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Abstract
Advances in Earth Observation (EO) technology, particularly over the last two decades, have shown that soil moisture content (SMC) can be measured to some degree or other by all regions of the electromagnetic spectrum, and a variety of techniques have been proposed to facilitate this purpose. 
In this review we provide a synthesis of the efforts made during the last 20 years or so towards the estimation of surface SMC exploiting EO imagery, with a particular emphasis on retrievals from microwave sensors. Rather than replicating previous overview works, we provide a comprehensive and critical exploration of all the major approaches employed for retrieving SMC in a range of different global ecosystems. In this framework, we consider the newest techniques developed within optical and thermal infrared remote sensing, active and passive microwave domains, as well as assimilation or synergistic approaches. Future trends and prospects of EO for the accurate determination of SMC from space are subject to key challenges, some of which are identified and discussed within. 
It is evident from this review that there is potential for more accurate estimation of SMC exploiting EO technology, particularly so, by exploring the use of synergistic approaches between a variety of EO instruments. Given the importance of SMC in Earth’s land surface interactions and to a large range of applications, one can appreciate that its accurate estimation is critical in addressing key scientific and practical challenges in today’s world such as food security, sustainable planning and management of water resources. The launch of new, more sophisticated satellites strengthens the development of innovative research approaches and scientific inventions that will result in a range of pioneering and ground-breaking advancements in the retrievals of soil moisture from space. 
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1. Introduction
The need – especially in the context of global climate change - to develop a holistic understanding of how land surface parameters characterising the planet’s energy and water budget has never been more important (WMO, 2002; ESA, 2014). In this context, the important role of soil moisture content (SMC) in various processes and feedback loops of the Earth system cannot be overstated. SMC generally refers to the water contained in the unsaturated soil zone (Seneviratne et al., 2010), expressed usually as either a dimensionless ratio of two masses or two volumes, or given as a ratio of a mass per unit volume (see Figure 1). These dimensionless ratios can be reported either as decimal fractions or percentages, if multiplied by 100. 
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Being able to accurately estimate SMC is of great importance (Petropoulos et al., 2013a). Accurate information on SMC is of high relevance to a number of bio-physical processes related to the exchanges of energy and mass between the hydrosphere, atmosphere and biosphere (Zhang et al., 2014a). Soil moisture has long been recognised as a key state variable within the global energy cycle due to its control on the partitioning of available energy at the Earth’s surface into latent (LE) and sensible (H) heat exchange (Vereecken et al., 2014). It is also a significant component of the hydrological cycle, governing the partitioning of rainfall into infiltration and runoff, thus affecting stream flow, groundwater recharge and precipitation (Tuttle and Salvucci, 2014). Notably, SMC has a strong influence on hydro-meteorological processes within the atmospheric boundary layer, thus, it has a direct relationship with global climate and weather systems. Evidently, accurately quantifying SMC is of great importance to a wide range of disciplines and practical applications (e.g. see Petropoulos et al., 2013b) which has led to it being recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS) (Zhao and Li, 2013; Al-Yaari et al., 2014)
A number of quantitative methods have been utilised to analyse the spatio-temporal dynamics and distribution of soil moisture properties across a broad range of scales (Vereecken et al., 2014). At smaller scales, a number of approaches have been developed to measure SMC directly using ground instrumentation (for a review see Verstraeten et al.,  2008; Petropoulos et al., 2013b). Such methods can be broadly grouped into, amongst others, point measurements with electromagnetic soil moisture sensors, hydro-geophysical methods and electrical resistivity tomography (Vereecken et al., 2014). Within these groups, gravimetric sampling and networks of impedance probes based on dielectric methods are generally two of the most reliable methods, able to provide an accuracy level of  ~4% v/v in SMC estimation. Use of ground instrumentation has certain advantages, such as instrument portability, easy installation, operation and maintenance, ability to provide direct measurements at different depths, as well as their relative maturity. Although direct or ground-based measurements are the most accurate methods for estimating soil moisture, such techniques are often rather complex, expensive, and labour-intensive, (Rahimzadeh-Bajgiran et al., 2013), where some can also be destructive (e.g. gravimetric sampling) (Zhang et al., 2014b). 
Many factors affect the spatial variability of SMC, such as changes in topography, types of soil, vegetation cover, climate, and depth of water table, which predominantly depend on surface heterogeneity and dynamic forces distribution (Ferńandez-Prieto et al., 2013). Ground-based measurements of SMC are currently limited to discrete measurements at particular locations. Such point-based measurements do not represent the spatial distribution exhibited by highly variable soil moisture (Srivastava et al., 2013a). Extrapolating such point-based measurements to a larger spatial scale is practically expensive, time consuming, and complex, particularly over heterogeneous land surfaces (Byun et al., 2014; de Tomás et al., 2014). Thus, it is understandable that the use of ground instrumentation, although they exhibit significant potential, poses an impractical solution for continuous spatial and temporal coverage of this parameter at regional and global scales (Rahimzadeh-Bajgiran et al., 2013).
The advent of satellite-based remote sensing, particularly during the last few decades, has led to a considerable amount of work in determining whether such systems can provide spatially explicit maps of surface soil moisture from space. Advances in Earth Observation (EO) technology have shown that SMC at the surface layer (i.e. 0-5 cm of surface) can be measured to some degree or other by all regions of the electromagnetic radiation (EMR) spectrum. A variety of techniques have been proposed to facilitate this purpose. Arguably, most progress has been made utilising the microwave domain of the EMR, particularly within the low frequency range (1-5GHz), where microwave sensors can detect fine changes within the electrical permittivity of the soil whilst the atmosphere remains relatively transparent. 
The present review aims to provide a systematic and critical overview of state-of-the-art EO-based techniques employed in the retrievals of SMC, covering also the related operationally distributed products which provide such data today. Rather than replicating previous related works, a comprehensive exploration of the newest techniques published within the different domains of EMR considering assimilation or synergistic schemes as well is furnished. Some background on the principles around their foundation is initially discussed, highlighting the advantages, drawbacks, and today’s knowledge gaps related to each approach. Subsequently, future opportunities and challenges required to be addressed in future research are identified and discussed. Finally, an overview of the existing EO-based operational products of SMC is provided covering also some key points related to the strengths and limitations of each of those products.
2. Remote Sensing of Surface Soil Moisture
This section provides an overview of the methods available for determining surface SMC from EO. To this end, first an overview of the optical and thermal EO techniques for the retrieval of surface SMC is presented; following this, an overview of the passive and active microwave-based methods is provided. Subsequently, the methods based on the synergy between different types of EO data are discussed. A summary of the different methods reviewed herein, along with a summary of their key relative advantages and disadvantages is available in Table 1. 
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2.1 Optical Sensing of Surface Soil Moisture
2.1.1 Reflectance-Based Methods 
The relationship between SMC and reflectance throughout the entire reflective part of the electromagnetic spectrum has been studied extensively and is well-documented. Various studies have been conducted over the years exploring the relationships between spectral reflectance and soil moisture content for a range of soil types (e.g. Weidong et al., 2002; Gao et al., 2013). Findings from those studies have largely demonstrated that reflectance decreases with soil moisture increase, where moreover, some studies have found the presence of a non-linear relationship between SMC and reflectance in terms of the effect that one has to the other (Lobell and Asner, 2002; Nocita et al., 2013). 
A number of studies have proposed diverse relationships linking soil surface reflectance with SMC (Wang et al., 2010), most of which have been based around the rationale of developing an empirical spectral vegetation index. These can indicate vegetation spectral properties (e.g. growth, amount, stress) and degree of vegetation moisture stress, thereby allowing indirect estimates of SMC even when the soil surface is not visible. Examples of such techniques include the crop water stress index and the vegetation anomaly index (Xiao et al., 1994). More recently, a study examining the empirical exponential relationship between reflectance and soil moisture to calculate SMC over vegetated areas was conducted. This was achieved through the linear decomposition of mixture pixels in a red (RED)-near infrared (NIR) spectral feature space (Gao et al., 2013). Gao et al. (2013) directly derived the computed soil reflectance from RED–NIR bands by combining a soil line equation with a developed empirical relationship between vegetation canopy and mixed pixel reflectance in a spectral feature space (Figure 2). An image from Landsat TM, with measurement data from experimental fields in Beijing, China, was then used to establish the retrieval relationships between soil moisture and soil reflectance from the RED and NIR bands. In their analysis, the proposed method could be used to monitor soil moisture with a correlation coefficient exceeding 0.80, satisfying actual application needs. They concluded that this was due to the fact that the direct surface soil reflectance carrying the SMC information was extracted from mixed pixels, and the vegetation effect on the pixel reflectance was removed. 
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Although these empirically-based approaches have generally proven competent for estimating SMC under the conditions to which they have been calibrated, significant problems occur when those methods are applied outside these conditions. This is because the content and distribution of various soil attributes (soil moisture, organic matter, iron oxides and clay mineral) that affect the spectral characteristic of a soil can vary significantly from site to site. Thus, the wavelength that provides the best coefficient of determination is dependent on soil type (Huan-Jun et al., 2009). A number of approaches have been proposed to develop relationships between reflectance measurements and soil moisture by attempting to minimise the effect of confounding factors. Methods which attempt to minimise such effects assume that they are either constant (first derivative) or vary linearly with the wavelength (second derivative) over the limited spectral domain considered (e.g. Chen et al. 1992). The wavebands used are sometimes well-separated over the spectral domain, taking into account the larger variability of water absorption observed in these conditions. In other cases, the bands used are contiguous, which is the basis of derivative spectroscopy techniques. One of the most widely used approaches is based on using only one wavelength for reflectance retrieval, which aims to diminish the soil type effect by normalising the reflectance. Briefly, to minimise such effects, this method normalises the reflectance of each soil type by that of the same soil observed under dry conditions. Then, a non-linear equation accounting for the typical exponential pattern of reflectance as a function of the content of the absorbing component has been proposed to relate the relative reflectance to SMC. Most recent work has explored the development of hyperspectral sensors in surface SMC retrieval. The premise from the use of hyperspectral sensors is that narrow-band spectral information in the visible, NIR, and short-wave infrared (SWIR) wavelengths acquired from such sensors allows material identification as a function of their spectral absorption features (Moran et al., 2004). However, although the use of hyperspectral imagery has generally shown promising results in surface SMC retrievals (e.g. Peng et al., 2013; Stamenkovic et al., 2013; Anne et al., 2014), usefulness of this technology needs to be further explored in the future (Minacapilli et al., 2009). Indeed, several limitations exist for hyperspectral sensors for the purpose of SMC retrieval, the most pertinent being the small spatial coverage of just 2-3 m, even at lower operating altitudes; thus inhibiting their use as a globally viable method for soil moisture mapping. 
Generally speaking, despite the multitude of optical sensors currently in orbit, a limited body of literature exists on the exploitation of visible, NIR, SWIR and/or hyperspectral EO observations on the retrieval of surface SMC. This seems to be due partly to the fact that the optical signal has limited ability to penetrate clouds and vegetation canopy, and is highly attenuated by the Earth’s atmosphere (Zhao and Li, 2013). In addition to SMC, soil reflectance measurements are also strongly affected by the many inherent physical properties of the soil itself (e.g. organic matter content, roughness, texture, angle of incidence, colour, plant cover), which makes reflectance measurement data highly variable depending on the ecological setting being monitored. This eventually makes the exploitation of such techniques impractical and often unviable solutions (Moran et al., 2004). Due to such noise controls, efforts to directly relate soil reflectance to moisture have only achieved success when models are fitted for specific soil types in the absence of vegetation cover (e.g., Muller and Décamps, 2000). Although it is generally accepted that techniques utilising reflected spectral information from only the reflective part of EMR are not able to offer a particularly viable solution for measuring SMC, they have the advantage of being based on a mature technology. Moreover, such methods are able to provide estimates of soil moisture at high spatial resolutions in comparison to other types of sensors (e.g microwave instruments), which is a significant advantage.
2.1.2 Thermal Infrared Methods 

