that can provide a concise subset of
the Pareto frontier; that is, this subset is larger than simply the points on
the convex hull of the points on this frontier, without containing optima
that are similar to their neighbours. To the best of our knowledge, our
proposed method is not only the first work that uses this approach within the
subgroup discovery framework, but also for general purpose multi-objective
optimisation.

Additionally, we discussed the existing state-of-the-art optimisation frame-
works for our problem, which culminated in the proposal of our own algorithm.
We first studied standard mathematical programs, and were the first to de-
scribe the optimisation domain for our problem as a polytope embedded in
the integer lattice. After a brief mention of constraint satisfaction problem
solvers, we concluded with our dedicated iterative deepening variant of the
branch and bound algorithm that is specialised for the different subgroup
languages proposed in the literature.

During our overview of the existing subgroup discovery methods, we quickly
pinpointed key limitations that restricted the applicability of these methods
to data with no structure or at best very simply structured data. This
motivated the main work of this thesis, which contributes a colleciton of
methods applicable to increasingly more complex structured data.
We started this journey with the notion of representative subgroups,

which are not only exceptional with respect to one target concept, but
also representative with respect to a control variable. The implication of
introducing the control variable were studied from two similar perspectives.
On one hand, we showed how we can use it to control gross trends in the
data. For this, we recall the case study of German elections where geography
is correlated with voting behaviour; here, we demonstrated that using the
region as a control is necessary to be able to describe sub-populations which
affect both regions equally. From a similar perspective, we can also use our
approach to control for sensitive attributes, as was the case of discovering the
most violent sub-populations within a dataset of recorded crimes, however
now regardless of biases due to victim sex or perpetrator race.
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Next, we focused on entities that are not identically distributed, but instead
come equipped with relational information between them, that can be encoded
as graphs where the entities are vertices and the relational information is
represented as undirected edges between these vertices. We then steered our
attention toward finding the most well-connected sub-populations of such
entities. In our attempt to define what a good measure of connectedness is,
however, we demonstrated that despite being a popular choice, the commonly
used edge-to-vertex ratio is not a good measure. Indeed, we showed that
certain commonly occurring subgraphs—such as bipartite ones—may even be
fully disconnected by removing only a few vertices, even though they can have
a relatively high edge-to-vertex ratio. We therefore introduced the concept of
robust connectedness that is based on the minimum number of vertices that
need to be removed from a subgraph so that it becomes disconnected, and
introduced a measure for this notion using the average vertex coreness. This
resulting measure is not only very efficient to compute, requiring only linear
time, but is also able to capture deeper structural relationships between
vertices. We subsequently used this notion within the subgroup discovery
framework to finding the most robustly connected sub-population of entities.
Within this setting we demonstrated that it is necessary to compute the
robust connectedness exclusively within the subgraph induced by the vertices
corresponding to the subgroup entities, which we showed to prevents the use
of existing subgroup discovery algorithms. We therefore provided a measure
of robust-discovery that takes the candidate subgraph into account, which we
use in the core of our proposed RoSi algorithm that finds the most robustly
connected subgroup.

Our contributions toward finding subgroups over entities with structure
culminated with the introduction of positive definite kernels to assess the
similarity between the studied entities. Using this approach it becomes
possible for the first time to find the most exceptional sub-population among
entities with virtually any kind of structure, such as stocks, molecules, or
graphs. To achieve this we introduced a kernel-aware objective function that
was based on the established statistic of maximum mean discrepancy in the
role of an exceptionality component, which is then appropriately scaled with
a term that captures generality. Originating from a statistical perspective,
we showed that our approach can easily be used for both the goodness-of-fit
problem and the two sample problem, with the only difference boiling down
to a change in the form of the scaling function. Importantly, our objective
function contains as a special case the geometrically weighted impact function
as a special case, which arises when we use the linear kernel over a scalar
target variable; moreover, in this case our optimistic estimator becomes tight
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and has the same complexity as the tight optimistic estimator for the GWI.
Despite its generality, however, our approach depends on the choice of a
good kernel. While in typical machine learning tasks there is a metric that
can be used for the optimisation of the kernel hyper-parameters, our case
differs in that there is no clear-cut classification or regression variable, or
any established such metric to assess the fitness of the candidate kernels. To
solve this problem we treated the derived predicates as the ground truth of
our task, after which we introduced a novel measure of kernel fitness, using
which we make possible to optimise for the kernel hyper-parameters with
standard techniques of global optimisation. In addition, we also studied a
multiple kernel learning paradigm for the case where multiple sub-kernels
over the entities are available, and described the way to compute the optimal
coefficients, whenever possible, while for the rest of the cases we provide a
heuristic method that yields a sparse combination of sub-kernels.

An important takeaway of our kernelised approach is that it constitutes a
standalone, generalised framework that works out-of-the-box for virtually
any kind of entity structures. This comes in contrast to the standard
procedure required previously to develop a subgroup discovery method for
a specific type of data structure. This procedure required several steps of
substantial difficulty, including the development of an optimisation algorithm,
the specification of an objective function, and derivation of a matching bound.
In contrast, our method of kernelised subgroup discovery simply requires
the specification of a Gramian matrix from a user. In other words, our
optimisation algorithm, objective function and optimistic estimator remain
the same, regardless of the underlying structure of each entity.

Having paved the way to kernelised subgroup discovery, we then improved
on existing state-of-the-art graph kernels by developing SUSAN: a graph
kernel that belongs to the class of random walk kernels and allows for
the fine-grained control of how vertices are aligned during the counting
of the random walks. More precisely, we studied undirected graphs with
scalar vertex labels, and completed existing works that either i) allow the
alignment of only identically labelled vertices, or ii) disregard the labels
altogether. Our kernel allows for the alignment of different vertices to be
weighted based on a kernel between their label values; we also provided a
natural choice for such a kernel between integer labels. One limitation of
our work is that as we depart from the simpler, existing solutions, certain
mathematical simplifications are not any more applicable; this leads to an
increased computational complexity when using direct linear algebra solvers.
However, we showed how to compute our kernel very efficiently by using
iterative solvers, which remains the de-facto approach for large, sparse graphs,
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even in the case of the aforementioned simpler variants. Additionally, we
focused on the special case of graphs with integer-valued vertex labels, which
arises, for instance, in the study of brain connectome graphs. For such
graphs we showed that the core linear operator attains a block Toeplitz
representation; importantly, this matrix becomes banded when the used
kernel on the vertex labels has a compact support, and depends on the
size of this support. In addition, we developed a natural such kernel for
the case of integer labels, that allows a user-specified size of its support.
Using these components, we showed how to exploit this block representation
to significantly reduce the computational complexity, as we showed in an
optimised implementation of this matrix-vector operation. Our code belongs
to the class of BLAS2 operations, and an efficient implementation often
requires specialised assembly instructions for each architecture. For this
reason, we limited ourselves to dense matrix representations, that not only
serves as a proof-of-concept, but is also practically efficient for a small
bandwidth parameter of our kernel. Finally, we obviate the need for provided
integer vertex labels, by deriving them as the coreness of each vertex, which
not only indicate a natural, structural similarity between the similarly-
labelled vertices, but is also very efficient to compute. Although SUSAN
has been motivated by the main subject of this thesis, its applicability is by
no means limited within the framework of subgroup discovery; in fact, we
demonstrated a superior classification accuracy for several classes of graphs
when compared to the state-of-the-art Wasserstein-Weissfeiler-Lehman kernel
against a standardised set of benchmark datasets.

7.1 Outlook

Our work both introduces novel paradigms in the field of subgroup discovery
and broadens the applicability of existing endeavours.

By proposing representative subgroups, we introduced the first approach to
provide exceptional subgroups, which at the same time remain representative
with regard to a control variable. When this control variable is a sensitive
binary trait, such as gender or race, we thereby ensure that the resulting
subgroups are not discriminatory against a sensitive sub-population, and
we therefore obtain the first fairness-aware subgroup discovery method.
Although our method can i in theory applicable to multiple classes, we
currently lack an efficient algorithm for the computation of its tight optimistic
estimator beyond balanced, binary cases, which are the natural next steps
in this direction. With regard to fairness, our approach is currently limited
to the notion of statistical parity. Many other measures of fairness have
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been proposed, and it makes for engaging future work to investigate how
subgroups that are fair in these senses could be discovered. Most notable
such formulations are those of i) equal opportunity and ii) equal odds,
both of which involve a careful assessment based on contingency matrices,
similar to previous methods that employ the same mechanism for causal
discovery [BBV21].

