61 research outputs found

    Experiments on comparing graph clusterins

    Get PDF
    A promising approach to compare graph clusterings is based on using measurements for calculating the distance. Existing measures either use the structure of clusterings or quality--based aspects. Each approach suffers from critical drawbacks. We introduce a new approach combining both aspects and leading to better results for comparing graph clusterings. An experimental evaluation of existing and new measures shows that the significant drawbacks of existing techniques are not only theoretical in nature and proves that the results of our new measures are more coherent with intuition

    Combinatorial approach to Modularity

    Full text link
    Communities are clusters of nodes with a higher than average density of internal connections. Their detection is of great relevance to better understand the structure and hierarchies present in a network. Modularity has become a standard tool in the area of community detection, providing at the same time a way to evaluate partitions and, by maximizing it, a method to find communities. In this work, we study the modularity from a combinatorial point of view. Our analysis (as the modularity definition) relies on the use of the configurational model, a technique that given a graph produces a series of randomized copies keeping the degree sequence invariant. We develop an approach that enumerates the null model partitions and can be used to calculate the probability distribution function of the modularity. Our theory allows for a deep inquiry of several interesting features characterizing modularity such as its resolution limit and the statistics of the partitions that maximize it. Additionally, the study of the probability of extremes of the modularity in the random graph partitions opens the way for a definition of the statistical significance of network partitions.Comment: 8 pages, 4 figure

    A new paradigm for complex network visualization

    Get PDF
    We propose a new layout paradigm for drawing a nested decomposition of a large network. The visualization supports the recognition of abstract features of the decomposition, while drawing all elements. In order to support the visual analysis that focuses on the dependencies of the individual parts of the decomposition, we use an annulus as the general underlying shape. This method has been evaluated using real world data and offers surprising readability

    Size reduction of complex networks preserving modularity

    Get PDF
    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.Comment: 14 pages, 2 figure

    Enhance the Efficiency of Heuristic Algorithm for Maximizing Modularity Q

    Full text link
    Modularity Q is an important function for identifying community structure in complex networks. In this paper, we prove that the modularity maximization problem is equivalent to a nonconvex quadratic programming problem. This result provide us a simple way to improve the efficiency of heuristic algorithms for maximizing modularity Q. Many numerical results demonstrate that it is very effective.Comment: 9 pages, 3 figure

    Modularity clustering is force-directed layout

    Full text link
    Two natural and widely used representations for the community structure of networks are clusterings, which partition the vertex set into disjoint subsets, and layouts, which assign the vertices to positions in a metric space. This paper unifies prominent characterizations of layout quality and clustering quality, by showing that energy models of pairwise attraction and repulsion subsume Newman and Girvan's modularity measure. Layouts with optimal energy are relaxations of, and are thus consistent with, clusterings with optimal modularity, which is of practical relevance because both representations are complementary and often used together.Comment: 9 pages, 7 figures, see http://code.google.com/p/linloglayout/ for downloading the graph clustering and layout softwar

    Vertex and edge covers with clustering properties: complexity and algorithms

    Get PDF
    We consider the concepts of a t-total vertex cover and a t-total edge cover (t≥1), which generalise the notions of a vertex cover and an edge cover, respectively. A t-total vertex (respectively edge) cover of a connected graph G is a vertex (edge) cover S of G such that each connected component of the subgraph of G induced by S has at least t vertices (edges). These definitions are motivated by combining the concepts of clustering and covering in graphs. Moreover they yield a spectrum of parameters that essentially range from a vertex cover to a connected vertex cover (in the vertex case) and from an edge cover to a spanning tree (in the edge case). For various values of t, we present NP-completeness and approximability results (both upper and lower bounds) and FTP algorithms for problems concerned with finding the minimum size of a t-total vertex cover, t-total edge cover and connected vertex cover, in particular improving on a previous FTP algorithm for the latter problem

    Analysis of the autonomous system network and of overlay networks using visualization

    Get PDF
    Taking the physical Internet at the Autonomous System (AS) level as an instance of a complex network, and Gnutella as a popular peer-to-peer application running on top of it, we investigated the correlation of overlay networks with their underlying topology using visualization. We find that while overlay networks create arbitrary topologies, they differ from randomly generated networks, and there is a correlation with the underlying network. In addition, we successfully validated the applicability of our visualization technique for AS topologies by comparing Routeviews data sets with DIMES data sets, and by analyzing the temporal evolution in the Routeviews data sets
    • …
    corecore