93 research outputs found

    Surface Soil Moisture Retrievals from Remote Sensing:Current Status, Products & Future Trends

    Get PDF
    Advances in Earth Observation (EO) technology, particularly over the last two decades, have shown that soil moisture content (SMC) can be measured to some degree or other by all regions of the electromagnetic spectrum, and a variety of techniques have been proposed to facilitate this purpose. In this review we provide a synthesis of the efforts made during the last 20 years or so towards the estimation of surface SMC exploiting EO imagery, with a particular emphasis on retrievals from microwave sensors. Rather than replicating previous overview works, we provide a comprehensive and critical exploration of all the major approaches employed for retrieving SMC in a range of different global ecosystems. In this framework, we consider the newest techniques developed within optical and thermal infrared remote sensing, active and passive microwave domains, as well as assimilation or synergistic approaches. Future trends and prospects of EO for the accurate determination of SMC from space are subject to key challenges, some of which are identified and discussed within. It is evident from this review that there is potential for more accurate estimation of SMC exploiting EO technology, particularly so, by exploring the use of synergistic approaches between a variety of EO instruments. Given the importance of SMC in Earth’s land surface interactions and to a large range of applications, one can appreciate that its accurate estimation is critical in addressing key scientific and practical challenges in today’s world such as food security, sustainable planning and management of water resources. The launch of new, more sophisticated satellites strengthens the development of innovative research approaches and scientific inventions that will result in a range of pioneering and ground-breaking advancements in the retrievals of soil moisture from space

    Agricultural Drought Risk Assessment of Rainfed Agriculture in the Sudan Using Remote Sensing and GIS: The Case of El Gedaref State