Beside intelligible descriptions, the optimality of a subgroup also conveys
particular information. In our work we shortened the distance between the
mathematical formulation of popular objective functions and the human
audience that needs to intuitively interpret what it means for a subgroup to
be optimal with respect to these objectives. For this, we revisited the com-
ponents of these objective functions from the perspective of multi-objective
optimisation and we formally describe the set of optima along the Pareto
frontier of exceptionality and generality. An important next step that closes
even more this distance, is to broaden the set of methods that can find the
most significant subgroup with respect to a given Null hypothesis, which
has a direct appeal to medical personnel and other experts that have a
well-developed statistical intuition for hypothesis testing. Although we men-
tioned a given case that maximising the objective function yields the most
significant subgroup (i.e., when we use GWI with a trade-off parameter of
γ = 1/2 for uni-variate Gaussian targets), this is generally not the case. It is
therefore an important endeavour to develop methods that can find the most
significant subgroup under different distributions and statistical assumptions,
such as those governing our method for kernelised subgroup discovery.
By proposing kernelised subgroup discovery we are the first to leverage

the versatility and power of positive definite kernels from within subgroup
discovery. Due to these desirable traits of positive definite kernels and the
vast amount of research available on kernels, on the one hand, and the
enormous application potential of subgroup discovery, on the other, their
marriage seems to offer a particularly fertile area of future research. Let us
first imagine that a given prototypical point is specified in the Hilbert Space
of the given kernel, which, using an applicable representer theorem [AMP09]
can be achieved using an appropriate combination of the available data.
Then, one can restrict the sensitivity of our method to be only with respect
to a given type of differences. Let us now consider once more our example
of traded stocks (see Appendix B.2); here, we could use as prototype a
set of stocks that we know were affected to some degree only after the
announcement of a successful vaccine. This would now allow us to find a
description for those stocks that were affected the most in the same time
and on the same way as the ones we chose as prototype. As yet another
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application, one could even ask to describe the population to which a given
prototype corresponds the most; now we could specify a set of stocks that
were affected in a given way, and seek to describe the sub-population whose
representation in Hilbert Space is the closest to that of the prototype.
On a different note, a related research direction would be to exploit

the clustering-resembling formulation of our kernelised subgroup discovery
method to enforce that the set of results is diverse, by additionally requiring
the points in the Hilbert Space to be far not only from the dataset average,
but also from any previously discovered subgroups. This would result with
a collection of subgroups that each covers a different part of the data,
and explains all exceptional sub-populations, with the added guarantee
that each is substantially different than the other. We would ethus have
a novel paradigm of named clustering, where each centroid corresponds
to a describable sub-population, providing an significant improvement on
unsupervised learning, when attribute information is available. Another
approach for diverse results would be to explain the data in increasing detail,
where on the first lever we consider the most consequential eigen-directions
and we keep providing descriptions for increasingly less consequential ones. In
this way, we would achieve a named variant of principal component analysis.
Our contributed algorithmic framework for the proposed optimisation

of the related combinatorial problems combine together to form efficient
methods which allow the practical application of subgroup discovery to
a significantly broader domain. However, as is always the case, scaling
combinatorial problems remains a constant challenge, and novel schemes
can be of importance for tackling this issues. One first angle of attack
would be to re-define what a tight optimistic estimator is, which is a rather
loose definition, to one that utilised more information from each step of the
optimisation, and disallows subgroups which would be impossible to form.
In fact, although at first these advances seem to require a lot of up-keeping
during the progression of our algorithm, the high complexity of combinatorial
optimisation might justify some added costs.

Overall, in this thesis we provided a theoretical basis for subgroup discovery
though a statistical perspective and adopted a multi-objective approach when
we presented the results of each of the methods we developed. We have
used our efficient and implementation of branch and bound, that has made
practical to find the subgroup that optimises each adopted objective function.
All our methods have been demonstrated on real-world data, whose structure
ranges from either having an additional control variable, additional relations
between them, or containing entities of virtually any possible structure. We
therefore provide a generalised framework for the application of subgroup
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discovery to novel kinds of datasets that were previously not feasible.
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A Delegated Proofs

In this appendix we provide proofs for our theoretical claims in this thesis.

A.1 Representative Subgroups

Lemma 3.2 (Optimal c-t path). Let e1 = (1, 0)T and e2 = (0, 1)T be the
standard basis vectors of R2.

i) Then the µ-th element of the optimal c-t path is the class count of the
first µ elements of E; formally,

π(µ) =
µ∑
i=1
eci 0 < µ ≤ |Q| and π(µ) = 0 . (3.15)

ii) Moreover, the sequence fct
Q◦π, with elements the fct

Q values computed
along the c-t path π, is a concave sequence.

Proof. Let Q∗µ ⊆ Q be the set attaining the highest fct value among those
with cardinality µ. We now reinterpret Eq. (3.14) as follows: the element
π(µ) is equal to the index of the equi-count refinement set Rπ∗ containing
Q∗µ. Within all sets with a fixed cardinality fc remains constant, and Q∗µ
is the set with the maximal central tendency ft; we can then show, similar
to Proposition 3.1, that the maximiser of ft contains the topmost µ target
values. Altogether, π(µ) is exactly the class count of

Q∗µ := arg max
|R|=µ, R⊆Q

fct(R) = arg max
|R|=µ, R⊆Q

ft(R) =
µ⋃
i=1
{εi} , (A.1)

whose control class count is equal to the quantity in Eq. (3.15).
To show (ii) we proceed as follows. Since Q∗µ contains the top-µ elements,

we rewrite Eq. (3.10) as

(fct ◦ π)(µ) = fct(π(µ)) =αt
µ∑
i=1

yi − αcµ , (A.2)
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with discrete derivatives

∆µ(fct ◦ π) =fct(π(µ+1))− fct(π(µ)) = αtyµ+1 − αc (A.3)
∆2
µ(fct ◦ π) =αt(yµ+1 − yµ) ≤ 0 , (A.4)

where the last inequality holds because yµ are decreasing. The negativity of
the second discrete derivative, shows the concavity of the sequence.

We next show Proposition A.3, which involves partitioning the CCS in
compact regions surrounding the SST, within which the monotonicity of the
factors fctQ and frQ remains constant, when computed along any horizontal
or vertical sequences. All the sequences formed in this way increase toward
the region boundary intersecting with the SST, and so no maximiser of fcifQ
can lie within these regions, except on the intersection of the region and the
SST.

To show the above, we study both factors, starting with fctQ.

Lemma A.1 (Domination of the fctQ factor). The impact value computed
along any horizontal sequence is increasing until the abscissa π∗1 of the optimal
c-t point, and decreasing afterwards. Similarly, the impact value computed
along any vertical sequence is increasing until the ordinal π∗2 of the optimal
c-t point, and decreasing afterwards. Formally,

fct
Q(I + ek) ≥ fct

Q(I) , Ik < π∗k (A.5)
fct

Q(I + ek) ≤ fct
Q(I) , Ik ≥ π∗k (A.6)

Proof. Denote the optimal c-t path index µ∗ to be the index within the
c-t path sequence attaining the maximum c-t value, π(µ∗) = π∗, so that

fct(π(µ+1)) ≥ fct(π(µ)) µ < µ∗

fct(π(µ+1)) ≤ fct(π(µ)) µ ≥ µ∗
, (A.7)

due to the concavity of the sequence (fcifQ ◦ π)(µ).
However, for any two consecutive points on the path, we can compute

fct(π(µ+1))− fct(π(µ)) = αtyµ+1 − αc, which combined with Eq. (A.7) yields

αtyµ+1 − αc ≥ 0 µ < µ∗

αtyµ+1 − αc ≤ 0 µ ≥ µ∗ . (A.8)

Moreover, using Eq. (3.10) we can express the fctQ value of the point next
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to I in CCS along dimension k as

fct
Q(I + ek) = αt

2∑
k=1

 Ik∑
i=1

y
(k)
i + y

(k)
Ik+1

− αc(I1 + I2) , (A.9)

and so the difference between the fctQ values of these neighbouring points
becomes

fct
Q(I + ek)− fctQ(I) = αty

(k)
Ik+1 − αc , (A.10)

which is the quantity whose sign we study. According to Eq. (3.15), however,
π is a sequence of single step increases π(µ+1) − π(µ) = e

y
(k)
µ

, starting from
the empty count 0. In other words, the µ-th element π(µ) of the sequence
increases this class count that matches the class of the item in Q with the
next greatest target value. This implies that at the optimal c-t path index
µ∗, the optimal c-t path count π∗ = π(µ∗) per class amounts exactly to
the number of items with the same control class and greater target value.
Moreover, for each Ik ≥ π∗k there exists a µ ≥ µ∗ such that yµ = y

(k)
Ik+1, and

similarly for each Ik ≤ π∗k there exists a µ ≤ µ∗ such that yµ = y
(k)
Ik+1. We

can now combine the two equations Eq. (A.10), and Eq. (A.8), to show the
claim of the lemma.