The basic principle of thermal infrared (TIR) methods is that land surface temperature (LST) is sensitive to surface soil water content due to its impact on surface heating process (heat capacity and thermal conductivity) under bare soil or sparse vegetation cover conditions (Zhao and Li, 2013). The common scheme most often utilised in TIR remote sensing of SMC is to decouple the surface thermal properties from ambient temperature (daily temperature cycle) by calculating the thermal inertia (e.g. Minacapilli et al., 2009; Qin et al., 2013; Lei et al., 2014). Thermal inertia essentially describes a physical property that characterises the surface resistance to ambient temperature change (Soliman et al., 2013). Provided that parameters related to the atmosphere and meteorological conditions have been accounted for, surface temperature (Ts) is primarily dependent upon the thermal inertia of the soil. The thermal inertia, in turn, is dependent upon both the thermal conductivity and the heat capacity which increases with soil moisture (Price, 1982; Olsen et al., 2013). Therefore, by measuring the amplitude of the diurnal temperature change, one can develop a relationship between the temperature change and SMC. However, the relationship between diurnal temperature and SMC is a function of soil type and is largely limited to bare soil conditions (e.g. van de Griend et al., 1985). Nevertheless, recent studies have demonstrated that SMC could be estimated over partially vegetated soil if a linear relationship between ground flux and surface temperature is maintained (Maltese et al., 2013a,b). As a result, SMC estimation methods based on thermal inertia seem difficult to apply to large-scale soil moisture monitoring. Yet, the use of a new generation of portable thermal infrared sensors that can be installed in airborne platforms provide an opportunity to retrieve land surface temperature with a very high spatial resolution at smaller scales. Even though a direct application to field studies seems to be at present lacking (Minacapilli et al., 2009), results from these limited studies have been promising (e.g. Soliman et al., 2013).
A different approach employed in deriving regional estimates of surface SMC from TIR observations is based on measurements in the thermal bands of the EMR, through deducing near-surface SMC by Ts measurements (Friedl and Davis, 1994). In this framework, various empirically-based methods for mapping soil moisture over a given area have been suggested. Those have been based largely on developing correlations of surface SMC with radiometric satellite measurements in the thermal bands (Price, 1980). Such methods generally suffer from all the characteristics of an empirically-derived methodology (e.g. luck of transferability to other regions, fine-tuning, weakness to describe physical processes, etc). Yet, those approaches can provide estimates of surface SMC at fine spatial resolution, using radiometers that have reached a high maturity level in terms of technology. 

2.2 Microwave Remote Sensing Methods 
2.2.1 Passive Microwave Sensing of Surface Soil Moisture

Passive microwave remote sensing has been used to retrieve SMC for almost 35 years (Chen et al., 2012). Passive sensors (the so-called microwave radiometers) use very sensitive detectors to measure the naturally emitted intensity of microwave emission (at wavelengths λ = 1–30 cm) from the Earth’s surface, expressed as brightness temperature (TB). Similar to TIR remote sensing sensors, the emitted energy detected by passive microwave radiometers includes contributions from the atmosphere, reflected sky radiation, and the land surface. However, in contrast to the TIR wavelengths, atmospheric effects (namely atmospheric transmission and upwelling radiance) are negligible at frequencies below about 6 GHz (λ > 5 cm). The brightness temperature of the surface is related to its emissivity, physical temperature and contributions from the intervening atmosphere.
The interpretation and use of passive microwave signatures is however made complex by the influence of other surface variables, such as soil roughness and vegetation properties. It is known that the sensitivity to variations of soil moisture is maximum for bare and smooth soil, while it is reduced by an increase of soil roughness and/or vegetation biomass. Soil texture and variability in the temperature of both soil and vegetation also affect microwave retrieval, yet have much less of an influence (Guerriero et al., 2012). However, towards the longer-wavelength region of the microwave spectrum (i.e. λ > 10 cm), the effects of vegetation and roughness are greatly reduced.  Numerous approaches have been developed for retrieving soil moisture from microwave radiometric measurements, dealing differently with the various effects contributing to the surface microwave emission. 
Techniques based on mono-configuration observations; in terms of frequency, polarisations, and view angle, are well adapted to a very accurate analysis of airborne observations over well-defined and well-controlled areas. With regards to satellite observations utilising such techniques, the challenge is that they require the input of many physical parameters, some of which are currently not well-defined e.g. the emission/optical properties of the soil surface and vegetation cover in target frequency (Pan et al., 2014). Approaches utilising mono-configuration observations, such as the Land Surface Microwave Emission Model (LSMEM) (Gao et al., 2004), products developed by the United States Department of Agriculture (USDA) (Jackson and Hsu, 2001), and the L-band Microwave Emission of the Biosphere Model (L-MEB) (Wigneron et al., 2003; Montzka et al., 2013) have suffered from the lack of suitable parameters that produce accurate vegetation opacity and polarization mixing measured by the satellite sensors, and thus large errors and biases exists.  However, some studies, such as Pan et al. (2014), have shown that through developments and revisions to the algorithmic and methodological details of such models, biases and errors can be drastically reduced.  Yet, overall, in the case of satellite data, such techniques are generally not preferred when detailed information on the types and water content of vegetation cannot easily be obtained (Wigneron et al., 2003). A number of passive MW approaches account for vegetation effects on the microwave emission through deriving ancillary remote sensing indices. For example, Microwave Polarization Difference Indices (MPDIs) are an effective indicator for characterizing the land surface vegetation cover condition, and are proposed as a measure of differences in polarization signals and the soil dielectric properties, and therefore soil moisture (Chen et al., 2012). Such methods have generally shown satisfactory results in terms of SMC estimation (Paloscia and Pampaloni, 1988; Li et al., 2013). Nevertheless, the use of indices may have some disadvantages. For example, indices developed utilising optical data (e.g. NDVI, PVI, etc.) can be sensitive to cloud screening, atmospheric absorption, and scattering effects. Furthermore, sensitivity of vegetation indices to biomass amount is generally strongly dependent on the microwave frequency used, as it relates to the wavelength penetration depth within the vegetation layer. 
Soil moisture retrieval techniques based on two-parameter retrieval, have generally been used for the simultaneous retrieval of SMC and vegetation optical depth. However some studies have also utilised this technique for the multi-parameter retrieval of SMC and: i) the vegetation water content “VWC” (through the vegetation optical depth), ii) the surface roughness conditions, iii) the surface soil temperature, and iv) the vegetation temperature (in case of non-early morning brightness temperature measurements). Such techniques are well-suited to passive microwave observations using dual-polarization multi-frequency or multi-angular L-band observations (Peischl et al., 2014). Multi-angle observations can also provide a possibility to reduce the impact of noise, such as radio frequency interference (RFI) as experienced by the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity Mission (SMOS) (e.g. Oliva et al., 2012). Wigneron et al. (2003) has summarised the main assets of two-parameter retrieval techniques in comparison to other approaches as the following: (i) they do not require ancillary information from external sources to compute the optical depth, and, (ii) the retrieved variable computed by this type of methods is an index which is well-correlated to monitoring vegetation dynamics at a global scale. This index has also been found to be closely related to vegetation water content for crops and the total branch water content for forests (Ferrazzoli et al., 2002). Techniques based on three-parameter retrievals, allow for three parameters to be simultaneously retrieved from the passive MW observations, namely SMC, optical depth, and the effective surface temperature. In comparison to two-parameter retrieval techniques, three-parameter retrievals have the advantage of not requiring ancillary information about surface temperature. 
However, implementation of these approaches requires a good parameterization of the dependence of optical depth on the configuration parameters. Thus, the use of such techniques combined with remote sensing data has already been extensively examined through theoretical studies (Wigneron et al., 2003). For example, Calvet et al. (1995) and Njoku and Li (1999) showed that simultaneous retrievals of both soil moisture and surface temperature may be difficult for wet soil conditions. With regards to validation of three-parameter retrieval approaches, numerous studies have reported good retrieval accuracies and relatively low error distribution in comparison to in-situ and modelled observations (Li and Rodell, 2013; de Jeu et al. 2014; Mladenova et al., 2014). Generally such studies have indicated that model performance is generally higher over sparse to moderately vegetated regions, where a decrease in accuracy is evident when transitioning to denser vegetated regions. 
From the above, several important advantages and disadvantages regarding the use of this technology can be appreciated. One particular advantage is that in the absence of significant vegetation cover, SMC is the dominant parameter that affects the received signal (Njoku and Entekhabi, 1996). What is more, use of passive microwave radiometers is not limited by the presence of clouds, weather, or daytime only acquisition conditions, as is the case with the optical and/or thermal radiometers. However, exploitation of passive microwave in SMC retrieval has its drawbacks. Passive microwave instruments are typically characterised by broad spatial coverage and high temporal resolution, but also coarse spatial resolutions (~25–50 km; Wigneron et al., 2003; Moran et al., 2004). As a result, use of such data is more suitable for global scale studies rather than watershed management (e.g. Moran et al., 2004). Inversion of soil moisture from TB observations is not straightforward, as it is influenced by numerous factors such as surface roughness, vegetation cover, and soil texture (Chai et al., 2010). Finally, operation of those instruments at low frequencies is also restricted by the influence of RFI which affects brightness temperature quality. 