    Get PDF
    Hitherto, most research conducted to monitor agricultural drought on the African continent has focused only on meteorological aspects, with less attention paid to soil moisture, which describes agricultural drought. Satellite missions dedicated to soil moisture monitoring must be used with caution across various scales. The rainfed sector of Sudan takes great importance due to it is high potential to support national food security. El Gedaref state is significant in Sudan given its potentiality of the agricultural sector under a mechanized system, where crop cultivation supports livelihood sources for about 80% of its population and households, directly through agricultural production and indirectly through labor workforce. The state is an essential rainfed region for sorghum production, located within Sudan's Central Clay Plain (CCP). Enhancing soil moisture estimation is key to boosting the understanding of agricultural drought in the farming lands of Sudan. Soil moisture measuring stations/sensors networks do not exist in the El Gedaref agricultural rainfed sector. The literature shows a significant gap in whether soil moisture is sufficient to meet the estimated water demands of cultivation or the start of the growing season. The purpose of this study is to focus principally on agricultural drought. The soil moisture data retrieved from the Soil Moisture Active Passive (SMAP) mission launched by NASA in 2015 were compared against in situ data measurements over the agricultural lands. In situ points (at 5 cm, 10 cm, and 20 cm depths) corresponding to 9×9 km SMAP pixel foot-print are rescaled to conduct a point-to-pixel evaluation of SMAP product over two locations, namely Samsam and Kilo-6, during the rainy season 2018. Four errors were measured; Root Mean Squared Error (RMSE), Mean Bias Error (MBE), unbiased RMSE (ubRMSE), Mean Absolute Bias Error (MABE), and the coefficient of determination R2. SMAP improve (significantly at the 5% level for SM). The results indicated that the SMAP product meets its soil moisture accuracy requirement at the top 5 cm and in the root zone (10 and 20 cm) depths at Samsam and Kilo-6. SMAP demonstrates higher performance indicated by the high R2 (0.96, 0.88, and 0.97) and (0.85, 0.94, and 0.94) over Samsam and Kilo-6, respectively, and met its accuracy targeted by SMAP retrieval domain at ubRMSE 0.04 m3m-3 or better in all locations, and most minor errors (MBE, MABE, and RMSE). The possibility of using SMAP products was discussed to measure agricultural drought and its impacts on crop growth during various growth stages in both locations and over the CCP entirely. The croplands of El Gedaref are located within the tropical savanna (AW, categorization following the Köppen climate classification), warm semi-arid climate (BSh), and warm desert climate (BWh). The areas of interest are predominantly rainfed agricultural lands, vulnerable to climate change and variability. The Climate Hazards Group Infrared Precipitation with Station data (CHIRPS), SMAP at the top surface of the soil and the root zone, and Soil Water Deficit Index (SWDI) derived from SMAP were analyzed against the Normalized Difference Vegetation Index (NDVI). The results indicate that the NDVI val-ues disagree with rainfall patterns at the dekadal scale. At all isohyets, SWDI in the root zone shows a reliable and expected response of capturing seasonal dynamics concerning the vegetation index (NDVI) over warm desert climates during 2015, 2016, 2017, 2018, and 2019, respectively. It is concluded that SWDI can be used to monitor agricultural drought better than rainfall data and SMAP data because it deals directly with the available water content of the crops. SWDI monitoring agricultural drought is a promising method for early drought warning, which can be used for agricultural drought risk management in semi-arid climates. The comparison between sorghum yield and the spatially distributed water balance model was assessed according to the length of the growing period. Late maturing (120 days), medium maturing (90-95 days), and early maturing variety (80-85 days). As a straightforward crop water deficit model. An adapted WRSI index was developed to characterize the effect of using different climatic and soil moisture remote sensing input datasets, such as CHIRPS rainfall, SMAP soil moisture at the top 5 cm and the root zone, MODIS actual evapotranspiration on key WRSI index parameters and outputs. Results from the analyses indicated that SMAP best captures season onset and length of the growing period, which are critical for the WRSI index. In addition, short-, medium-, and long-term sorghum cultivar planting scenarios were con-sidered and simulated. It was found that over half of the variability in yield is explained by water stress when the SMAP at root zone dataset is used in the WRSI model (R2=0.59–0.72 for sorghum varieties of 90–120 days growing length). Overall, CHIRPS and SMAP root zone show the highest skill (R2=0.53–0.64 and 0.54–0.56, respectively) in capturing state-level crop yield losses related to seasonal soil moisture deficit, which is critical for drought early warning and agrometeorological risk applications. The results of this study are important and valuable in supporting the continued development and improvement of satellite-based soil moisture sensing to produce higher accuracy soil moisture products in semi-arid regions. The results also highlight the growing awareness among various stakeholders of the impact of drought on crop production and the need to scale up adaptation measures to mitigate the adverse effects of drought

    Assessing the utility of geospatial technologies to investigate environmental change within lake systems

    Get PDF
    Over 50% of the world's population live within 3. km of rivers and lakes highlighting the on-going importance of freshwater resources to human health and societal well-being. Whilst covering c. 3.5% of the Earth's non-glaciated land mass, trends in the environmental quality of the world's standing waters (natural lakes and reservoirs) are poorly understood, at least in comparison with rivers, and so evaluation of their current condition and sensitivity to change are global priorities. Here it is argued that a geospatial approach harnessing existing global datasets, along with new generation remote sensing products, offers the basis to characterise trajectories of change in lake properties e.g., water quality, physical structure, hydrological regime and ecological behaviour. This approach furthermore provides the evidence base to understand the relative importance of climatic forcing and/or changing catchment processes, e.g. land cover and soil moisture data, which coupled with climate data provide the basis to model regional water balance and runoff estimates over time. Using examples derived primarily from the Danube Basin but also other parts of the World, we demonstrate the power of the approach and its utility to assess the sensitivity of lake systems to environmental change, and hence better manage these key resources in the future

    Could operational hydrological models be made compatible with satellite soil moisture observations?