We now proceed to show a similar behaviour of the fr factor.

Lemma A.2 (Total Variation Domination). The composition of fr with
every horizontal sequence hi, i = 0, . . . , n1(Q), and every vertical sequence
vi, i1 = 0, . . . , n1(Q) forms the sequences (fr ◦ hi)(τ) and (fr ◦ vi)(τ); these
are (i) uni-modal, (ii) attain a maximum at their intersection (i, i)T with the
equi-representativeness ray a(1, 1)T , a ≥ 0, and (iii) they are concave for the
indices τ = 0, . . . , i.

Proof. We first focus on the horizontal sequences (fr◦hi)(τ) for i = 0, . . . , n2(Q)
and τ = 0, . . . ,m. Notice that the dTV(I) vanishes on the equi-representativeness
ray a(1, 1)T , that is, when I1 = I2. Since the horizontal sequence hi has
a fixed ordinal of i, the previous condition yields τ = i, which shows the
correctness of (ii).
To prove the rest of this lemma, we study the continuous analogue of

(fr ◦ hi)(τ)

f̃r(t) := 1−
∣∣∣∣12 − t

t+ i

∣∣∣∣ , t > 0 , (A.11)
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which has first and second derivatives

f̃r
′(t) = sign

(1
2 −

t

t+ i

) i
(t+ i)2

f̃r
′′(t) = −2 sign

(1
2 −

t

t+ i

) i
(t+ i)3

t 6= i . (A.12)

The sign of both quantities is controlled by the sign factor, which is negative
when t < i and positive when t > i, and so we can reach the conclusion that
f̃r
′ is increasing concave for t < i and decreasing convex for t > i. Since

(fr ◦ vi)(τ) = f̃r(t), the above properties transfer to the discrete sequence
(fr ◦ vi), as well. For vertical sequences, the symmetric argumentation can
be used.

We can now prove the sufficiency of SST, as claimed by Proposition A.3,
by combining the two domination Lemmas A.1 and A.2.

Proposition A.3 (Sufficient Search Triangle). The maximum of the con-
trolled impact function fcif

Q is attained at a point which lies in the (filled)
triangle T (Q) := {(π∗1, π∗1), (π∗2, π∗2),π∗}, with vertices the optimal c-t point
π∗ = (π∗1, π∗2) and its horizontal and vertical projections onto the maximum
fr
Q ray. We call this region the sufficient search triangle.

Proof. For this proof we show that every point outside the SST is dominated
by one within T (Q). For this we distinguish two cases, depending on whether
the c-t optimal point is above or below the maximum representativeness line.

Assume the optimal c-t point lies above the maximum fr
Q ray. The point

µ∗, along with the maximum representativeness ray, partition the CCS in
the 6 regions shown in Fig. A.1, each of which has a non empty intersection
with T (Q). We now show that the maxima of fcif over all the points in these
regions, lie on this intersection, and therefore also in the SST.

We first study ASW: the points on the diagonal maximise frQ, while at the
same time fctQ is dominated by the SST point (π∗1, π∗1), therefore maximising
fcif altogether. Similarly within ANE, we can show that fcif is maximised by
(π∗2, π∗2) ∈ T (Q).

Within regions AW and AN, both terms increase along each west-to-east
and north-to-south path, respectively; these paths lead to a point of T (Q)
that dominates all the rest on the traversed path. Within ASW, each west-
to-east path ends up in a point of AN, which is itself dominated by a point
of SST.

Finally, every south-to-north path of ASE leads to either a point of T (Q)
directly, or to one in the dominated ANE. We thus showed that no point of
I(Q) \ T (Q) can maximise fcif.
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fr
Q ray: the arrows point to the greater factor value. The T (Q) partitions I in the

6 marked areas.



166 A Delegated Proofs

We work likewise if π∗ lies below the maximum fr
Q ray.

Proposition A.4 (Concavity of fcifQ along sequence). Consider the values
of the controlled impact function fcif

Q as they are computed along a horizontal
sequence hi2; these form the sequence (fcif

Q ◦ hi2)(µ), which for µ ≤ i2 is a
concave sequence preceding the maximum fr

Q ray. Similarly, (fcif
Q ◦ vi1)(µ)

is a concave sequence for µ ≤ i1.

Proof. To prove this statement we employ the concavity of the sequences
formed as the two factors fctQ and frQ are computed along the horizontal and
vertical sequences. We first treat the horizontal sequences, along which the
entire fctQ◦hi2 is concave, and so is (frQ◦hi2)(µ) for the indices µ = 0, . . . , i2,
according to Lemmas 3.2 and A.1, respectively.
Additionally, all factors are positive (or can be made so by adding an

appropriate constant term) and so, raising the elements of the sequences
to a power in (0, 1] preserves concavity. Multiplying the two re-weighted
sequences yields(

(fctQ ◦ hi2)γ(frQ ◦ hi2)1−γ)
)

(µ) = (fcifQ ◦ hi2)(µ) , (A.13)

which is concave as the multiplication of two concave, positive sequences,
therefore showing the concavity of the sequence of impact function values
computed along the specified horizontal sub-sequence. Similarly we can work
for vertical sequences.

Note that in our analysis we seamlessly interchange continuous and discrete
convexity definitions. This is enabled by the uni-variate nature of the
functions involved, since their discrete counterparts corresponds to sampling
on regular intervals. Indeed, on one hand it can be shown that regular
sampling of a uni-variate convex function yields a convex sequence [Yüc02].
As a sufficiently applicable inverse for our needs, we can show that for
any convex sequence, there exists at least one convex function with the
same values at the sampled points and continuous second derivative; one
such function results from cubic spline interpolation fitted on the sequence
values.

A.2 Robustly Connected Subgroups

Proposition 4.2 (Piece-wise Linear Estimate). For the piece-wise linear
function of Eq. (4.13)

i) κiU ≤ κ̂iU , for all 0 ≤ i ≤ |U |
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ii) κiU = κ̂iU , for i ∈
{
0, n0, . . . , nKU

}
Proof. We first prove the first part of the proposition. Recall that the vertices
of U are indexed in decreasing order of their coreness in the induced graph,
so that κU(vi) ≥ κU(vi+1) for all 1 ≤ i < |U |. Let Ui := {v1, . . . , vi} be the
subset of U containing the vertices with the top-i core numbers in G[U ].
Then, we can write κ̂iU ≡ κU(Ui), where we extend the definition of Eq. (4.4)
to accept the vertex set T over which the sum runs

κU(T ) :=
∑
u∈T

κU(v) = |T |κ̄U(T ) . (A.14)

We can now show that the coreness of Ui is the highest among all subsets
T ⊆ U with fixed cardinality |T | = i. In particular, for all T 6= Ui we
can always build a sequence T (0), . . . , T (τ) of subsets of U that starts with
T (0) = T and ends with T (τ) = Ui, whose elements have increasing core sums
κU(T (τ)) < κU(T (τ+1)). Such a sequence can be constructed by repeatedly
swapping two vertices u ∈ T (τ) \Ui and v ∈ Ui \ T (τ) with κU(u) < κU(v), so
that T (τ+1) = (T (τ) \ {v}) ∪ {u}. Then for each 0 ≤ τ < τ we have

κU
(
T (τ+1)) = κU

(
T (τ))+ κU(u)− κU(v) > κU

(
T (τ)) , (A.15)

and summing the above relations for each index τ results in

κ̂iU ≡ κU(Ui) ≥ κU(T ) , for all T ⊆ U with |T | = i . (A.16)

Let T ∗i be the core sum maximiser over subsets T ⊆ U with |T | = i:

T ∗i := arg max
T⊆U, |T |=i

κT (T ) , so that κT∗
i
(T ∗i ) =: κiU . (A.17)

The last two Eqs. (A.16) and (A.17) can now be combined as

κ̂iU = κU(Ui) ≥ κU(T ∗i ) ≥ κT∗
i
(T ∗i ) =: κiU , (A.18)

where the second inequality follows by Lemma 4.1. This concludes the proof
of part i).