2.2.2 Active Microwave Sensing of Soil Surface Moisture 
Active microwave instruments supply their own source of illumination and subsequently determine the difference in the energy power between the transmitted and received electromagnetic radiation, often referred to as the backscatter coefficient. Active MW sensors can be divided into imaging (e.g. Synthetic Aperture Radar - SAR) and non-imaging sensors, the latter divided into altimeters and scatterometers. Scatterometers are generally used to obtain information on wind speed and direction over ocean surfaces (Elachi and van Zyl., 2006), although various applications to SMC retrieval have been used in the past (Dubois et al., 1995; Wagner et al., 1999a). Altimeters are used mainly to determine height measurements traditionally over oceans and in the cryosphere, although applications in geodesy, hydrology and the atmospheric sciences have also been explored. 
As in the case of passive MW sensing, the magnitude of the SAR backscatter coefficient is related to surface SMC through the contrast of the dielectric constants of bare soil and water. Also, the main perturbing factors affecting the accuracy of SMC retrieval include soil surface roughness and vegetation biomass (Moran et al., 2004). However, in contrast to passive MW, active MW sensing corrects for perturbing effects, and the connection between the backscattering coefficient and the surface reflectivity is more complex (Jackson, 2002). This is because in active MW sensing the geometric properties of the soil surface and vegetation have a greater effect on such measurements and simple correction procedures are difficult to be developed. Thus, several studies have proposed various methods, algorithms, and models relating satellite-based images of SAR backscatter to surface SMC retrieval, in particular from X-band SAR over bare soils (e.g. Baghdadi et al., 2012). However, radar signals of this wavelength (λ ~ 3cm) are not able to penetrate vegetation cover due to the way the dielectric permittivity of the biomass affects radar response, and active MW retrieval utilising lower frequencies are more applicable  (e.g. Jagdhuber et al., 2013; Vereecken et al., 2014) (e.g. Figure 3). Taking into account the various sensor configurations and surface parameters, many backscattering models have thus been developed over the past 30 years, generally categorised into three groups; theoretical or physical, empirical, and semi-empirical models. Another technique which is employed with a high operational implementation potential includes the use of single-wavelength, multi-pass SAR images for change detection. In the following sub-sections, a critical overview of these different modelling efforts of soil moisture from active microwave sensors is provided. 
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2.2.2.1 Empirical Models

Various studies have generally been proposed for deriving explicit relationships between the radar backscattering coefficient and SMC, reporting a range of different accuracies in SMC estimation. These studies have largely been based on experimental results and appear to be generally valid only to the surface conditions and radar parameters at the time of the experiment. Many of those empirically-based studies have generally shown that a linear relationship between the backscattering coefficient and SMC is a reliable approximation for one study site when the soil moisture lies in the range between approximately 10% and 35%, assuming that roughness does not change between successive radar measurements (Zribi et al., 2005; Gorrab et al., 2014). However, this linear relationship is not observed for surface backscatter models using surface roughness parameters and a dielectric constant corresponding to homogeneous soil. Instead, it is replaced by a relationship that saturates at soil moisture values of approximately 25% (Zribi et al., 2013). Various authors have proposed calibration approaches for adjusting those empirical models to other implementation conditions (Zribi et al., 2005; Baghdadi et al., 2008). Some studies have also suggested adding an exponential term in the linear relationship that describes the roughness influences on the backscattering coefficient (Zribi and Dechambre, 2002; Baghdadi et al., 2006; 2007). Notably, some authors have also suggested that processing the difference between one image acquired during the wet season and a reference image acquired during the dry season can further eliminate the effects of surface roughness (Baghdadi et al., 2011; Baup et al., 2011). This approach, a radiometric correction method for empirically based models, assumes that the soil roughness is unchanged between the two dates, and is a valuable condition over bare soils. 

Generally, use of empirical backscattering models, although a very simple and straightforward option for relating radar backscatter to SMC, is characterised by some drawbacks. These types of models are generally derived from specific datasets and implementation conditions (e.g. observation frequency, incidence angles and surface roughness). What is more, as there is no physical basis behind the models, their robustness is undermined (Verhoest et al., 2008). Another limitation of empirical models is that many high-quality in-situ soil moisture measurements are required over time for their implementation, which can be a costly and challenging task, and not always attainable. In order for such models to obtain a more widely applicable character, allowing their robust implementation independent of surface conditions and sensor configuration,  large in-situ databases of input data, and empirical models tuned over a variety of study sites, is required (Baghdadi et al., 2002). 

2.2.2.2 Semi-Empirical Models

Semi-empirical backscattering models start from a physical background and then use simulated or experimental data sets to simplify the theoretical backscattering model. They provide relatively simple relationships between surface properties and backscatter metrics that reflect, to a certain extent, the physics of the scattering mechanisms. Thus, such models generally offer a good compromise between the complexity of the theoretical models and the simplicity of empirical models (Panciera et al., 2014a). The key advantages of such models is that they are not site dependent (as is the case of empirical models), and can also be applied when little or no information about the surface roughness is available (Baghdadi et al., 2008). Nevertheless, the different semi-empirical models that currently exist are generally valid, in particular for bare soil surfaces (Moran et al. 2004). In some studies, such models have been shown to be quite accurate under sparsely vegetated soil surfaces (e.g. van Zyl et al., 2003), although errors increase with growing vegetation cover. Nowadays, two of the most widely used semi-empirical models include those developed by Oh et al. (1992) and Dubois et al. (1995). Details of their operational application and information on their use by the interested users’ community can be found for example in Barrett et al., (2009) and Verhoest et al. (2008). 

Briefly, the Oh model (Oh et al., 1992) relates the ratios of backscattering coefficients in separate polarisations to volumetric SMC and surface roughness. The model parameterisation is based on a large database of polarimetric data at multiple frequencies (L-, C-, and X-band) from truck-mounted scatterometer experiments. The model addresses both the co- and cross-polarised backscatter coefficient but does not account for multiple or secondary scattering processes. What is more, as the model parameterisation consists of soil surfaces with approximately the same correlation length, the Oh model application is restricted to surfaces of the same type as the ones used in the experiment. On the other hand, Oh model advantages include that only one surface parameter (namely surface roughness height) is required for its implementation, and also, when multi-polarised data are available, both the dielectric constant and surface roughness can be inverted without the need for field measurements (Álvarez-Mozos et al., 2007). Although the model is based on truck-mounted scatterometer measurements, it has been applied successfully to airborne and spaceborne SAR measurements (Koyama and Sato, 2013; Panciera et al., 2014a). However, a number of studies have also reported poor results under such circumstances (van Oevelen et al., 1999; Fung and Chen, 2004). The Oh model, since its original development, has been subject to several improvements, aiming largely to incorporate effects of incidence angle into the model (Oh et al., 1992), and to model cross-polarized backscatter coefficients (Oh et al., 2002). Oh (2004) ultimately introduced a new formulation in the model such that the correlation length could be ignored. 
In contrast, the Dubois model (Dubois et al., 1995) was initially formulated using scatterometer data collected at six frequencies between 2.5 GHz and 11 GHz. The inversion used expresses the dielectric constant as a function of the HH (horizontal transmit, and horizontal receive) and VV (vertical transmit, and vertical receive) polarised backscatter and specific radar configuration parameters (wavelength and incidence angle). For a given radar configuration and soil roughness, this model linearly relates the dielectric constant of a soil to the backscattering coefficient, expressed in decibels (dB). The validity of the model is restricted to ks (normalised surface roughness) < 2.5 and incidence angles larger than 30°, and only accounts for co-polarised backscatter (since these are less sensitive to system noise and are generally easier to calibrate and thus more accurate than cross-polarised backscattering coefficients). Provided that only two polarisations are required, the model can be applied to dual polarised systems and not just fully polarimetric systems, as is the case for the Oh model. A number of studies have used the Dubois model, reporting generally satisfactory results (e.g. Baghdadi and Zribi, 2006; Koyama and Sato, 2013; Mahdavi et al., 2014; Panciera et al., 2014a), with best results achieved over bare to sparsely vegetated surfaces (Neusch and Sties, 1999). On the other hand, various other investigators have reported not so satisfactory results (Baghdadi et al. 2006; Álvarez-Mozos et al., 2007). Some studies have suggested the coupling of both the Oh and Dubois models to create a merged product, namely, the Semi-Empirical Coupled (SEC) model. This model couples the two models’ best performances in simulating MW backscattering (σ°) in like-polarizations HH and VV, and cross-polarization VH (σ°HH, σ°VV, σ°VH), and also avoids using in-situ measured roughness data. Capodici et al. (2013) for example, utilised the SEC model concept with the aim of simultaneously retrieving both surface water content and surface roughness, and thus avoiding the use of in-situ measurements. Authors utilised SAR images acquired between April and August 2006 in Germany and indicated that the comparison between measured and modelled soil water content revealed a high agreement for bare and low-to-moderate vegetated soils. Furthermore, within the SEC model validity region, high correlations between measured and modelled SMC were also found, thus confirming the reliability of the SEC assessments.