    Get PDF
    Soil moisture is a significant state variable in flood forecasting. Nowadays more and more satellite soil moisture products are available, yet their usage in the operational hydrology is still limited. This is because the soil moisture state variables in most operational hydrological models (mostly conceptual models) are over-simplified—resulting in poor compatibility with the satellite soil moisture observations. A case study is provided to discuss this in more detail, with the adoption of the XAJ model and the Soil Moisture and Ocean Salinity (SMOS) level-3 soil moisture observation to illustrate the relevant issues. It is found that there are three distinct deficiencies existed in the XAJ model that could cause the mismatch issues with the SMOS soil moisture observation: (i) it is based on runoff generation via the field capacity excess mechanism (interestingly, such a runoff mechanism is called the saturation excess in XAJ while in fact it is clearly a misnomer); (ii) evaporation occurs at the potential rate in its upper soil layer until the water storage in the upper layer is exhausted, and then the evapotranspiration process from the lower layers will commence – leading to an abrupt soil water depletion in the upper soil layer; (iii) it uses the multi-bucket concept at each soil layer – hence the model has varied soil layers. Therefore, it is a huge challenge to make an operational hydrological model compatible with the satellite soil moisture data. The paper argues that this is possible and some new ideas have been explored and discussed. Copyright © 2016 John Wiley & Sons, Ltd. Citing Literatur

    The International Soil Moisture Network:Serving Earth system science for over a decade

    Get PDF
    In 2009, the International Soil Moisture Network (ISMN) was initiated as a community effort, funded by the European Space Agency, to serve as a centralised data hosting facility for globally available in situ soil moisture measurements (Dorigo et al., 2011b, a). The ISMN brings together in situ soil moisture measurements collected and freely shared by a multitude of organisations, harmonises them in terms of units and sampling rates, applies advanced quality control, and stores them in a database. Users can freely retrieve the data from this database through an online web portal (https://ismn.earth/en/, last access: 28 October 2021). Meanwhile, the ISMN has evolved into the primary in situ soil moisture reference database worldwide, as evidenced by more than 3000 active users and over 1000 scientific publications referencing the data sets provided by the network. As of July 2021, the ISMN now contains the data of 71 networks and 2842 stations located all over the globe, with a time period spanning from 1952 to the present. The number of networks and stations covered by the ISMN is still growing, and approximately 70 % of the data sets contained in the database continue to be updated on a regular or irregular basis. The main scope of this paper is to inform readers about the evolution of the ISMN over the past decade, including a description of network and data set updates and quality control procedures. A comprehensive review of the existing literature making use of ISMN data is also provided in order to identify current limitations in functionality and data usage and to shape priorities for the next decade of operations of this unique community-based data repository

    Estimation de l'humidité du sol à haute résolution spatio-temporelle : une nouvelle approche basée sur la synergie des observations micro-ondes actives/passives et optiques/thermiques