To prove part ii), we first consider all vertex subsets T ⊆ U with cardinality
|T | = nk, equal to the size of some k-core of G[U ]. Let Tk be one of those
subsets for which G[Tk] achieves the highest total coreness κnkU = κTk . We
need to show that this value is equal to the bound of Eq. (4.13): κnkU = κTk =
κ̂nkU .
This optimal subset is exactly Tk ≡ EU(k): the vertices in the k-core of
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G[U ]. Now κTk becomes the total coreness of

G[Tk] = G[U ][Tk] = G[U ][EU(k)] = HU(k) , (A.19)

where the first equality follows from basic graph properties and the latter
from the definition of the k-core of G[U ], which means that for every vertex
u ∈ Tk it holds that κTk(u) ≥ k.

However, due to the hierarchical structure of the k-cores, we can write a
similar inequality for each nested core

κU(v) ≥ κTλ(v) ≥ λ , for all v ∈ Tλ , k ≤ λ ≤ KU , (A.20)

where Tλ := EU(λ) and the first inequality follows from Lemma 4.1 since
Tλ ⊆ U . For each vertex v we can select the strictest inequality described
in Eq. (A.20) and then sum them up. Out of those, there are |Ek+1(T ) | −
|Ek(T ) | = |Ek+1(U) | − |Ek(U) | =: nk+1 − nk many with a bound of λ, for
each k ≤ λKU , which add up to κnkU ≥ κTk(Tk) ≥

∑KU+1
λ=k (nλ+1 − nλ)λ. We

can now combine this inequality with the proven claim in part i) and the
quantity in Eq. (4.13) to show the required equality.

Corollary 4.3 (Optimistic Estimate). The quantity φ̂∗U (γ) is an optimistic
estimator of fdi(U ; γ). In addition, φ̂∗U becomes tight for γ = 1/2.

φ̂∗U (γ) := max
0<i≤|U |

(
i

|V |

)1−γ ( κ̂iU
i
− κ̄V

)γ
. (4.16)

Proof. To show the first part we need to prove that for a given subset U
and for all its subsets T ⊆ U it is φ̂∗U (γ) ≥ fdi(T ; γ). We study an arbitrary
T ⊆ U and notice that

κ̂
|T |
U ≥ κ|T |U ≥ κT (T ) , (A.21)

where the first inequality is due to part i) of Proposition 4.2 and the latter
stems from the definition of κ|T |U in Eq. (4.11). We can now transform the
first and last sides of Eq. (A.21) with monotonicity preserving operations:
we first subtract the constant κV (V ) /|V |, then raise to the positive power of
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γ and multiply with the positive quantity (|T |/|V |)1−γ ; we thus derive

φ̂U (|T |; γ) :=
( |T |
|V |

)1−γ ( κ̂|T |U

|T | − κ̄V (V )
)γ

(A.22)

≥
( |T |
|V |

)1−γ (
κ̄T − κ̄V (V )

)γ =: fdi(T ; γ) . (A.23)

By the definition of Eq. (4.15) it is also φ̂∗U (γ) ≥ φ̂U (T ; γ), which combined
with the previous result proves the first half of the claim.

For the second part we need to prove that any subset U has a sub-subset
T ⊆ U such that φ̂∗U = fdi(T ); in fact such an T corresponds to adding
a complete core T = Ek(U). To show this we first rewrite our optimistic
estimator, which in the case of γ = 1/2 becomes

φ̂U (i) := ακ̂iU − βi , with
α :=1/|V |> 0
β := κ̄V

|V | ≥ 0 . (A.24)

Taking the first order finite difference of Eq. (A.24) we get

∆φ̂U (i) := φ̂U (i+ 1)− φ̂U (i)
= ακ− β

nκ+1 ≤ i < nκ
0 ≤ κ ≤ KU

. (A.25)

Additionally, the core numbers κ decrease as i increases, with changes
happening if and only if the segment changes. Therefore, if the finite difference
becomes negative, this must happen either at a segment boundary, or during
an entire segment; in any case, there is an index i∗ = nκ∗ for which the
sequence φ̂U (i∗) = φ̂∗U . This point corresponds to κ̂

nκ∗
U which is equal to κnκ∗U

according to Proposition 4.2 (part ii)), so that then φ̂∗U = φ̂U (i∗) = fdi(T )
for T = Eκ∗(U).

A.3 Kernelised Subgroup Discovery

Lemma 5.1. Let mQ := |Q| be the cardinality of any entity subset. Then
we can write our objective of Eq. (5.7) as

J(Q;κ, γ) = aγ−2
t (mQ)zQ>KzQ , (5.9)
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where K ∈ Rn×n is the Gramian Ki,j := κ(εi, εj) and

zQ := xQ −
mQ

n
e , (5.10)

for e := (1, . . . , 1) ∈ Rn the vector of all ones and xQ := (1[εi ∈ Q])ni=1 the
characteristic vector of set Q; here we denote 1[·] the characteristic1 function.

Proof. Let K ∈ Rn×n be the Gramian of the entries of E with respect to
the kernel κ under some arbitrary but fixed ordering, and denote xQ′t the
characteristic vector of Q′t. We can now revisit the empirical estimator of
Eq. (5.6) and write

1
|Q||Q′t|

∑
ε∈Q,
ε′∈Q′t

κ(ε, ε′) =

1
|Q||Q′t|

n∑
i=1

n∑
j=1

1[εi ∈ Q]1
[
εj ∈ Q′t

]
Ki,j =

xQ>KxQ′t
mQ ·mQ′t

, (A.26)

where mQ′t
:= |Q′t|. Using a similar process for the other two terms of

Eq. (5.6) we may rewrite it as

M̂MD
2
(Q,Q′t) =(

1
mQ

xQ −
1

mQ′t

xQ′t

)>
K
(

1
mQ

xQ −
1

mQ′t

xQ′t

)
. (A.27)

We now observe that xQ′ano = e and xQ′con = e−xQ, and therefore mQ′ano = n
and mQ′con = n−mQ, and therefore

1
mQ

xQ −
1

mQ′ano

xQ′ano = 1
mQ

(
xQ −

mQ

n
e
)

= zQ
aano(mQ) (A.28)

1That is, 1[·] = 1 if the condition · is satisfied and 0 otherwise.
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and similarly

1
mQ

xQ −
1

mQ′con

xQ′con =

xQ
mQ
− e− xQ
n−mQ

= xQ(n−��mQ)−mQ(e−��xQ)
mQ(n−mQ) =

n

mQ(n−mQ)

(
xQ −

mQ

n
e
)

=

zQ
acon(mQ) . (A.29)

We can now replace Eqs. (A.28) and (A.29) into Eq. (A.27) to get

M̂MD
2
(Q,Q′t) = a−2

t (mQ) · zQ>KzQ (A.30)

and finally multiply both sides of Eq. (A.30) with aγt (mQ) to show the
quantity in the claim.

We next prove the claim in the bound of Lemma 5.2. We first observe that

‖zQ‖22 =
∥∥∥∥xQ − mQ

n
e
∥∥∥∥2

2
=

‖xQ‖22︸ ︷︷ ︸
mQ

−2mQ

n
e>xQ︸ ︷︷ ︸
mQ

+
(
mQ

n

)2
‖e‖22︸ ︷︷ ︸
n

=

mQ(n−mQ)
n

= acon(mQ) , (A.31)

where we used that xQ>xQ = e>xQ = mQ. Since K is symmetric positive
(semi-)definite, it is also diagonalisable with non-negative eigenvalues and we
can always compute its spectral decomposition SΛS> = K, where S ∈ Rm×k
is orthonormal with S>S = I and Λ ∈ Rk×k is diagonal with Λi,i = λi and
λ1 ≥ . . . ≥ λk ≥ 0. Using the result of Eq. (A.31) we can now write the
quadratic form of Eq. (5.9) as

zQ>KzQ = acon(mQ)zQ>KzQ
zQ>zQ

=

acon(mQ)
k∑
i=1

λi cos2 φi(Q) , (A.32)

where φi(Q) := ](zQ,vi) is the angle between the vector zQ and the i-th
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eigenvector. Before we proceed with the actual proof, we will need the
following lemma.