Both of the semi-empirical models discussed previously do not take into account the surface power spectrum which is closely related to the surface roughness correlation function and correlation length. This is not consistent with all theoretical surface backscattering model predictions. In addition, they were developed from a limited number of observations which might have site-specific problems due to the nonlinear response of backscattering to the soil moisture and surface roughness parameters. To overcome these issues, Shi et al. (1997), developed an algorithm based on a single scattering Integral Equation Method (IEM) model including the effect of surface power spectrum. Since the number of independent SAR measurements was limited, its development relied on fitting the IEM model-based numerical simulations for a wide range of surface roughness and SMC conditions (IEM models are discussed in more detail later, see Section 2.2.2.3). In contrast to both the Oh and Dubois models, the Shi et al. (1997) approach differs in that no previously measured data are used in algorithm development, and the results serve to directly relate SAR measurements to theoretical model predictions. Furthermore, the Shi et al. (1997) algorithm was also derived using only L-band measurements (both airborne and spaceborne) with an incidence angle range of 25o to 70o. However, one similarity to the Dubois model is that the Shi et al. (1997) approach is only valid for co-polarised terms (Barrett et al., 2009).  
2.2.2.3 Physically-Based Models

The use of theoretical or physical models allows for simulating the radar backscattering coefficients in terms of soil attributes (e.g. the dielectric constant and the surface roughness) by accounting for the interactions between the microwave radiation and soil. In principle, the dielectric constant of the soil surface, and hence the SMC, can be estimated from the mathematical inversion of these models. Amongst their most important advantages is that the generality of such models is a property essential to avoid dependence on local site conditions and characteristics of the sensor, a situation that often occurs when working with evidence-based algorithms. They have a strong physical basis providing high accuracy in SMC retrieval (Notarnicola and Solorza, 2014), and can also be implemented in the case of specific roughness conditions. Yet, downsides of such models include their requirement for a large number of input parameters which make their parameterisation difficult and complex (Moran et al., 2004). Also, several of these backscatter models have failed because of difficulty in describing the soil roughness (Zribi et al., 2000), leading to many studies investigating the problem of defining optimal parameters that describe surface roughness (Davidson et al., 2003; Callens et al., 2006). Furthermore, the uncertainty characterising any electromagnetic forward model may cause retrieval inaccuracies. Nowadays, the standard theoretical backscattering models used in practice include the Kirchhoff Approximation (KA), which consist of the geometrical optics model (GOM) and physical optics model (POM), and the small perturbation model (SPM) (Ulaby et al., 1986). 

The IEM, is a physically based radiative transfer model developed by Fung et al. (1992) that calculates the backscattering coefficient of a bare soil, given the radar properties (wavelength, polarization), surface characteristics (dielectric constant and surface roughness) and local incidence angle. It essentially quantifies (or simulates) the backscattering coefficient as a function of the unknown SMC, surface roughness, and known radar configuration. In order to invert the IEM to dielectric constants (or soil moisture if a model that describes the dielectric constant-soil moisture relation is applied, e.g. (Hallikainen et al., 1985), several algorithms have been developed. Those have mostly been based on fitting IEM numerical simulations for a wide range of roughness and soil moisture conditions, including Look-Up Tables (LUT) (Rahman et al., 2007), neural networks (e.g. Satalino et al., 2002), or the method of least squares (e.g. Baghdadi et al., 2002; 2006; Oh, 2004). Many approximate solutions and improvements to the original version of the IEM have also been developed (e.g. the Advanced IEM (AIEM)) over the years (Santi et al., 2013; Zribi et al., 2013; Gorrab et al., 2014; Paillou et al., 2014) and used in numerous studies with varying SMC retrieval accuracy (Alvaraz-Mozos et al., 2007). 

Application of IEM to real world simulations has generally shown poor results (Baghdadi et al., 2006; Paloscia et al., 2008). The main difficulty of their use over natural surfaces is related to the sensitivity of the models to the surface roughness parameters and the difficulty associated with their correct measurement (Zribi and Dechambre, 2002). IEM also neglects scattering from the sub-surface soil volume which may be important for dry soil conditions and long wavelengths (Schanda, 1987). Therefore, the estimation of SMC from radar images, based on those backscattering models, requires a very detailed knowledge of the surface roughness only achievable through intensive roughness measurement campaigns. Generally, the testing of IEM has been mainly focused on C-band sensors (e.g. Baghdadi and Zribi, 2006; Paloscia et al., 2008; Santi et al., 2013), however more recently, some studies have begun assessing the model using L-band (Panciera et al., 2014a).
2.2.2.4 Single-wavelength, Multi-pass Radar Images for Change Detection

Another approach utilising active MW data in the retrieval of SMC estimates includes the use of single-wavelength, multi-pass radar images for change detection, rather than absolute soil moisture estimation (Albergel et al., 2009; Brocca et al. 2010; Hahn and Wagner, 2011; Naeimi et al., 2013). This approach is based on the assumption that the temporal variability of surface roughness and vegetation biomass is generally present at a much longer time scale than that of soil moisture. Therefore, the change in the radar backscatter strength received between repeat passes results from the change in soil moisture. Thus, a multi-temporal radar dataset can be used to minimize the influence of surface roughness and vegetation biomass, and maximize the sensitivity of radar backscatter to changes in SMC. By normalising the effects of surface roughness, soil type, and topography on the backscatter, such ratio techniques offer a relative soil moisture index varying from 0 to 1, related to distributed soil moisture variations. Change detection is an attractive technique because it presents a simple, albeit indirect way of accounting for surface roughness effects and heterogeneous land cover. Nevertheless, it should be noted that such methods cannot be applied for cultivated areas, as surface roughness and vegetation biomass change dramatically over short time periods. Furthermore, images must be acquired with the same sensor configuration to avoid the need for topographic corrections due to variations in volumetric SMC and image orientation. An overview of the different change detection methods is provided in Barrett et al. (2009). In their all-inclusive review, authors have proposed a categorisation of change detection methods for SMC retrieval into three groups, namely, differencing and ratioing, principal component analysis (PCA), and interferometric coherence.

Image differencing and ratioing are two of the simplest and most commonly used methods for change detection. Differencing involves the subtraction of backscatter intensity values between two different date images, while ratioing divides the intensity values between the two dates, usually followed by a thresholding operation. The primary advantage of those techniques is that, in cases where surface roughness and vegetation remain time-invariant, the difference in backscatter between two dates can be related directly to a change in the dielectric properties of the surface, and consequently to surface SMC. The ratio method is generally a more effective method in comparison to differencing, due to the fact that it is more robust to calibration errors (Villasensor et al., 1993; Barrett et al., 2009). Examples of studies having applied those types of methods include those of Thoma et al., (2006; 2008). 
PCA or eigenvector analysis is used in remote sensing for generating new image datasets that compress the information contained in a series of multi-temporal images into a reduced number of images (Jensen, 1986), leading to a more parsimonious description of the original data (Chen and Qian, 2011). A key advantage of this method is that it enhances key patterns in the data. However, the method assumes that the multi-temporal images used are highly correlated with each other, which might not always hold true in practice. A number of studies have demonstrated its use to map and monitor SMC and its changes across different environments (e.g. Verhoest et al., 1998; Kong and Dorling, 2008; Licciardi et al., 2014; Su et al., 2014). PCA has traditionally been constrained to multi-spectral optical datasets, although it’s utility when applies to SAR has recently been recognised (Licciardi et al., 2014).
A special category of change detection techniques include the use of the repeat-pass SAR interferometric techniques (InSAR). The method makes use of phase information to calculate the interferometric coherence between two or more SAR scenes to provide additional information, complimentary to that contained in the amplitude of the backscattering coefficient. Previous studies investigating the relationship between InSAR coherence and relative SMC have found promising results (Zhang et al., 2008; de Zan et al., 2014; Yin et al., 2014). However, establishing a unified relationship between the average phase shift and soil moisture changes when using single frequency and single polarisation sensors makes the prospect of deriving absolute values of SMC by InSAR complicated. Differential Interferometry SAR (DInSAR) is an advancement of the InSAR technique that is used to measure precise surface displacements on the Earth's surface that occurs between two different satellite passes. It has also been shown to produce centimetre-scale measurements of water-level changes over inundated vegetation such as in swamps and wetlands. Very few studies have been published to date that have been dedicated to the detection of soil moisture changes using spaceborne DInSAR (Hajnsek and Prats, 2008; Morrison et al., 2011; Barrett et al., 2013). Generally, the main limitations of the DInSAR technique for soil moisture determination is the temporal de-correlation of the signal, which leads to incomplete coverage of displacement values, especially in vegetated and agricultural areas. Future interferometric satellites such as DESDynl (Donnellan et al. 2008), Tandem-L (Krieger et al. 2009), and also the recently launched Sentinel-1, and ALOS-2, with shorter repeat cycles should significantly improve the coherence, and thus, the potential application of DInSAR for the detection of surface soil moisture changes (Barrett et al., 2013).  

Until recently, significant limitations were related to the use of SAR for watershed-scale applications due to their coarse repeat coverage time and their sun-synchronous orbits (where for example it can take 35 days for a repeat pass on the same orbital path (Moran et al., 2004)). Nevertheless, the increasing number of SAR systems and the short revisit interval of various sensors (TerraSAR-X and Cosmo-SkyMed) have now made it feasible to map surface SMC with high temporal frequencies (daily to weekly; Baghdadi et al., 2008). Additionally, some of the new generation sensors (ALOS-2, RADARSAT-2 and TerraSAR-X) are capable of operating in full polarimetric mode,  which typically utilises a linear polarization basis where the transmitter alternates between horizontally and vertically polarized pulses and the receiver simultaneously receives horizontal and vertical polarizations, providing four channels of imagery (HH, HV, VH, VV). In these quad polarised systems, the complete scattering matrix can be constructed by superposition, i.e. all possible permutations can be represented as a mixture of two orthogonal basis vectors (Bourgeau-Chavez et al., 2013; Ouellette et al., 2014). Once the scattering matrix is established, the target is completely characterized and its polarimetric response can be calculated for any incident polarization (Kelley and Stutzman, 1993). Thus, polarimetric SAR provides additional information on its structural variation, and provides an observation space enabling the interpretation and decomposition of different scattering contributions (Bourgeau-Chavez et al., 2013; Jagdhuber et al., 2013).

