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Estimation de l’humidité du sol à haute résolution spatio-temporelle : une nouvelle
approche basée sur la synergie des observations micro-ondes actives/passives et

optiques/thermiques

JURY
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Jean-Louis ROUJEAN Directeur de recherche Examinateur

Mehrez ZRIBI Directeur de recherche Examinateur

Nicolas BAGHDADI Directeur de recherche Examinateur
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“The important thing is not to stop questioning. Curiosity has its own reason for existence. One cannot
help but be in awe when he contemplates the mysteries of eternity, of life, of the marvelous structure of
reality. It is enough if one tries merely to comprehend a little of this mystery each day.”

Albert Einstein
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Abstract

SMOS and SMAP passive microwave sensors provide soil moisture (SM) data at 40 km resolution
every 2-3 days globally, with a 0-5 cm sensing depth relevant for climatic and meteorological ap-
plications. However, SM data would be required at a higher (typically 100 m or finer) spatial res-
olution for many other regional (hydrology) or local (agriculture) applications. Optical/thermal
and radar sensors can be used for retrieving SM proxies at such high spatial resolution, but both
techniques have limitations. In particular, optical/thermal data are not available under clouds
and underplant canopies. Moreover, radar data are sensitive to soil roughness and vegetation
structure, which are challenging to characterize from outer space, and have a repeat cycle of at
least six days, limiting the observations’ temporal frequency.

In this context, the leading principle of the thesis is to propose a new approach that combines
passive microwave, optical/thermal, and active microwave (radar) sensors for the first time to
retrieve SM data at 100 m resolution on a daily temporal scale. Our assumption is first to
rely on an existing disaggregation method (DISPATCH) of SMOS/SMAP SM data to meet the
target resolution achieved by radars. DISPATCH is originally based on the soil evaporative
efficiency (SEE) retrieved over partially vegetated pixels from 1 km resolution optical/thermal
(typically MODIS) surface temperature and vegetation cover data. The disaggregated SM data
is then combined with a radar-based SM retrieval method to exploit the sensing capabilities of
the Sentinel-1 radars. Finally, the efficacy of the assimilation of satellite-based SM data in a soil
water balance model is assessed in terms of SM predictions at the 100 m resolution and daily
temporal scale.

As a first step, the DISPATCH algorithm is improved from its current version by mainly 1)
extending its applicability to fully vegetated optical pixels using the temperature vegetation dry-
ness index and an enhanced vegetation cover product, and 2) increasing the targeted downscaling
resolution from 1 km to 100 m using Landsat (in addition to MODIS) optical/thermal data. The
100 m resolution disaggregated SM product is validated with in situ measurements collected over
irrigated areas in Morocco, showing a daily spatial correlation in the range of 0.5-0.9.

As a second step, a new algorithm is built on a synergy between DISPATCH and radar 100 m
resolution data. In practice, the DISPATCH SM product available on clear sky days is first used
to calibrate a radar radiative transfer model in the direct mode. Then the calibrated radar radia-
tive transfer model is used in the inverse mode to estimate SM at the spatio-temporal resolution
of Sentinel-1. Results indicate a positive correlation between satellite and in situ measurements
in the range of 0.66 to 0.81 for a vegetation index lower than 0.6.

As a third and final step, an optimal assimilation method is used to interpolate 100 m resolution
SM data in time. The assimilation exercise is undertaken over irrigated crop fields in Spain.
The analyzed SM product derived from the assimilation of 100 m resolution DISPATCH SM is
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consistent with irrigation events. This approach can be readily applied over large areas, given
that all the required input (remote sensing and meteorological) data are available globally.

Keywords: Soil moisture, Disaggregation, Synergy, Assimilation
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Résumé

Les capteurs micro-ondes passifs SMOS et SMAP fournissent des données d’humidité du sol (SM)
à une résolution d’environ 40 km avec un intervalle de 2 à 3 jours à l’échelle mondiale et une
profondeur de détection de 0 à 5 cm. Ces données sont très pertinentes pour les applications cli-
matiques et météorologiques. Cependant, pour les applications à échelle régionales (l’hydrologie)
ou locales (l’agriculture), des données de SM à une haute résolution spatiale (typiquement 100
m ou plus fine) seraient nécessaires. Les données collectées par les capteurs optiques/thermiques
et les radars peuvent fournir des indicateurs de SM à haute résolution spatiale, mais ces deux
approches alternatives ont des limites. En particulier, les données optiques/thermiques ne sont
pas disponibles sous les nuages et sous les couverts végétaux. Quant aux données radar, elles
sont sensibles à la rugosité du sol et à la structure de la végétation, qui sont tous deux difficiles à
caractériser depuis l’espace. De plus, la résolution temporelle de ces données est d’environ 6 jours.