    Get PDF
    Les capteurs micro-ondes passifs SMOS et SMAP fournissent des donnĂ©es d'humiditĂ© du sol (SM) Ă  une rĂ©solution d'environ 40 km avec un intervalle de 2 Ă  3 jours Ă  l' Ă©chelle mondiale et une profondeur de dĂ©tection de 0 Ă  5 cm. Ces donnĂ©es sont trĂšs pertinentes pour les applications cli- matiques et mĂ©tĂ©orologiques. Cependant, pour les applications Ă  Ă©chelle rĂ©gionales (l'hydrologie) ou locales (l'agriculture), des donnĂ©es de SM Ă  une haute rĂ©solution spatiale (typiquement 100 m ou plus fine) seraient nĂ©cessaires. Les donnĂ©es collectĂ©es par les capteurs optiques/thermiques et les radars peuvent fournir des indicateurs de SM Ă  haute rĂ©solution spatiale, mais ces deux approches alternatives ont des limites. En particulier, les donnĂ©es optiques/thermiques ne sont pas disponibles sous les nuages et sous les couverts vĂ©gĂ©taux. Quant aux donnĂ©es radar, elles sont sensibles Ă  la rugositĂ© du sol et Ă  la structure de la vĂ©gĂ©tation, qui sont tous deux difficiles Ă  caractĂ©riser depuis l'espace. De plus, la rĂ©solution temporelle de ces donnĂ©es est d'environ 6 jours. Dans ce contexte, la ligne directrice de la thĂšse est de proposer une nouvelle approche qui combine pour la premiĂšre fois des capteurs passifs micro-ondes, optiques/thermiques et actifs micro-ondes (radar) pour estimer SM sur de grandes Ă©tendues Ă  une rĂ©solution de 100 m chaque jour. Notre hypothĂšse est d'abord de nous appuyer sur une mĂ©thode de dĂ©sagrĂ©gation existante (DISPATCH) des donnĂ©es SMOS/SMAP pour atteindre la rĂ©solution cible obtenue par les radars. A l'origine, DISPATCH est basĂ© sur l'efficacitĂ© d' Ă©vaporation du sol (SEE) estimĂ©e sur des pixels partiellement vĂ©gĂ©talisĂ©s Ă  partir de donnĂ©es optiques/thermiques (gĂ©nĂ©ralement MODIS) de tempĂ©rature de surface et de couverture vĂ©gĂ©tale Ă  rĂ©solution de 1 km. Les donnĂ©es dĂ©sagrĂ©gĂ©es de SM sont ensuite combinĂ©es avec une mĂ©thode d'inversion de SM basĂ©e sur les donnĂ©es radar afin d'exploiter les capacitĂ©s de dĂ©tection des radars Sentinel-1. Enfin, les capacitĂ©s de l'assimilation des donnĂ©s satellitaires de SM dans un modĂšle de bilan hydrique du sol sont Ă©valuĂ©es en termes de prĂ©diction de SM Ă  une rĂ©solution de 100 m et Ă  une Ă©chelle temporelle quotidienne.Dans une premiĂšre Ă©tape, l'algorithme DISPATCH est amĂ©liorĂ© par rapport Ă  sa version actuelle, principalement 1) en Ă©tendant son applicabilitĂ© aux pixels optiques entiĂšrement vĂ©gĂ©talisĂ©s en utilisant l'indice de sĂ©cheresse de la vĂ©gĂ©tation basĂ© sur la tempĂ©rature et un produit de couverture vĂ©gĂ©tale amĂ©liorĂ©, et 2) en augmentant la rĂ©solution de dĂ©sagrĂ©gation de 1 km Ă  100 m en utilisant les donnĂ©es optiques/thermiques de Landsat (en plus de MODIS). Le produit de SM dĂ©sagrĂ©gĂ© Ă  la rĂ©solution de 100 m est validĂ© avec des mesures in situ collectĂ©es sur des zones irriguĂ©es au Maroc, indiquant une corrĂ©lation spatiale quotidienne variant de 0,5 Ă  0,9. Dans un deuxiĂšme Ă©tape, un nouvel algorithme est construit en dĂ©veloppant une synergie entre les donnĂ©es DISPATCH et radar Ă  100 m de rĂ©solution. En pratique, le produit SM issu de DISPATCH les jours de ciel clair est d'abord utilisĂ© pour calibrer un modĂšle de transfert radiatif radar en mode direct. Ensuite, le modĂšle de transfert radiatif radar ainsi calibrĂ© est utilisĂ© en mode inverse pour estimer SM Ă  la rĂ©solution spatio-temporelle de Sentinel-1. Sur les sites de validation, les rĂ©sultats indiquent une corrĂ©lation entre les mesures satellitaires et in situ, de l'ordre de 0,66 Ă  0,81 pour un indice de vĂ©gĂ©tation infĂ©rieur Ă  0,6. Dans une troisiĂšme et derniĂšre Ă©tape, une mĂ©thode d'assimilation optimale est utilisĂ©e pour interpoler dans le