2.3 Synergistic Methods in SMC Retrievals from Space
An alternative group of methods employed for deriving surface SMC from EO datasets includes those based on the fusion of spectral information acquired from sensors operating at different parts of the EMR. Those approaches have been developed to primarily address the complementarity and interchangeability between the different types of remote sensing data. Also, their development has been simultaneously driven from the requirement to address and resolve the difficulties encountered in discriminating between the multiple influences on radar backscatter (mainly due to biomass amount and surface roughness) from SMC (Moran et al., 2004; Barrett et al., 2009). The vast majority of such synergistic methods have proposed to examine the synergy between: 

a) Optical with thermal EO data
b) Active (scatterometer and/or SAR) and passive (radiometer) microwave  EO data
c)  Microwave (mainly SAR) with optical/TIR EO data. 
Ιn the remainder of this section, a critical reflection on the range of data fusion techniques is discussed. As before, the objective of this section is to give emphasis to the necessity for the progress made towards the developments of such techniques, as well as to address their relative strengths and limitations in comparison to approaches that have already been reviewed herein.
2.3.1 Synergistic Methods of Optical with Thermal Infrared Observations

A significant number of investigations have been focused on examining the potential for deriving surface SMC from the synergistic use of remote sensing observations acquired simultaneously in the optical (visible near infra-red and thermal infra-red) parts of the electromagnetic spectrum. Petropoulos et al. (2009) provided an all-inclusive overview of the available Ts/Vegetation Index (VI) techniques for deriving regional estimates of surface SMC, including also a discussion of the main factors driving the shape of the Ts/VI scatterplot. 
In particular, a noteworthy amount of research has documented the potential of obtaining information about surface SMC from heterogeneous land surfaces when remotely sensed Ts and VI measures are plotted in two-dimensional feature space. Briefly, such a Ts/VI scatterplot is largely bounded by a triangular domain (Figure 4), where the top of the triangle corresponds to full vegetation coverage and the base of the triangle corresponds to bare soil. Between the triangle top and its base, the majority of the triangle corresponds to land with varying fractional vegetation cover (Fr). High temperature pixels correspond to dry soil conditions, while lower variability is observed in the case of wet soil conditions. For areas fully covered by vegetation, Ts actually represents vegetation canopy temperature (Petropoulos et al., 2009). In a case of water shortage, vegetation would close parts of stomata to reduce transpiration in order to avoid excessive water lose, which causes an increase of canopy temperature. As a result, vegetation canopy temperature is regarded as an indicator of vegetation water status, further demonstrating its potential as a globally applicable indicator of SMC change. Ts reflects SMC of bare soil surface, soil at the depth of 2 cm, as well as SMC in the root zone (Gitelson, 2004; Petropoulos et al., 2009). On the other hand, remote-sensed normalised difference vegetation index (NDVI) is also a common index used to reveal vegetation growth, and it is strongly related to vegetation vigour. This Ts/VI domain can thus be related to SMC based on the assumption that there is an increased variability in Ts over bare soil (particularly over dry surfaces) than over fully vegetated surfaces, which is due to the variations in surface SMC. 

Several studies have attempted to relate the satellite-derived Ts/VI feature space either directly to surface SMC, or indirectly, by linking the physical properties of this feature space to environmental variables mainly related to drought conditions. Sandholt et al. (2002) first proposed a technique for deriving direct estimates of surface SMC by linking the Ts/VI scatterplot with an index, which they termed the Temperature-Vegetation-Dryness-Index (TVDI). Validation of their method using Advanced Very High Resolution Radiometer (AVHRR) data conducted against simulated SMC maps produced by the MIKE SHE distributed hydrological model (Abbott et al. 1986) at a test site in West Africa, indicated spatially similar patterns in the distributed estimates of soil moisture (R2 = 0.70). Not long after, Vicente-Serrano et al. (2004) examined the spatial relationships of soil surface moisture derived from the Sandholt et al. (2002) methodology applied to both AVHRR and Landsat ETM+ images acquired over a study site in northeast Spain. In their work, in place of NDVI, authors used the Fr computed as a normalised NDVI as input to the TVDI method, as originally proposed by Choudhury et al., (1994). Their results showed a close correlation of the SMC estimates derived from the two datasets (R ~ 0.66), similar to correlations between Ts and NDVI (R~0.74 and R~0.76, respectively). 

Recently, Holzman et al. (2014) investigated the potential of the original TVDI method of Sandholt et al. (2002) to estimate SMC over four agro-climatic zones of the Argentine Pampas using products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Their results indicated that monthly soil moisture data plotted as a function of TVDI showed that higher values corresponded to lower TVDI, where a linear relationship was found with R2 values ranging from 0.61 to 0.83. Subsequently, authors assessed the level of precision that could be expected from the TVDI to estimate crop yield, ultimately assessing the relationship between crop yield and SMC. Authors reported that their model accounted for between 68–81% of the yield variability, with RMSE approximate values ranging between 66 and 550 kg ha−1. Results demonstrated the aptitude of a Ts and VI combination to reflect crop water conditions. Zhang et al. (2014a) proposed a scheme based on a Ts/VI feature space, constructed using the mid-morning land surface temperature rising rate in place of the temporal variations in land surface temperature (LST), to estimate SMC from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI).  Investigators validated the so-called Temperature Rising Rate Vegetation Dryness Index (TRRVDI) against 19 meteorological stations in Spain and reported a mean coefficient of determination (R2) of 0.46 and an RMSE of 4%, meeting the application requirement for SMC retrieval. Zhang et al. (2014a) indicated that the greatest advantage of this method lies in the fact that the TRRVDI substitutes the temporal variation of LST for the instantaneous LST, which reduced uncertainty in estimating SMC. However, the need for many ground auxiliary data and complicated calculation processes provided inherent difficulties. 
Evidently, as discussed above, the TVDI method suggested by Sandholt et al. (2002) has been utilised in numerous studies to indirectly assess the spatio-temporal variations of surface SMC by use of surface energy balance algorithms, or an empirical relationship between SMC and the TVDI. However, the requirement of huge data grids in large-scale areas is a limitation due to the fact that Ts/VI slopes obtained at local scales cannot be applied to estimate the TVDI at large spatial scales because the insignificant local-specific factors of SMC, such as vegetation type, topography, net radiation, and cloud cover, which could all have an influence on the Ts/VI slopes (Patel et al. 2009; Hahn and Wagner, 2011).  Cho et al. (2014) thus proposed a study to explore the use of a negative linear relationship between SMC and the TVDI, by application of 16-day scaled MODIS data in the Sahel, to establish an evaluation method of SMC grid data. Cho et al. (2014) reported that correlation coefficients showed a high negative correlation ranging from −0.9 to −0.7, and that correlations differed spatially according to vegetation distribution. Their results indicated that such methods were useful in developing validation methodologies for SMC grid data in an alternative way under conditions of insufficient in-situ point measurements.

Various investigators have also attempted to relate the satellite-derived Ts/VI feature space to drought conditions, and thus indirectly to surface SMC distribution. Such studies have been largely based on the computation of spectral indices combining information from both the reflected and TIR emitted parts of the EMR spectrum. For example, Wan et al. (2004) proposed the use of the Vegetation Temperature Condition Index (VTCI) for retrieving information on the spatial variation in drought conditions. Authors suggested that VTCI isolines could be drawn in the Ts/NDVI scatterplot with the upper limit of the triangle representing the NDVI maximum, and the lower limit representing Ts at maximum NDVI. Parida (2006), using 8-day composite Terra-MODIS NDVI and the surface temperature products for a test region in India, demonstrated the ability of VTCI to detect drought stress. In another study, Katou and Yamaguchi (2005) used the Normalized Difference Water Index (NDWI, Gao (1996), NDVI and Ts to calculate the Vegetation Water Temperature Index 1 (VWTI1) and 2 (VWTI2), to measure the strength of stress and influence of stress on vegetation, respectively. Ghulam et al. (2006) developed a new drought monitoring method, the perpendicular drought index (PDI), using reflectance of NIR and red bands of the ETM+ image based on the spectral patterns of soil moisture variations in the NIR–Red space. Following this, Qi et al. (2008) compared the PDI with other drought monitoring indices including the Temperature-Vegetation Index (TVX) using MODIS images for a region in northwest part of China. Their results showed a correlation of both the satellite based PDI and TVX indices, with 0–20 cm averaged soil moisture obtained over the meteorological observing stations across the whole study area with R2 of 0.48 and 0.40 for the PDI and TVX respectively. Although PDI performs well under low vegetation fraction cover conditions it performs poorly under high vegetation coverage. To overcome this limitation, several studies have examined the use of a modified PDI (MPDI) to monitor soil moisture under high vegetation fraction condition, where NDVI was used to estimate vegetation fraction with positive results (Zhe and Debao, 2014). 
Rahimzadeh-Bajgiran et al. (2013) proposed a new approach to estimate SMC from the remotely sensed Ts/VI concept based on the relationship between evaporative fraction (EF) and SMC. A number of models have been developed to estimate EF using the Ts/VI method; however they have generally been used in the estimation of evapotranspiration (ET) (Jiang and Islam, 2001; Nishida et al., 2003). In their study, Rahimzadeh-Bajgiran et al. (2013) modified an EF model, originally presented by Jiang and Islam (2001) for the retrieval of ET, by incorporating North American Regional Reanalysis (NAAR) air temperature (Ta) data into a MODIS based remotely sensed Ts/VI over two areas in Canada. Two different combinations were proposed by the authors, Ts−Ta Aqua-day and Ts−Ta Terra-day, and the results were compared with those obtained from a previously improved model (ΔTs Aqua-DayNight) as a reference. Authors utilised two empirical models, namely the Komatsu (2003) and Lee and Pielke (1992) models, to convert the MODIS-derived EF data to SMC values. Their results indicated that the Ts−Ta MODIS Aqua-day and Terra-day approaches resulted in better estimations of SMC (on average higher R2 values and similar RMSEs) as compared with the ΔTs reference approach, whereas the equation presented by Lee and Pielke (1992) better predicted soil moisture variations based on EF. 
An alternative approach has been based on the coupling of the Ts/VI domain with a Soil Vegetation Atmosphere Transfer (SVAT) model. SVAT models are essentially vertical views of hydrological processes that consider the transports of water and energy just below the surface across the interface and within and through the vegetation canopy. In this group of methods, estimated surface SMC is obtained indirectly from a parameter called the ‘moisture availability (Mo)’, loosely equated with the fraction of field capacity for the surface SMC. A recent overview of this method, termed the “triangle” method, can be found in Carlson (2007) and Petropoulos and Carlson (2011) (Figure 4).
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This group of methods has its origin in the early 90’s, where Carlson et al. (1990) proposed a method which provided estimates of SMC as well as of surface energy fluxes over partially vegetated canopies. In their approach, authors suggested the use of a boundary layer model (BML) and two image products: the Ts/NDVI scatterplot and the “arch” diagram (Coakley and Bretherton, 1982). Based on this technique, Gillies and Carlson (1995) introduced a new technique for the retrieval of spatially distributed maps of surface SMC (i.e. essentially Mo), termed the “triangle” method. In this approach, the outputs from a SVAT model were coupled with the Ts and the Fr, as the latter is a physical quantity in terms of a SVAT model, via empirically-derived correlations developed between the relevant input (e.g. Fr, Mo) and output (e.g. LE, Ts) parameters of the physically-derived model, parameterised for the time of satellite overpass. More recently, Wang et al. (2007) suggested the retrieval of surface SMC using a variant of the “triangle” method. One of the most interesting aspects of their method was the use of regression equations in place of the SVAT model for deriving the inversion equations. This was done by combining ground measured soil moisture with MODIS scaled NDVI and land surface temperature products. Investigators using MODIS data acquired at 1km spatial resolution over a region in eastern China for a period of three years demonstrated the feasibility of deriving SMC using their proposed scheme. Various studies have been concerned in evaluating the ability of the "triangle" method and of its variants in deriving regional estimates of SMC using different types of EO data (Capehart and Carlson, 1997; Gillies et al., 1997; Petropoulos & Carlson, 2011; Zhang et al., 2014a). Generally, results from those studies have indicated an ability of this method to provide SMC estimates with a standard error of about 10%. 
Using synergistic techniques between optical and thermal EO data comes with the inherent limitations that are commonly found with all optical and thermal infrared techniques (i.e. shallow soil penetration, need for cloud-free conditions, and infrequent coverage at spatial resolutions suitable for watershed management). As was discussed, some of the techniques are often empirical, suffering from the limitations commonly found in approaches of an empirical nature (e.g. transferability limited, site-specific results, calibration requirement, variability across time and land cover types, etc). Also, for their practical implementation, many of the synergistic methods require a full or at least very wide range of both NDVI and SMC conditions within the study region, a requisite that generally cannot always be satisfied, particularly over large homogeneous areas. On the other hand, a key advantage of such methods is their simplicity in terms of their implementation, as well as the requirement of easily obtained parameters from remote sensing data (namely a VI and Ts). Those techniques, also include all the advantages of both the optical and TIR methods reviewed previously (i.e. provide fine spatial and temporal resolution for SMC estimation, use of mature technology, data easily accessible from operational satellites, long historical data). These perhaps justify the continuous interest of the scientific community in these methods to date, specifically the “triangle” of Gillies et al. (1997). Although its implementation requires some degree of expertise by the user and also a large number of input parameters, the method implementation appears to have a distinct superiority over other approaches. Those include its ability to provide a non-linear interpretation of the Ts/VI space, and thus a solution for the computation of the spatially distributed estimates of SMC. Furthermore, in comparison to other Ts/VI methods, the “triangle” has already demonstrated a potential to construct similar Ts/VI “triangles” on successive days (see review by Carlson, 2007). This allows monitoring changes of SMC and its relationship with respect to other surface processes or phenomena (such as urbanisation – e.g. Owen et al., 1998; Arthur-Hartranft et al., 2003). 