Lemma A.5. The cosine of the angle between the vector zQ and any eigen-
vector vi is bounded by

ui := max
R⊆Q
|R|=m

cos2 φi(R) =

1
acon(m)

(
max

{
e:m
>vi↑[Q], e:m

>vi↓[Q]
}
− m

n
e>vi

)2
. (A.33)

Proof. We first study the maximum without the square, for which we get

max
R⊆Q
|R|=m

cosφi(R) = max
R⊆Q
|R|=m

vi>zR
‖zR‖2

=

1√
acon(m)

−m
n

e>vi + max
R⊆Q
|R|=m

xR>vi

 =

e:m>vi↑[Q] − m
n e>vi√

acon(m)
, (A.34)

where we used Eq. (A.31) to normalise zR under the fixed cardinality con-
dition |R| = m, and the fact that maximising the inner product of vi and
the characteristic function xR of any subset of R ⊆ Q amounts to summing
the m greatest elements of vi. This is easy to show e.g., by contradiction
using induction, in which one could start with any other candidate charac-
teristic vector x and repeatedly swap each of its elements with another that
corresponds to an element in vi with greater value.
In a similar fashion we can also show that the minimum value of the

un-squared cosine is attained at

min
R⊆Q
|R|=m

cosφi(R) =
e:m>vi↓[Q] − m

n e>vi√
acon(m)

. (A.35)

Using the fact that for any function f it holds that

max
x

f2(x) =
[
max{max

x
f(x),min

x
f(x)}

]2
, (A.36)

we can now derive the maximum of Eq. (A.33) as the squared maximum
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between the quantities of Eqs. (A.34) and (A.35).

Summarising Lemma A.5, it provides bounds ui ≥ maxR⊆Q ,|R|=m cos2 φi(R)
for each i = 1, . . . , k, where k is the rank of K. We can now combine these
bounds as follows.

Lemma 5.2. Given any integer constant ρ < k, an upper bound for the
problem in Eq. (5.12) is

f̂t(Q;κ, γ,m) =

aγ−2
t (mQ)acon(mQ)

( ρ∑
i=1

λi min {ui, ~ui}+ λρ+1~uρ+1

)
, (5.13)

where ~ui := max
{

0, 1−∑i−1
j=1 uj

}
and

ui :=

(
max

{
e:m>vi↑[Q], e:m>vi↓[Q]

}
− m

n e>vi
)2

acon(m) . (5.14)

Proof. Let R be an arbitrary subset of Q with fixed cardinality |R| = m. We
now focus in the formulation of Eq. (5.13) and consider only the factor in
the sum. We further observe that for some ρ′ = min{r | ~ur < ur} ∪ {ρ}

ρ∑
i=1

λi min{ui, ~ui}+ λρ+1~uρ+1 =

ρ′∑
i=1

λiui + λρ′+1~uρ′+1 , (A.37)

That is, the index ρ′ ≤ ρ is the first index for which the coefficients ui used
so far would sum up to a number greater than 1, and thus ensures that∑n
i=1 ui + ~uρ′ = 1. Notice that this condition would also be satisfied if we

kept adding more terms than ρ′, but then the coefficients ρ > ρ′ + 1 would
vanish due to the minimum in the formulation of Eq. (5.13).

We now assume that the full basis of the eigen-space S ∈ Rn×n is available,
and therefore the angles φi(R) of Eq. (A.32) are well defined for i = 1, . . . , n.
Importantly, since the cosines of these angles are directional cosines of a
vector and each vector of an orthonormal basis, it must be that their squares
sum to 1. An easy way to show this is using the orthonormality S>S = I in
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the norm of a unit vector

zR
‖zR‖2

> zR
‖zR‖2

= 1 ⇐⇒

zR
‖zR‖2

>
SS> zR

‖zR‖2

= 1 ⇐⇒∥∥∥∥∥S> zR
‖zR‖2

∥∥∥∥∥
2

2
= 1 ⇐⇒

∥∥∥∥( cosφi(R)
)n
i=1

∥∥∥∥2

2
= 1 ⇐⇒

n∑
i=1

cos2 φi(R) = 1 , (A.38)

where we used the notation (·)ni=1 to define a vector based on its elements.
We now define the remaining squared directional cosines of zR in the

eigenspace of K as

ηi(R) :=
ρ∑
j=i

cos2 φj(R) = 1−
i−1∑
j=1

cos2 φj(R) . (A.39)

We can now write for the sum in the objective formulation of Eq. (A.32) for
R

k∑
i=1

λi cos2 φi(R) ≤

ρ′∑
i=1

λi cos2 φi(R) + λρ′+1

k∑
i=ρ′+1

cosφi(R) ≤

ρ′∑
i=1

λi cos2 φi(R) + λρ′+1ηρ′+1(R) , (A.40)

It now suffices to bound the right hand side of Eq. (A.40) with the right
hand side of Eq. (A.37):

ρ′∑
i=1

λiui + λρ′+1~uρ′+1 ≥

ρ′∑
i=1

λi cos2 φi(R) + λρ′+1ηρ′+1(R) (A.41)

⇐⇒ (A.42)
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ρ′∑
i=1

λi
(
ui − cos2 φi(R)

)
≥

λρ′+1
(
ηρ′+1(R)− ~uρ′+1

) ≥
λρ′+1

�1−
ρ′∑
i=1

cos2 φi(R)− �1 +
ρ′∑
i=1

ui

 ≥
λρ′+1

ρ′∑
i=1

(
ui − cos2 φi(R)

)
, (A.43)

where the second inequality always holds, because ui ≥ cos2 φi(R) for all
i, due to Lemma A.5, and therefore the difference in each term remains
positive; since also λi ≥ λρ′+1, for all i = 1, . . . , ρ′, the right hand side of
Eq. (A.41) is not less than its left hand side.

By proving the inequality of Eq. (A.41) we showed that for any R ⊆ Q
with |R| = m

k∑
i=1

cos2 φi(R) ≤
ρ∑
i=1

λi min{ui, ~ui}+ λρ+1~uρ+1
·aγ−2
t acon=⇒ (A.44)

aγ−2
t (R)zR>KzR ≤ f̂t(Q;κ,m) ⇐⇒ (A.45)

J(R;κ, γ) ≤ f̂t(Q;κ, γ,m) . (A.46)

We can now show that f̂t(Q;κ, γ,m) is an admissible bound for the fixed–
cardinality objective of Eq. (5.12) by taking the maximum over all R with
cardinality m.

A.4 A Structure-Aware Graph Kernel

Lemma 6.1 (Matrix-Vector Operation). The matrix-vector operation of the
edge similarity matrix of Eq. (6.14) can be computed in O(n′2n′′ + n′n′′2) as

W×x = vec
[
T ◦ (A′′(T ◦mat[x]

)
A′′>

)]
, (6.15)

where T := mat[k] is the matricisation of Eq. (6.13).
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Proof. We start with Eq. (6.14) and observe that

Wx =
(
(A′ ⊗A′′) ◦ (kk>)

)
x (A.47)

= diag(k)(A′ ⊗A′′)(x ◦ k) (A.48)

= vec[k] ◦ vec
[
mat[k]A′′mat[k ◦ x]A′>

]
(A.49)

= vec
[
mat[k] ◦ (A′′(mat[k] ◦mat[x])A′

)]
, (A.50)

where in the second line we used Eq. (6.12), in the third the identity
of Eq. (6.6), and in the last we used basic properties of the vectorisa-
tion/matricisation operations.

This operation only involves Hadamard products and matrix-matrix prod-
ucts for matrices of size n′ × n′′; assuming dense matrices, as a worst case
scenario, we can derive the required complexity.

Lemma 6.3 (Operation Complexity). The matrix-vector operation W×x for
the SUSAN kernel whose vertex kernel has a bounded support with bandwidth
δ can be computed in exactly

c = (2n′+2n′′+1)
K′∑
i=0

b′i

min(K′′,i+δ)∑
j=max(0,λ−δ)

b′′j − n′n′′ (6.19)

floating point operations, which is O
(
(δ+ 1)(n′+ n′′)B2), for B the maximal

size among all b′k, b′′k. In contrast, a naïve computation requires 2n′n′′(n′+n′′)
such operations.