temps les donnĂ©es de SM Ă  la rĂ©solution de 100 m. La dynamique du produit SM dĂ©rivĂ© de l'assimilation de SM DISPATCH Ă  100 m de rĂ©solution est cohĂ©rente avec les Ă©vĂ©nements d'irrigation. Cette approche peut ĂȘtre facilement appliquĂ©e sur de grandes zones, en considĂ©rant que toutes les donnĂ©es (tĂ©lĂ©dĂ©tection et mĂ©tĂ©orologique) requises en entrĂ©e sont disponibles Ă  l' Ă©chelle globale.SMOS and SMAP passive microwave sensors provide soil moisture (SM) data at 40 km resolution every 2-3 days globally, with a 0-5 cm sensing depth relevant for climatic and meteorological applications. However, SM data would be required at a higher (typically 100 m or finer) spatial resolution for many other regional (hydrology) or local (agriculture) applications. Optical/thermal and radar sensors can be used for retrieving SM proxies at such high spatial resolution, but both techniques have limitations. In particular, optical/thermal data are not available under clouds and under plant canopies. Moreover, radar data are sensitive to soil roughness and vegetation structure, which are challenging to characterize from outer space, and have a repeat cycle of at least six days, limiting the observations' temporal frequency. In this context, the leading principle of the thesis is to propose a new approach that combines passive microwave, optical/thermal, and active microwave (radar) sensors for the first time to retrieve SM data at 100 m resolution on a daily temporal scale. Our assumption is first to rely on an existing disaggregation method (DISPATCH) of SMOS/SMAP SM data to meet the target resolution achieved by radars. DISPATCH is originally based on the soil evaporative efficiency (SEE) retrieved over partially vegetated pixels from 1 km resolution optical/thermal (typically MODIS) surface temperature and vegetation cover data. The disaggregated SM data is then combined with a radar-based SM retrieval method to exploit the sensing capabilities of the Sentinel-1 radars. Finally, the efficacy of the assimilation of satellite-based SM data in a soil water balance model is assessed in terms of SM predictions at the 100 m resolution and daily temporal scale. As a first step, the DISPATCH algorithm is improved from its current version by mainly 1) extending its applicability to fully vegetated optical pixels using the temperature vegetation dryness index and an enhanced vegetation cover product, and 2) increasing the targeted downscaling resolution from 1 km to 100 m using Landsat (in addition to MODIS) optical/thermal data. The 100 m resolution disaggregated SM product is validated with in situ measurements collected over irrigated areas in Morocco, showing a daily spatial correlation in the range of 0.5-0.9. As a second step, a new algorithm is built on a synergy between DISPATCH and radar 100 m resolution data. In practice, the DISPATCH SM product available on clear sky days is first used to calibrate a radar radiative transfer model in the direct mode. Then the calibrated radar radia- tive transfer model is used in the inverse mode to estimate SM at the spatio-temporal resolution of Sentinel-1. Results indicate a positive correlation between satellite and in situ measurements in the range of 0.66 to 0.81 for a vegetation index lower than 0.6. As a third and final step, an optimal assimilation method is used to interpolate 100 m resolution SM data in time. The assimilation exercise is undertaken over irrigated crop fields in Spain. The analyzed SM product derived from the assimilation of 100 m resolution DISPATCH SM is consistent with irrigation events. This approach can be readily applied over large areas, given that all the required input (remote sensing and meteorological) data are available globally