2.3.2 Active and Passive Microwave Data Fusion

Both active and passive MW have demonstrated a potential for deriving estimates of surface SMC. They have comparable sensitivities to soil moisture and near-similar sensitivities to surface roughness parameters (see Du et al., 2000), however, each sensor is sensitive to different surface properties. In particular, active systems are likely to be more sensitive to surface features such as surface roughness and vegetation biomass and structure, whereas a passive microwave radiometer is likely to be more sensitive to the near surface SMC (Njoku et al., 2000; Lee and Anagnostou, 2004). Furthermore, active systems have a clear and very important advantage over passive sensors, that being their finer spatial resolution. This increased spatial resolution, when combined with passive EO data that are less sensitive to backscattering contributing factors, allows resolving the effects of contributing factors to the backscattering signal received, and potentially determines the sub-pixel variability of passive-derived soil moisture with the finer resolution active MW data. 

This potential synergy between active and passive MW data has thus been examined in many studies. Those have generally taken the form of determining the vegetation amount and surface roughness parameters from active observations, and combining them with the much coarser spatial resolution passive microwave observations of brightness temperature to retrieve regional surface SMC. However, the rarity of such datasets has impacted progress in the development of methodologies for their combined use (Liu et al., 2013). Between other investigators, Njoku et al. (2002) and Liu et al. (2012) have all underlined that integration of active and passive observations as an effective method for deriving estimates of SMC. For example, Bindlish and Barros (2000) investigated the compatibility of SAR and ESTAR (Electronically Scanned Thinned Array Radiometer) to determine sub-pixel variability of retrieved soil moisture, successfully downscaling values from 200 m to 40 m. Lee and Anagnostou (2004) proposed a method combining observations from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) channel and the Precipitation Radar (PR) to estimate near surface SMC and vegetation properties. Evaluation of their technique was performed for a region of Oklahoma, USA, using satellite data from three consecutive years. All in all, their study demonstrated that use of coincident passive/active microwave observation has the potential to increase the number of estimated geophysical variables, especially, in cases of moderate to low vegetation. Li et al. (2013) evaluated two SMC retrieval methods based on the synergy of passive and active observations. 
The two retrieval methods were applied on the Advance Microwave Scanning Radiometer (AMSR-E) for the Earth Observing System (EOS) and QuikSCAT/Seawinds (The Seawinds scatterometer on the National Aeronautics and Space Administration’s (NASA) Quick Scatterometer) observations which were carried out for the SMEX03 (Soil Moisture Experiment 2003) region, north of Oklanoma. The two compared methods included the three parameter retrieval (THRA) and the two parameter retrieval (TWRA) approaches. These two methods were principally different in the way that roughness parameter was estimated. Results from this study showed the TWRA achieved a higher accuracy than THRA in dealing with the active and passive MW observations at different overpass times, with a RMSE of 0.037 and 0.089 m3 m-3 respectively. It should be noted that with the recent launch of the NASA Soil Moisture Active Passive (SMAP) mission, a number of studies have examined approaches to enhance and refine algorithms and techniques from current synergistic active/passive approaches with the aim of transferability to the sensor post-launch (e.g. Liu et al., 2013; Panciera et al., 2014b; Rudiger et al., 2014; Shi et al., 2014). Such studies are vital within the calibration and validation framework of the mission. More recently, promising developments have been made on merging global-scale active and passive sensor data, through the European Space Agency`s Water Cycle Multi-mission Observation Strategy (WACMOS) and the soil moisture Climate Change Initiative (CCI) projects (Dorigo et al., 2014).
2.3.3 Microwave & Optical/Thermal Infrared Data Fusion

Fusion approaches which foster the synergy between microwave and optical and/or TIR data have also been proposed. Key advantages of the optical/IR techniques include that they are able to provide fine spatial resolution SMC estimation at a relatively fine temporal resolution, suitable for watershed applications. What is more, some methods based on the synergy between optical and TIR data have shown promising potential in deriving estimates of surface SMC over partially vegetated, fragmented ecosystems. On the other hand, in comparison to optical/TIR data, radar MW technology reacts differently to the biophysical and geophysical parameters of the land surface objects and has demonstrated a quantitative ability to estimate SMC physically for most ranges of vegetation cover. However, the channel frequencies and the spatial resolution of current satellite MW radiometers are not optimal for land remote sensing, mainly due to practical problems in supporting a large, low frequency antenna in space. Also, there are issues related to the large spatial resolution of those systems, mainly concerning the effect of mixed pixels and the separation of the different factors affecting backscatter intensity in order to derive soil moisture. 

In this context, attempts have been focused on exploiting the relative advantages of MW as well as optical/IR remote sensing approaches for a more accurate determination of surface SMC. Following the evolution of satellite technologies, researchers working in this direction have mostly investigated the contribution of SAR images to optical and/or TIR images in order to more accurately determine SMC. A key advantage from the synergistic use of SAR microwave with optical/TIR data specifically, is that it allows for the minimisation of vegetation biomass and surface roughness effects on the radar backscatter. However, when such synergies are employed, care should be taken when addressing issues related to data scaling at identical resolution. Also validation of the derived SMC estimates need to be carefully looked after, taking into account the different SMC measurement depths between the instruments (Moran et al., 2004). 

Kurucu et al. (2009) proposed a pixel-based image fusion technique for determining soil moisture regionally, based on the synergistic use of observations from Radarsat-1 Fine Beam mode (SAR image) with SPOT-2 imagery. In their scheme, the image fusion approach allowed the backscatter value of Radarsat-1 to be added to the intensity band. Hence the fused image was able to provide a better result regarding the water/moisture content of the planted fields. Authors evaluated the usefulness of their proposed technique for a partially vegetated region in Turkey for which gravimetric SMC estimates were available. Authors concluded that fusion of C band Radarsat-1 fine beam images with a band 3 NIR SPOT-2 image was able to provide important contributions in examining soil features. In another study, Temimi et al (2010) recommended a methodology for deriving regional estimates of soil surface moisture content based on the synergy of passive MW data from AMSR-E instrument with visible wavelengths of MODIS, and also topographic attributes derived from the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM). In their method, the MODIS images were used to derive the fractional vegetation cover required for computing a modified wetness index and to assess the vegetation dynamics and growth by the MODIS Leaf Area Index (LAI) product. On the other hand, the passive microwave AMSR-E 37 GHz data and discharge observations were used to determine a basin wetness index (BWI). This index is sensitive to the total amount of liquid water at/near the soil surface in the watershed (i.e. soil moisture and flooded areas). Investigators demonstrated the usefulness of their technique in mapping the spatial and temporal evolution of soil wetness in the Peace Athabasca Delta, located in the Mackenzie River Basin in Canada. Authors reported a high correlation between the disaggregated wetness index computed by their method and observed precipitations with an R near 0.7. 
The potential of the synergy between MW, optical and TIR observations for deriving regional estimates of surface SMC is further documented from the fact that one such technique was recently implemented in an operational scheme. More specifically, Chauhan et al. (2003) proposed a variation of the Ts/VI “triangle” method of Gillies et al. (1997) for the operational retrieval of 1 km surface SMC maps from the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Their technique was based on the synergy between the microwave-derived soil moisture estimates from the Conical Scanning Microwave Imager/ Sounder (CMIS) with the optical/infrared instrument Visible/Infrared Imager Radiometer Sensor Suite (VIIRS). Full details of their methodology are available in Chauhan et al. (2003). As regards the current status of the implementation of the Chauhan et al (2003) methodology, in June 2006 a decision was made by NPOESS for the CCMIS instrument to be replaced by another, less complex microwave instrument, the Microwave Imager Sounder (MIS). The VIRRS and the MIS instruments have now been planned to be launched in the same NPOESS platform, starting from year 2016 and will be followed by another three platform launches until approximately 2026. 