Proof. Using Lemma 6.1, we can compute the matrix vector operation as
per Eq. (6.15). This involves two Hadamard products and two matrix multi-
plications on symmetric matrices, and therefore the order of computation
does not matter.
The computation involves the two block-ordered adjacency matrices A′,

A′′, with row- and column-block sizes equal to b′ and b′′, respectively.
The innermost Hadamard product costs one computation per element for

each non-zero block of T, which equals

K′′∑
i=0

b′′i

min(K′,i+δ)∑
j=max(0,i−δ

b′j . (A.51)

The result is then multiplied from left with matrix A′′; the resulting matrix
has K ′′ + 1×K ′ + 1 blocks, each entry of which requires operations equal
to an inner product with size equal to the non-zero elements in X. This
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amounts to

K′′∑
λ=0

b′′λ
K′∑
i=0

b′i

2
min(K′′,i+δ)∑
j=max(0,λ−δ)

b′′j − 1

 = (A.52)

2n′′
K′∑
i=0

b′i

min(K′′,i+δ)∑
j=max(0,λ−δ)

b′′j − n′n′′ , (A.53)

where in the first line we use the fact that the inner product of two n-sized
matrices costs 2n− 1 floating point operations, and in the second that the
sum ∑K′

j=0 b
′
i = n′, and similarly for n′′.

The resulting matrix is then multiplied with A′, but only the nonzero
elements of the result are taken into account. For each of the non-zero entries
an n′-sized inner product is required, which amounts to exactly

(2n′ − 1)
K′∑
i=0

b′i

min(K′′,i+δ)∑
j=max(0,λ−δ)

b′′j (A.54)

floating point operations. Finally, a second Hadamard product ensues.
The total number of computations follows from the addition of the above
quantities.
The total number of operations for the naïve implementation follows

from the addition of the cost of two Hadamard products to that of two
matrix-matrix multiplications, adding up to

2(n′n′′︸ ︷︷ ︸
◦

) + n′(2n′ − 1)n′′︸ ︷︷ ︸
first ·

+n′(2n′′ − 1)n′′︸ ︷︷ ︸
second ·

. (A.55)





B Experiment Details and Used
Datasets

B.1 Robustly Connected Subgroups

In this section we provide more details in the approach we used to create
each dataset.

The datasets Facebook, Twitter and Google+ were created by aggregating
the ego-networks accessible from the SNAP database[LK14]. The same source
is used to access Amazon user purchases, along with product tags and review
meta-data, which were combined into a graph of users, bearing attributed
based on the purchased product tags and review meta-data; user connections
indicate purchase of a common product.
We further use publication information from the DBLP database1 that

describes a network of scientific collaborations; we recover those authors
which published in any of the ICDM, SICDM or NIPS venues, tagged with
their abstract and title tokens, and connected in case of a collaboration to
form our DBLP. In our IMDB2 dataset we describe the cast and crew from the
filming industry connected when they contributed to the same movie. We
select a list of prominent works by only focusing on the movies that have
been nominated in any of 11 highly recognised festivals throughout the world
(for instance the Academy Awards, Cannes, BFI, Sun-dance, Toronto, etc)
and others. Features are created both by the information available for the
involved individuals and by aggregating movie features (e.g,genre, year of
production, region, etc).

In a smaller scale we create the GATTWTO dataset, based on the WTO/GATT
information [Ros02]. The nodes refer to countries connected by an edge
whenever a trade flow was established between them. Features are created
based on country indices, as well as trade agreement memberships, resulting
in an attributed multi-graph.

From the HetRec2011 workshop datasets we create the Delicious dataset
by joining together users whenever they were linked friends in the Del.icio.us

1Accessed in February 2018 from https://dblp.uni-trier.de.
2Accessed in June 2018 from https://www.imdb.com/interfaces

https://dblp.uni-trier.de
https://www.imdb.com/interfaces
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Dataset Approx. factor Depth

α γ = 1/3 γ = 1/2 γ = 2/3

Facebook 1 ∞ ∞ ∞
Google+ 0.1 ∞ ∞ ∞
Delicious 0.3 5 5 5
Lastfm-Artists 1 ∞ ∞ ∞
Twitter 1 ∞ ∞ ∞
DBLP 0.3 3 3 3
IMDB 0.8 ∞ 6 5
GATTWTO 1 ∞ ∞ ∞
Amazon 0.7 ∞ ∞ 6
Lastfm-Songs 0.5 ∞ ∞ 5

Table B.1: Dataset runtime configuration: depth and approximation factor for
each used trade-off parameter γ.

social network for bookmark tracking, and assigned attributed based on
the tags of their used bookmarks. From the same source we create our
Lastfm-Artists dataset, linking users which liked the same artists, aggre-
gating user meta-data and artist information. Finally, we access the Million
Song Dataset [BEW+11] to create our Lastfm-Songs, which describes songs
attributed with their metadata, connected between them when the Lastfm
similarity score between the two exceeded the threshold of 0.3.

B.2 Kernelised Subgroup Discovery

B.2.1 Datasets

As Chem we refer to a dataset containing drug-like molecules as entities that
are openly accessible from the ChEMBL [GBB+12] database, which contains
several substances with their chemical and pharmaceutical properties. We
derive attributes using these properties, based on the taxonomy information
for the mechanism of action of each drug, the classification of the indications
for which it is cleared for prescription alongside ontological information for
the classification of the substance using their Experimental Factor Ontology
classification [MHA+10]. The structural information that accompanies each
entity is its 2D molecular structure. As a kernel we use the pre-trained similar-
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ity scores from the matching entries of the PubChem infrastructure [CTP10].
This results in a dataset of 881 drugs and 882 attributes.
Further, in the Stock dataset we describe 2208 company stocks that are listed
in the New York Stock Exchange at the time of this study. Their attribute
consist of 18 traits of each company, such as the industry sector, composition
of the board of directors, market information and financial indices. For each
stock we collect the daily volume-weighted average prices in the year 2020.
This results in a time series of 253 real values, from which we extract 1000
features using the state-of-the-art Rocket features [DPW20] for time series
classification. We then train a Gaussian kernel on each feature using the
method of Section 5.3.1 for a single parameter, and then train a multiple
kernel of the top-performing trained kernels as per Section 5.3.2.
Finally, we use the Twitter from the SNAP [LK14] large network collection.
This dataset contains ego-nets, which are a graph centred around a given
user, alongside interaction between each user in these neighbours. These
are, essentially, local subgraphs of the twitter interaction graph, centred
around users—referred to as egos. At the same time, information of the users
themselves is available in form of the recent hash-tags and followers; we use
this latter information as entity attributes. For the similarity of the graphs
we use the state-of-the-art Wasserstein-Weisfeiler-Lehman kernel Togninalli
et al. [TGL+19], which is parametrised with a single parameter. Again, we
tune this parameter using the cross validation method of Section 5.3.1.

B.2.2 Optimisation

We now justify the necessity of using a branch and bound algorithm, a
required part of which is the optimistic estimator we proposed in Section 5.2,
and show its superiority to an equivalent problem expressed as an mixed
integer quadratic program (MIQP).
The problem we seek to solve is the quantity of Eq. (5.9) over the set of

describable subsets L := {ext(s) | s ⊂ P}

max
Q∈L

aγ−2
t (mQ)zQ>KzQ , (B.1)

with zQ := xQ−mQ
n e, which cannot be expressed as a standard mathematical

program, due to the scaling factor at that depends on the cardinality mQ of
Q. This dependency can only be avoided by constraining the optimisation
domain over the named subsets with fixed cardinality. Then the scaling
factor becomes a constant and admits a MIQP formulation.

Lemma B.1 (MIQP for Fixed Cardinality). The fixed cardinality sub-task
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Figure B.1: Quantitative evaluation of the performance of our branch-and-bound
on each of the full datasets over different values of the size-deviation trade-off
parameter γ.

of our objective is equivalent to the MIQP

max
Q∈L
|Q|=m

zQ>KzQ ⇐⇒ (B.2)
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max
z,x,p

z>Kz

s.t.: −xi −
m∑
j=1

zi(1− vi,j) ≤ −1 1 ≤ i ≤ n

xi

m∑
j=1

(1− vi,j) ≤
m∑
j=1

(1− xi)(1− vi,j) 1 ≤ i ≤ n

zi = xi −
1
n

n∑
j=1

xi 1 ≤ i ≤ n

n∑
i=1

xi = m

z ∈ [−1, 1]n ,x ∈ {0, 1}n ,p ∈ {0, 1}m ,
(B.3)

for m = |P | the number of predicates and vi,j := 1[pj(εi) = >] the validity of
the j-th predicate on the i-th entity. The optimal subset and corresponding
selector can be read from x and p, which serve as characteristic vectors over
the set of entities and predicates, respectively.