    The Indian COSMOS Network (ICON): validating L-band remote sensing and modelled soil moisture data products

    Get PDF
    Availability of global satellite based Soil Moisture (SM) data has promoted the emergence of many applications in climate studies, agricultural water resource management and hydrology. In this context, validation of the global data set is of substance. Remote sensing measurements which are representative of an area covering 100 m2 to tens of km2 rarely match with in situ SM measurements at point scale due to scale difference. In this paper we present the new Indian Cosmic Ray Network (ICON) and compare it’s data with remotely sensed SM at different depths. ICON is the first network in India of the kind. It is operational since 2016 and consist of seven sites equipped with the COSMOS instrument. This instrument is based on the Cosmic Ray Neutron Probe (CRNP) technique which uses non-invasive neutron counts as a measure of soil moisture. It provides in situ measurements over an area with a radius of 150–250 m. This intermediate scale soil moisture is of interest for the validation of satellite SM. We compare the COSMOS derived soil moisture to surface soil moisture (SSM) and root zone soil moisture (RZSM) derived from SMOS, SMAP and GLDAS_Noah. The comparison with surface soil moisture products yield that the SMAP_L4_SSM showed best performance over all the sites with correlation (R) values ranging from 0.76 to 0.90. RZSM on the other hand from all products showed lesser performances. RZSM for GLDAS and SMAP_L4 products show that the results are better for the top layer R = 0.75 to 0.89 and 0.75 to 0.90 respectively than the deeper layers R = 0.26 to 0.92 and 0.6 to 0.8 respectively in all sites in India. The ICON network will be a useful tool for the calibration and validation activities for future SM missions like the NASA-ISRO Synthetic Aperture Radar (NISAR)

    Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data

    Get PDF
    Effective agricultural water management requires accurate and timely information on the availability and use of irrigation water. However, most existing information on irrigation water use (IWU) lacks the objectivity and spatiotemporal representativeness needed for operational water management and meaningful characterization of land–climate interactions. Although optical remote sensing has been used to map the area affected by irrigation, it does not physically allow for the estimation of the actual amount of irrigation water applied. On the other hand, microwave observations of the moisture content in the top soil layer are directly influenced by agricultural irrigation practices and thus potentially allow for the quantitative estimation of IWU. In this study, we combine surface soil moisture (SM) retrievals from the spaceborne SMAP, AMSR2 and ASCAT microwave sensors with modeled soil moisture from MERRA-2 reanalysis to derive monthly IWU dynamics over the contiguous United States (CONUS) for the period 2013–2016. The methodology is driven by the assumption that the hydrology formulation of the MERRA-2 model does not account for irrigation, while the remotely sensed soil moisture retrievals do contain an irrigation signal. For many CONUS irrigation hot spots, the estimated spatial irrigation patterns show good agreement with a reference data set on irrigated areas. Moreover, in intensively irrigated areas, the temporal dynamics of observed IWU is meaningful with respect to ancillary data on local irrigation practices. State-aggregated mean IWU volumes derived from the combination of SMAP and MERRA-2 soil moisture show a good correlation with statistically reported state-level irrigation water withdrawals (IWW) but systematically underestimate them. We argue that this discrepancy can be mainly attributed to the coarse spatial resolution of the employed satellite soil moisture retrievals, which fails to resolve local irrigation practices. Consequently, higher-resolution soil moisture data are needed to further enhance the accuracy of IWU mapping.</p

    What Role Does Hydrological Science Play in the Age of Machine Learning?

    Get PDF
    ABSTRACT: This paper is derived from a keynote talk given at the Google's 2020 Flood Forecasting Meets Machine Learning Workshop. Recent experiments applying deep learning to rainfall‐runoff simulation indicate that there is significantly more information in large‐scale hydrological data sets than hydrologists have been able to translate into theory or models. While there is a growing interest in machine learning in the hydrological sciences community, in many ways, our community still holds deeply subjective and nonevidence‐based preferences for models based on a certain type of “process understanding” that has historically not translated into accurate theory, models, or predictions. This commentary is a call to action for the hydrology community to focus on developing a quantitative understanding of where and when hydrological process understanding is valuable in a modeling discipline increasingly dominated by machine learning. We offer some potential perspectives and preliminary examples about how this might be accomplished
    • 

    corecore