The ESA SMOS mission, launched on 2nd of November 2009, is an unprecedented initiative to provide global soil moisture and ocean salinity maps. It is also the first ever L-band satellite dedicated to the global measurement of the Earth's near-surface soil moisture. Although the spatial resolution of SMOS observations is adequate for many global applications (~40 km), it has restricted use in regional studies over land, where a resolution of 1–10 km is generally needed (Piles et al., 2010). In this context, the combination of SMOS data with higher resolution data coming from other sensors offers a potential solution to decompose or disaggregate global soil moisture estimates to the higher resolution required (Piles et al., 2011). Thus, Piles et al. (2010) proposed a variation of the “triangle” method to derive a downscaling algorithm to synergistically combine L-band microwave estimates of soil moisture with VIS/IR data. The downscaling approach was built on the “triangle” concept of Chauhan et al. (2003): it consisted of aggregating high resolution VIS/IR land surface parameters to the scale of the microwave observations for the purpose of building a linking model that was afterwards applied at fine scale to disaggregate the passive soil moisture observations into high-resolution soil moisture (Piles et al., 2011). Initially, Piles et al. (2010) applied the downscaling technique to soil moisture estimates from the Airborne RadIomEter at L-band (ARIEL) utilising high resolution visible/infrared data from Landsat over the REMEDHUS soil moisture network. Preliminary results from their initial study were promising, showing that with the downscaling approach it was feasible to improve the spatial resolution of the soil moisture estimates from 50 m to 30 m, whilst also improving its radiometric resolution. However a full validation of the method was not applied. Piles et al. (2011) extended the downscaling algorithm to apply a downscaling approach to improve the spatial resolution of SMOS soil moisture estimates using MODIS-derived NDVI and Ts data. They applied the method to some of the first SMOS images acquired during the commissioning phase and their results were validated against in-situ soil moisture data from the OZnet soil moisture monitoring network, in South-Eastern Australia. Their results showed that the soil moisture variability was effectively captured at 10 and 1 km spatial scales without a significant degradation of the RMSE.
A number of studies have followed up the Piles et al (2011) study, exploring and validating the SMOS downscaled product in relation to changing external factors. Sanchez et al., (2012), examined if several critical factors such as the topography, precipitation, and land use were related to downscaled SMOS soil moisture fields, and to determine if one of these factors dominated the spatial distribution of soil moisture. Results from their study indicated that the spatial correlations between downscaled and spatial factors exhibited no clear patterns considering topography (Topographic Wetness Index, TWI), or land use (Landsat classification); however there was a noticeable relationship with the spatial distribution of precipitation (Antecedent Precipitation Index, API), with significant correlations varying between 0.24 and 0.55. Piles et al. (2014) also examined if land use had a distinct effect on the accuracy of the downscaling algorithm by combining 2 years of SMOS and MODIS Terra/Aqua data over the Iberian Peninsula into fine-scale (1 km) soil moisture estimates. They examined the correlation between SMOS downscaled high-resolution maps and ground-based observations from the REMEDHUS network aggregated per land-use to identify spatial patterns related with vegetation activity and soil type. The impact of using MODIS Terra or Aqua LST in the algorithm was also analysed. Their results demonstrated that the disaggregated soil moisture maps capture soil moisture dynamics of general land uses with the exception of irrigated crops, and spatial patterns related with vegetation phenology and seasons were clearly identified. Authors indicated that the use of Terra LST in the algorithm yielded more accurate results, however downscaled maps using Aqua LST yielded broadly consistent results, supporting  the use of Aqua LST when Terra LST is not available (e.g., masked by clouds). A number of studies have also examined how changing algorithmic or methodological aspects of the downscaling method could affect estimation accuracy (Piles et al., 2012; Srivastava et al., 2013b; Sánchez-Ruiz et al., 2014). 
3. Operational Estimation of SMC by Remote Sensing

We are currently entering a new era for EO data, with the onset of numerous satellite missions and remote sensing radiometers (Petropoulos et al., 2013b). Satellite missions have been providing soil moisture data globally for a total of 37 years (Wagner, 2007); however, in order to gain a holistic understanding of global hydrological processes, observation of SMC must be undertaken at a range of different observational scales (Vereecken et al., 2014). This is evidenced, by the advent of new SMC operational products from a range of different space agencies globally. Such an example is the recently launched SMAP mission, which aims to provide soil moisture estimation at favourable temporal and spatial resolutions suitable for a range of scientific disciplines, for an overview see Table 2.  

[TABLE 2 HERE]

3.1 ASCAT

ASCAT is a radar instrument onboard both the Metop-A (launched on 19 October 2006) and Metop-B (launched on 17 September 2012) platforms. The ASCAT operational SMC product is currently distributed at two spatial resolutions; at 25 km and 12.5 km. Level-2 soil moisture product data include the soil moisture given in swath geometry at 25 km resolution. This product provides an estimate of the water saturation of the 5 cm topsoil layer, in relative units between 0 and 100 [%]. The Level-3 processing product is the Disaggregated Surface Soil Moisture product, which is the disaggregated version of the Level-1 product at 12 km resolution. Both products are distributed by EUMETSAT.  

Operational SMC estimation from ASCAT is realised by converting the backscatter measurements to soil moisture by applying the soil moisture retrieval algorithm developed by TU Wien (Naeimi et al., 2009a,b; 2013). This is essentially a modified version of the change detection algorithm, originally developed for soil moisture retrievals from ERS- 1 and 2 (Wagner et al., 1999a, b) after some minor modifications. Briefly stated, instantaneous backscatter measurements are extrapolated to a reference incidence angle (taken at 40°) and compared to dry and wet backscatter references. By knowing the typical yearly vegetation cycle and how it influences the backscatter-incidence angle relationship for each location on the Earth, the vegetation effects can be removed, revealing the soil moisture variations. The historically lowest and highest values of observed soil moisture are then assigned to the 0% (dry) and 100% (wet) references respectively and the Soil Moisture Index (SMI) is then computed. Considering that there is a linear relationship between SMC and radar backscatter, this results in a relative measure of surface (<2 cm) soil moisture that ranges between 0 (wilting point) and 100% (saturation) and SMI and direct estimates of soil moisture can be derived by multiplying it with the soil porosity. Areas covered by snow/ice and also any missing data are masked out from the algorithm and product delivery. The ASCAT SMC product has also been utilised to estimate profile soil moisture, which cannot be directly measured by remote sensing, through the development of the Soil Water Index (SWI). This SWI is produced from ASCAT SMC estimates using a two-layer water balance model which describes the relationship between surface and profile soil moisture as a function of time. It provides a modelled profile estimate of daily global soil moisture conditions within the underlying soil profile for eight characteristic time lengths representing different depths (Kidd et al., 2012; Paulik et al., 2014). Paulik et al. (2014) proposed a validation exercise comparing SWI estimates to in-situ soil moisture data from 664 stations belonging to 23 observation networks of the International Soil Moisture Network (ISMN) for the period between 2007 and 2011. Their results indicated a mean correlation coefficient of 0.54, and an RMSE of 0.062%, whereas the characteristic time length which showed the highest correlation increased with in-situ observation depth, confirming the SWI model assumptions.
The ASCAT soil moisture product has undergone several validation exercises (e.g. Bartalis et al. 2007; Brocca et al., 2009; 2011; Albergel et al., 2009; Sinclair and Pegram, 2010; Abelen and Seitz, 2013; Naeimi et al., 2013). All in all, different validation experiments of the ASCAT SMC have generally shown variant estimation accuracy of soil moisture by ASCAT, but many of those studies have shown that the expected average RMS error of the ASCAT soil moisture index is about 25%, which corresponds to about 0.03-0.07 m3 of water per m3 of soil depending on soil type. However, the results from such studies also show that more work is required on soil moisture retrieval over deserts to understand the complex backscatter mechanism in such regions, and also for the correction of wet references in the areas where soil never reaches the saturation point (Naeimi et al., 2009a,b).

Generally speaking, change detection is a very promising technique in surface SMC retrieval from microwave observations. However, perhaps the fundamental problem, with the TU Wien SMC operational algorithm in particular, lies in the strong variability of backscattering with incidence angle which is dependent on the vegetation and soil state and is thus highly variable. Increasing SMC and vegetation biomass both tend to increase radar backscatter. Thus, there is generally a higher sensitivity and thus a lower uncertainty in the use of the TU Wien algorithm over agricultural regions, shrubs and grasslands, and notably a degradation of backscatter retrieval quality over anisotropic surfaces. Complex topography has also been shown to significantly increase the azimuthal noise related to the amount of incident energy returning to the sensor, increasing retrieval uncertainty (Naeimi et al., 2013). Also vegetation cover effects become more pronounced at high incidence angles (Ulaby et al., 1986). In such cases, but also in cases of significant land surface cover changes (e.g. over dense forested areas), algorithm use might be more challenging. 

3.2 AMSR-2

The AMSR-2 on board the first generation Global Change Observation Mission - Water (GCOM-W1 or “SHIZUKU”) satellite, is a multi-frequency, total-power microwave radiometer system with dual polarization channels for all frequency bands (Imaoka et al., 2010; Kachi et al., 2014). The sensor is a successor of AMSR on the Advanced Earth Observing Satellite-II (ADEOS-II) and AMSR-E on NASA’s Aqua satellite. The GCOM-W1 satellite was launched from JAXA Tanegashima Space Center on May 18, 2012 (JST) and was installed in front of the Aqua satellite to keep continuity of AMSR-E observations and provide synergy with the other A-Train instruments. JAXA released AMSR-2 geophysical parameters to the public though the GCOM-W1 Data Providing Service System (https://gcom-w1.jaxa.jp).  Level 1 data has been distributed to the public since January 25, 2013, and Level 2 and 3 products since May 18, 2013 (Kachi et al., 2014). 

AMSR-2 succeeded most of the characteristics of AMSR-E, with some important improvements. Major changes from AMSR-E include the larger main reflector with 2.0m diameter to provide better spatial resolution at the same orbital altitude of about 700km, addition of 7.3GHz channels to identify and remove the RFI signals, 12bit quantization for all channels, and improvements in calibration system (Imaoka et al., 2010). For validation of AMSR-2 standard products, JAXA implemented two types of activities in cooperation with other researchers and projects. The first category utilised existing ground observation networks maintained by operational agencies and instantaneous observations by other satellites and instruments. The other category included implementing specific field campaigns and monitoring focusing on specific parameters in collaboration with other projects, especially for land surface variables, such as soil moisture content (Kachi et al., 2013). AMSR-2 soil moisture content has been validated by comparisons with in-situ observation measured at campaign sites in Mongolia, Thailand, United States, and Australia, as well as observation sites in Korea and China (Kaihotsu et al., 2013; Moon and Choi, 2013; Lu et al., 2014; Parinussa et al., 2014). Each match-up data includes AMSR-2 footprints within radius of 7 km and 1 hour (2 hour for Mongolia). Initial validation of all campaign sites together reported Mean Absolute Error (MAE) of 4%, meeting the required “release accuracy” of 10%.