Proof. Let x and p be the characteristic vectors of the entities and predicates,
respectively. Now any subset Q ⊂ E and any selector L ⊂ P can be described
as points in {0, 1}n × {0, 1}m.
We first show that the first two inequalities constrain the domain of the

integer lattice exactly to the points corresponding to elements of L. The first
inequality ensures that if all selected predicates are validated by an entity, it
must be selected. Indeed, when all selected predicates are valid for εi, the
sum in the left hand side of the equality becomes 0, so the constraint is only
valid when xQ = 1.
The second inequality enforces that if any predicate that is invalid for εi is
selected, then xi must be 0. These two conditions describe exactly the set L.
The third inequality ensures that the common vector z is equal to the

corresponding zQ, and serves as a helper variable to formulate the objective,
and the last one enforces the cardinality constraint.

The optimality of the entity subset that is induced by the optimal x stems
from the fact that they maximise the same quantity, which is equal to that
of the original problem Eq. (B.2), and the correctness of the induced selector
from the correctness of the constraints.
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We can now solve this problem by solving each sub-task independently.
This, however, not only requires the solution of O(n) MIQP problems, but
also each such problem is not solved efficiently by standard solvers, due to
the specific form of the constraints.

Using our Branch-and-Bound Algorithm

We therefore use the iterative deepening depth-first search we presented in
Section 2.4.2, equipped with the bound of Section 5.2.3.

To show the superiority of our method we compare it against the approach
utilising a standard solver. Since the standard solver takes an excessive
amount of resources, we compare the two methods on a sample from the
Stock dataset consisting of only 100 entities. Then we invoke the GUROBI
optimiser [Gur21] for each of the 100 instances of the MIQP of Lemma B.1,
and show the results in Fig. B.2. It becomes clear that our algorithm
outperforms a highly optimised standard solver for the proposed problem,
at least in the regime of few predicates, which we deem to be the most
meaningful configuration for useful descriptions.
Additionally, and to attain a more realistic evaluation, we measure the

running time required for our algorithm on the entire datasets and for several
values of the size-deviation trade-off parameter γ (Fig. B.1a), over all possible
describable subsets with |s| = 3 predicates. We thus demonstrate that this
method is efficient, or at least remains practical.

Optimality Guarantees

When equipped with an admissible bound, such as the one we provide in
Lemma 5.2, the branch-and-bound algorithm is an exhaustive search that
guarantees finding the optimal solution upon termination. Furthermore,
it supports both an early termination, with a guarantee on the quality
of its solution. Alternatively, it also allows for the incorporation of an
approximation factor α, a user specified parameter that, when set to a value
α < 1, it performs an approximate search. In this case the found solution is
satisfying the relaxed guarantee that its value is no worse than α times the
true optimal.

We evaluate the optimality guarantees of our algorithm by evaluating its
optimality gap, defined as the absolute difference of the best solution and the
tightest bound, divided by this bound. We show in Fig. B.1b the behaviour
of our algorithm over different values of the γ parameter.
Note that, for the case we only seek the best description with at most

|s| predicates, as in these measurements, the entire feasible set is searched
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Figure B.2: Running time of the fixed cardinality MIQP sub-tasks of Lemma B.1
for at most |s| = 3 predicates on a small subset of 100 entities from Stock [left].
Invocations that exceed 1 hour are terminated prematurely (marked by red dots).
For comparison the running time of our branch-and-bound algorithm on the same
dataset, for up to |s| = 5 predicates. The latter is superior by several orders of
magnitude.

and therefore the actual optimality gap is 0. For the sake of this evaluation,
however, we report the optimality gap in the case no such limit would have
been imposed.

B.2.3 Results
We provide the full results for the three datasets in Tables B.2 to B.4. We
observe that the two methods, t = ano and t = con largely differ in the
ranking of each subgroup, given the size of it, as expected from theory. We
also see patterns in the descriptions, which vary from fine to coarse grained,
e.g., in the first few subgroups of Table B.2a.
The selected entities of each named subset are also shown along the first

two eigenvectors of the corresponding Gramian of each dataset in Figs. B.3
to B.5, in the same order they appear in the tabular listings. We see that as
the γ parameter increases, the subsets are become either larger, in the case
of t = ano, or closer to covering half the dataset, in the case of t = con.
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γ Subset Description |Q| MMD
[0.00− 0.60] [positive_allosteric_modulator] ∧

[positive_modulator]
0.003 0.2280

[0.60− 0.70] [nucleic_acid] ∧ [homo_sapiens] ∧
[brain_disease]

0.023 0.0628

[0.70− 1.00] [nucleic_acid] ∧ [cancer] ∧
[nervous_system_disease]

0.026 0.0567

[1.00− 1.50] [inhibitor] ∧ [nucleic_acid] ∧ [neoplasm] 0.048 0.0274
[1.50− 1.70] [inhibitor] ∧ [nucleic_acid] 0.053 0.0231
[1.70− 2.00] [neoplasm] ∧ [nervous_system_disease] 0.264 0.0014
[2.00− 2.50] [neoplasm] 0.411 0.0005
[2.50− 3.00] [protein] ∧ [homo_sapiens] 0.784 0.0001
[3.00− 8.00] [protein] 0.938 0.0000

(a) Results for t = ano

γ Subset Description |Q| MMD
[0.00− 0.60] [positive_allosteric_modulator] ∧

[positive_modulator]
0.003 0.2296

[0.60− 0.70] [nucleic_acid] ∧ [homo_sapiens] ∧
[brain_disease]

0.023 0.0658

[0.70− 1.00] [nucleic_acid] ∧ [cancer] ∧
[nervous_system_disease]

0.026 0.0597

[1.00− 1.25] [inhibitor] ∧ [nucleic_acid] ∧ [neoplasm] 0.048 0.0302
[1.25− 1.70] [inhibitor] ∧ [nucleic_acid] 0.053 0.0257
[1.70− 2.50] [neoplasm] ∧ [nervous_system_disease] 0.264 0.0026
[2.50− 8.00] [neoplasm] 0.411 0.0014

(b) Results for t = con

Table B.2: Resulting subgroups over different γ parameters of Chem.
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γ Subset Description |Q| MMD
[0.00− 0.50] [49 ≤ price] ∧ [sector = Energy] ∧

[10 ≤ mktCap]
0.005 0.2767

[0.50− 0.60] [1.9 ≤ lastDiv] ∧ [sector = Energy] ∧
[9.8 ≤ mktCap]

0.008 0.2315

[0.60− 0.90] [sector = Energy] ∧ [activelyTrading] ∧
[4.8 ≤ volAvg]

0.074 0.0548

[0.90− 1.00] [sector = Energy] ∧ [activelyTrading] 0.082 0.0500
[1.00− 1.25] [10 ≤ price] ∧ [0.52 ≤ beta] ∧

[0.00017 ≤ lastDiv]
0.529 0.0064

[1.25− 3.60] [10 ≤ price] ∧ [0.52 ≤ beta] 0.691 0.0045
[3.60− 8.00] [10 ≤ price] 0.834 0.0023

(a) Results for t = ano

γ Subset Description |Q| MMD
[4.50− 8.00] [10 ≤ price] ∧ [0.52 ≤ beta] ∧

[0.00017 ≤ lastDiv]
0.529 0.0286

[3.00− 4.50] [10 ≤ price] ∧ [0.85 ≤ beta] 0.553 0.0298
[1.25− 3.00] [10 ≤ price] ∧ [0.52 ≤ beta] 0.691 0.0472
[0.00− 1.25] [10 ≤ price] 0.834 0.0820

(b) Results for t = con

Table B.3: Resulting subgroups over different γ parameters of Stock.
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γ ∈ (0.0γ0.5] γ ∈ (0.5, 0.6] γ ∈ (0.6, 0.9] γ ∈ (0.9, 1.0]

γ ∈ [1.0, 1.25] γ ∈ (1.25, 3.6] γ ∈ (3.6, 8.0]

(a) Results for t = ano.

γ ∈ (4.5γ8.0] γ ∈ (3.0, 4.5] γ ∈ (1.25, 3.0] γ ∈ (0.0, 1.25]

(b) Results for t = con.

Figure B.3: Entities selected for each named subset found in Stock.

γ ∈ (0.0γ0.5] γ ∈ (0.5, 0.6] γ ∈ (0.6, 3.0] γ ∈ (3.0, 8.0]

(a) Results for t = ano.

γ ∈ (0.0γ0.5] γ ∈ (0.5, 3.0] γ ∈ (3.0, 8.0]

(b) Results for t = con.

Figure B.4: Entities selected for each named subset found in Twitter.
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γ ∈ (0.0γ0.6] γ ∈ (0.6, 0.7] γ ∈ (0.7, 1.0] γ ∈ (1.0, 1.5] γ ∈ (1.5, 1.7]

γ ∈ [1.7, 2.0] γ ∈ (2.0, 2.5] γ ∈ (2.5, 3.0] γ ∈ (3.0, 8.0]

(a) Results for t = ano.

γ ∈ (0.0γ0.6] γ ∈ (0.6, 0.7] γ ∈ (0.7, 1.0] γ ∈ (1.0, 1.25]

γ ∈ [1.25, 1.7] γ ∈ (1.7, 2.5] γ ∈ (2.5, 8.0]

(b) Results for t = con.

Figure B.5: Entities selected for each named subset found in Chem.
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γ Subset Description |Q| MMD
[0.00− 0.50] [@paramore:] 0.02 0.0629
[0.50− 0.60] [@itstayloryall] 0.034 0.0465
[0.60− 3.00] [@yelyahwilliams] 0.049 0.0371
[3.00− 8.00] [#FF] 0.129 0.0018

(a) Results for t = ano

γ Subset Description |Q| MMD
[0.00− 0.50] [@paramore:] 0.02 0.0655
[0.50− 3.00] [@yelyahwilliams] 0.049 0.0410
[3.00− 8.00] [#FF] 0.129 0.0024

(b) Results for t = con

Table B.4: Resulting subgroups over different γ parameters of Twitter.



Bibliography

[AKC+21] Quadri Adewale, Ahmed F Khan, Felix Carbonell, and Yasser
Iturria-Medina. Integrated transcriptomic and neuroimaging
brain model decodes biological mechanisms in aging and Alzheimer’s
disease. eLife:e62589, May 2021. doi: 10.7554/eLife.62589
(cited on page 20).

[AV13] Abhijin Adiga and Anil Kumar S. Vullikanti. How Robust Is
the Core of a Network? In Machine Learning and Knowledge
Discovery in Databases, pages 541–556. Springer, 2013. isbn:
978-3-642-40988-2. doi: 10.1007/978-3-642-40988-2_35
(cited on page 136).

[ATM+12] Leman Akoglu, Hanghang Tong, Brendan Meeder, and Chris-
tos Faloutsos. PICS: Parameter-free identification of cohesive
subgroups in large attributed graphs. In Proceedings of the 2012
SIAM International Conference on Data Mining, pages 439–450.
SIAM, April 2012. isbn: 978-1-61197-232-0 978-1-61197-282-5.
doi: 10.1137/1.9781611972825.38 (cited on pages 86, 96).

[AFL+11] Jesús Alcalá-Fdez, Alberto Fernández, Julián Luengo, Joaquín
Derrac, Salvador García, Luciano Sanchez, and Francisco Her-
rera. KEEL data-mining software tool: data set repository,
integration of algorithms and experimental analysis framework.
Journal of Multiple-Valued Logic & Soft Computing, 2011 (cited
on page 79).

[And20] Elisha Anderson. Controversial Detroit facial recognition got
him arrested for a crime he didn’t commit. Detroit Free Press,
July 2020 (cited on page 6).

[ALA+18] Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo
Seltzer, and Cynthia Rudin. Learning Certifiably Optimal Rule
Lists for Categorical Data. Journal of Machine Learning Re-
search:1–78, 2018 (cited on page 8).

[ALM+16] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner.
Machine Bias. ProPublica, May 2016 (cited on page 7).

https://doi.org/10.7554/eLife.62589
https://doi.org/10.1007/978-3-642-40988-2_35
https://doi.org/10.1137/1.9781611972825.38


192 Bibliography

[AMP09] Andreas Argyriou, Charles A. Micchelli, and Massimiliano Pon-
til. When Is There a Representer Theorem? Vector Versus
Matrix Regularizers. The Journal of Machine Learning Re-
search:2507–2529, December 2009 (cited on page 156).

[Atz15] Martin Atzmueller. Subgroup discovery. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery:35–49, January
2015. doi: 10.1002/widm.1144 (cited on pages 12, 36).

[ADM16] Martin Atzmueller, Stephan Doerfel, and Folke Mitzlaff. Description-
oriented community detection using exhaustive subgroup dis-
covery. Information Sciences:965–984, February 2016. doi: 10.
1016/j.ins.2015.05.008 (cited on pages 14, 96, 97, 101).

[AM11] Martin Atzmueller and Folke Mitzlaff. Efficient Descriptive
Community Mining. In Twenty-Fourth International FLAIRS
Conference, March 2011 (cited on page 101).

[Bar15] Alistair Barr. Google mistakenly tags black people as ‘gorillas,’
showing limits of algorithms. Wall Street Journal, July 2015
(cited on page 6).

[BZ03] V. Batagelj and M. Zaversnik. An O(m) Algorithm for Cores
Decomposition of Networks. arXiv:cs/0310049, October 2003
(cited on page 94).

[BCL+20] Adnene Belfodil, Sylvie Cazalens, Philippe Lamarre, and Marc
Plantevit. Identifying exceptional (dis)agreement between groups.
Data Mining and Knowledge Discovery:394–442, March 2020.
doi: 10.1007/s10618-019-00665-9 (cited on page 11).

[BEW+11] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman,
and Paul Lamere. The Million Song Dataset. In Proceedings
of the 12th International Conference on Music Information
Retrieval, 2011 (cited on page 180).

[Bic10] Allan Bickle. The K-Cores of a Graph. Western Michigan Uni-
versity, 2010 (cited on page 88).

[Bod21] Paula Boddington. AI and moral thinking: how can we live well
with machines to enhance our moral agency? AI and Ethics:109–
111, May 2021. doi: 10.1007/s43681-020-00017-0 (cited on
page 6).

https://doi.org/10.1002/widm.1144
https://doi.org/10.1016/j.ins.2015.05.008
https://doi.org/10.1016/j.ins.2015.05.008
https://doi.org/10.1007/s10618-019-00665-9
https://doi.org/10.1007/s43681-020-00017-0


193

[BGG+17] Mario Boley, Bryan R. Goldsmith, Luca M. Ghiringhelli, and
Jilles Vreeken. Identifying Consistent Statements about Numer-
ical Data with Dispersion-Corrected Subgroup Discovery. Data
Mining and Knowledge Discovery:1391–1418, September 2017.
doi: 10.1007/s10618-017-0520-3 (cited on pages 13, 36, 91,
92).

[BG09] Mario Boley and Henrik Grosskreutz. Non-redundant subgroup
discovery using a closure system. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases,
pages 179–194. Springer, Springer, 2009 (cited on pages 32, 34).

[BOS+05] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer,
S. V. N. Vishwanathan, Alex J. Smola, and Hans-Peter Kriegel.
Protein function prediction via graph kernels. Bioinformat-
ics:i47–i56, June 2005. doi: 10.1093/bioinformatics/bti1007
(cited on page 134).

[BBV21] Kailash Budhathoki, Mario Boley, and Jilles Vreeken. Discov-
ering reliable causal rules. In Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM), pages 1–9.
Society for Industrial and Applied Mathematics, January 2021.
doi: 10.1137/1.9781611976700.1 (cited on page 156).

[BGB+19] Antoine Buetti-Dinh, Vanni Galli, Sören Bellenberg, Olga Ilie,
Malte Herold, Stephan Christel, Mariia Boretska, Igor V. Pivkin,
Paul Wilmes, Wolfgang Sand, Mario Vera, and Mark Dop-
son. Deep neural networks outperform human expert’s capac-
ity in characterizing bioleaching bacterial biofilm composition.
Biotechnology Reports:e00321, June 2019. doi: 10.1016/j.
btre.2019.e00321 (cited on page 6).

[CV10] Toon Calders and Sicco Verwer. Three naive Bayes approaches
for discrimination-free classification. Data Mining and Knowl-
edge Discovery:277–292, September 2010. doi: 10.1007/s10618-
010-0190-x (cited on pages 64, 75).
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