3.3 SMOS

Another SMC operational product which has been available more recently is from the SMOS mission. SMOS was designed to measure SMC over continental surfaces as well as ocean salinity using a low microwave frequency (1.4 GHz) Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) instrument that it carries onboard. As of the beginning of October 2010, SMOS soil moisture products have been distributed to all science users. The reprocessing of the SMOS data from the commissioning phase and beyond has also been completed and reprocessed data are now available (since January 2011). The reprocessed data set comprises all Level 1 and Level 2 soil moisture data products, whereas all Level 3 products for the period between January 2010 and December 2013 have recently been reprocessed. The intention of this intermediate reprocessing was to provide a consistent data set for the first year of mission operations, since there were several updates of the SMOS instrument settings and processor versions throughout commissioning (ESA SMOS web site, 2012). The SMC product from SMOS sensor is provided as Level 2 and 3 data products. It should be noted that Level 2 data are mature products, whereas Level 3 data are currently a preliminary version which have just been released (Zhao et al., 2014). The Level 2 and 3 products retrieve measurements of SMC at a spatial resolution of 35 km at nadir and at a revisit period of 1-3 days with equatorial crossing times of 06:00 and 18:00. The SMC products not only provide SMC retrievals, but also a series of ancillary data derived from the processing, namely nadir optical thickness, surface temperature, roughness parameter (namely dielectric constant and brightness temperature retrieved at top of atmosphere and on the surface) with their corresponding uncertainties. A series of auxiliary data related to soil moisture is also provided. These auxiliary files contain information needed for generating soil moisture products, such as ECOCLIMAP surface cover information, ECMWF forecast geophysical fields, vegetation optical thickness, etc. Access to the SMC SMOS operational product is available via EOLI-SA-ESA. It should be noted that the Level 3 SMC retrieval processor is based on the one developed in Level 2, with added ability on multi-orbit retrieving (Zhao et al., 2014).
[FIGURE 5 HERE]

The SMOS SMC retrieval algorithm is based on L-band multi-angular dual polarized (or fully polarized) brightness temperatures. Previous studies have clearly underscored the potential of L-band in soil moisture estimation.  At L-band the sensitivity to SMC is high, whereas the sensitivity to atmospheric disturbances and surface roughness are minimal. To separate soil and vegetation contributions to land emissivity, the SMOS algorithm makes full use of the dual-polarized multi incidence angle acquisitions. The retrieval concept consists of using all the angular and polarized acquisitions to separately retrieve the soil moisture and vegetation water content. Comprehensive descriptions on the Level 2 and 3 SMC retrieval algorithms are provided in the Algorithm Theoretical Basis Document (ATBD) document of Kerr et al. (2010) and (2013) respectively. SMOS product calibration/validation was initially implemented by ESA using the Valencia Anchor Station (Lopez-Baeza et al., 2005) in eastern Spain and the Upper Danube Catchment (Delwart and Bouzinac, 2007) in southern Germany as the two main test sites in Europe. The SMOS mission aims to provide global maps of SMC with accuracy better than 0.04 m3m-3, as well as vegetation water content with an accuracy of 0.5 kg m-2 derived from the recorded brightness temperatures (Kerr et al., 2001). Validation experiments of the Level 3 product are still at an early stage due to the time lagging in data publicising, however validation experiments of the Level 2 product have already demonstrated promising results in SMC estimation by SMOS in various ecosystems and over different spatial scales. For example, validatory studies have been performed in South America (Escorihuela et al., 2012), Europe (Lacava et al., 2011; Schlenz et al., 2012; Srivastava et al., 2013a; Petropoulos et al., 2014), Australia (Panciera et al., 2011; Peischl et al., 2014) and the United States (Al Bitar et al., 2012; Jackson et al., 2012), ranging from catchment scale (Bircher et al., 2012; Srivastava et al., 2013a) to larger scale studies (Dente et al., 2012; Zhao et al., 2014). Interestingly, in an inter-comparison and validation of both the Level 2 and 3 retrieval algorithms, Zhao et al. (2014) indicated that the Level 3 product exhibited lower accuracy, a larger spatial divergence, and a greater temporal variation in comparison to the Level 2 product. They indicated that the relative immaturity of the Level 3 retrieval algorithm could be the cause of poorer retrieval accuracy, and is thus a key avenue of exploration for future validation of this product. 
3.4 SMAP

  The SMAP mission is one of four first-tier missions recommended by the National Research Council's (NRC) decadal survey, “Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond”, for space-based Earth observation programs in the coming decade. SMAP was selected by NASA as a directed mission in FY 2008, and was launched scheduled for launch in January 2015. The SMAP observatory is designed to make simultaneous active (radar) and passive (radiometer) measurements through incorporating L-band radar (VV, HH, and HV polarizations) and an L-band radiometer (V, H, and 3rd and 4th Stokes parameter polarizations) which share a single feedhorn and reflector. The deployable mesh reflector is offset from nadir and rotates about the nadir axis at 14.6 rpm, providing a conically scanning antenna beam with a surface incidence angle of 40°. Measurements are obtained across a wide swath (1000 km) with radar resolution which varies from 1–3 km over the outer 70% of the swath to about 30 km near the centre of the swath. Radiometer resolution is 40 km across the entire swath. The L-band frequency enables observations of soil moisture through moderate vegetation cover, independent of cloud cover and night or day. Multiple polarizations enable accurate soil moisture estimates to be made with corrections for vegetation, surface roughness, Faraday rotation, and other perturbing factors in the 1.2–1.4 GHz range (L-band) from a sun-synchronous low-earth orbit. By joint processing of the radar and radiometer data soil moisture will be retrieved at a spatial resolution of 9 km, and freeze-thaw state at a spatial resolution of 3 km, with 3-day global revisit time. To obtain the required 3- and 9-km resolution for the freeze/thaw and soil moisture products, the radar employs pulse compression in range and Doppler discrimination in azimuth to subdivide the antenna footprint. The SMAP project is managed for NASA by the Jet Propulsion Laboratory, with participation by the Goddard Space Flight Center (Entekhabi et al., 2010; SMAP Science Data Calibration and Validation Plan, 2012; NASA JPL 2014). 

4. Conclusions & Future Outlook 
 The aim of this review had been to provide a systematic and critical overview of the state-of-the-art of EO-based methods and modelling techniques for the retrieval of SMC. Evidently, a large number of methods exist for the estimation of SMC utilising EO data acquired at different parts of the EMR spectrum. Some of the proposed techniques have been able to provide estimates of SMC at an accuracy of 4 % volume by volume (v/v), which is an arbitrary measure that is generally considered satisfactory for a large range of applications. An interesting observation from our review is, despite the large number of EO-based methods which have been proposed during the past decades for the retrieval of such parameters, and the promising accuracies which have been reported in SMC estimation, global operational mapping of these parameters is still relatively underdeveloped. Limitations of the various retrieval approaches proposed depend largely on the type of EO data employed. These limitations need to be properly addressed and overcome in the future if more accurate estimation of SMC from space is desired. 

The exploitation of optical/TIR techniques for the retrieval of SMC is encumbered by influences to the signal from within the atmosphere, biosphere and pedosphere. Due to these controls, efforts to directly relate soil reflectance to SMC have achieved success only when models are fit for specific soil types in the absence of vegetation cover. Most of the methods using reflectance data are empirical in nature and thus suffer from all the characteristics of an empirically-derived methodology (e.g. luck of transferability to other regions, fine-tuning, weakness to describe physical processes, etc). Microwave sensors in contrast, offer far greater potential for consistent and reliable SMC estimation across a range of temporal and spatial scales. 

Possibly the most promising development in SMC retrieval using EO data is the progress in synergistic approaches, in which two or more EO datasets with different imaging characteristics are exploited. Development of these techniques has been driven primarily from the requirement to address and resolve the difficulties encountered in discriminating between the multiple influences on the radar backscatter and that from soil moisture. Thus, such approaches aim to primarily address the advantages from the complementarity (independent information) and interchangeability (similar information) that characterises the different remote sensing data types. Specifically, the combined use of passive and active MW observations appears to permit determining more accurate sub-pixel variability of passive-derived soil moisture with finer resolution active microwave data and provide the best capability for global daily soil moisture retrievals. For local and regional-scale retrievals, SAR and optical/IR data are able to provide surface SMC estimates at relatively fine spatial resolutions and their synergy allows minimising the vegetation biomass and surface roughness effects on the radar backscatter. The potential of the synergy between sensor types for deriving regional and global estimates of surface SMC is further documented from the fact that a combined passive/active L-band microwave dedicated soil moisture mission (Soil Moisture Active Passive (SMAP), formerly known as the Hydrosphere State (HYDROS) mission http://hydros.gsfc.nasa.gov/, Zhan et al., 2006) has recently launched (31st January 2015). SMAP will essentially integrate passive and active L-band systems with the spatial resolution of soil moisture products ranging from 10 to 40 km and a revisit time of 2–3 days. This active/passive combination at the L-band frequency, proposes to overcome the individual limitations of the passive and active microwaves systems. 
We are entering a new era with an ever-increasing number of satellite launches, each one offering the potential to improve or expand on current techniques employed in deriving spatio-temporal estimates of SMC from space. ESA are currently developing a new family of missions, called Sentinels, to carry a range of technologies such as radar and multi-spectral imaging instruments for land, ocean and atmospheric monitoring (ESA Copernicus, 2014). These sensors will be deployed in a constellation configuration which will open up new possibilities for land surface applications. Sentinel-1 mission provides a promising platform for systematic soil moisture retrieval at high spatial (1km resolution) and temporal (every 6 days globally and almost daily over Europe & Canada) resolution. Furthermore, the fusion of Sentinel optical and radar data could provide a synergistic approach to producing systematic and accurate maps of SMC (Malenovský et al., 2012; ESA Sentinel-1, 2014). 

The wealth of available (and soon-to-be-available) EO data for an ever increasing EO scientific community will lead to continual improvements in algorithms and retrieval approaches that will permit the development of an increased range of improved soil moisture products. This will promote the synergistic possibilities between EO-data from new and existing satellite instruments, and ideally, be supported by an expanded network of in-situ soil moisture monitoring stations. Such in-situ measurements are crucial for calibrating and validating EO-derived soil moisture products and will contribute significantly to improving soil moisture retrievals.
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