Dans ce contexte, la ligne directrice de la thèse est de proposer une nouvelle approche qui combine
pour la première fois des capteurs passifs micro-ondes, optiques/thermiques et actifs micro-ondes
(radar) pour estimer SM sur de grandes étendues à une résolution de 100 m chaque jour. Notre
hypothèse est d’abord de nous appuyer sur une méthode de désagrégation existante (DISPATCH)
des données SMOS/SMAP pour atteindre la résolution cible obtenue par les radars. À l’origine,
DISPATCH est basé sur l’efficacité d’évaporation du sol (SEE) estimée sur des pixels partielle-
ment végétalisés à partir de données optiques/thermiques (généralement MODIS) de température
de surface et de couverture végétale à résolution de 1 km. Les données désagrégées de SM sont en-
suite combinées avec une méthode d’inversion de SM basée sur les données radar afin d’exploiter
les capacités de détection des radars Sentinel-1. Enfin, les capacités de l’assimilation des données
satellitaires de SM dans un modèle de bilan hydrique du sol sont évaluées en termes de prédiction
de SM à une résolution de 100 m et à une échelle temporelle quotidienne.

Dans une première étape, l’algorithme DISPATCH est amélioré par rapport à sa version actuelle,
principalement 1) en étendant son applicabilité aux pixels optiques entièrement végétalisés en
utilisant l’indice de sécheresse de la végétation basé sur la température et un produit de couver-
ture végétale amélioré, et 2) en augmentant la résolution de désagrégation de 1 km à 100 m en
utilisant les données optiques/thermiques de Landsat (en plus de MODIS). Le produit de SM
désagrégé à la résolution de 100 m est validé avec des mesures in situ collectées sur des zones
irriguées au Maroc, indiquant une corrélation spatiale quotidienne variant de 0,5 à 0,9.

Dans un deuxième étape, un nouvel algorithme est construit en développant une synergie entre
les données DISPATCH et radar à 100 m de résolution. En pratique, le produit SM issu de
DISPATCH les jours de ciel clair est d’abord utilisé pour calibrer un modèle de transfert radiatif
radar en mode direct. Ensuite, le modèle de transfert radiatif radar ainsi calibré est utilisé en
mode inverse pour estimer SM à la résolution spatio-temporelle de Sentinel-1. Sur les sites de
validation, les résultats indiquent une corrélation entre les mesures satellitaires et in situ, de
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l’ordre de 0,66 à 0,81 pour un indice de végétation inférieur à 0,6.

Dans une troisième et dernière étape, une méthode d’assimilation optimale est utilisée pour
interpoler dans le temps les données de SM à la résolution de 100 m. La dynamique du produit
SM dérivé de l’assimilation de SM DISPATCH à 100 m de résolution est cohérente avec les
événements d’irrigation. Cette approche peut être facilement appliquée sur de grandes zones,
en considérant que toutes les données (télédétection et météorologique) requises en entrée sont
disponibles à l’échelle globale.

Mots clés : Humidité du sol, Désagrégation, Synergie, Assimilation
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1.1 Context

1.1.1 Global changes

Water covers two-thirds of the earth’s surface. In this, 97% of the earth’s water is contained in the
ocean as saltwater, and 2% of water is stored as fresh water in ice caps, glaciers, snowy mountain
ranges, and only 1% are available for daily needs. Freshwater is stored in the soil, surface
water, groundwater, lakes, rivers, and streams, among other places. Freshwater is required
for all ecological and societal activities, including food and energy production, transportation,
waste disposal, industrial development, and human health (Baron et al., 2002). Nonetheless,
freshwater supplies are unevenly and randomly distributed, and some parts of the world are
highly water-stressed (Chitonge, 2020). In the 20th century, freshwater demand increased due
to the increase in the human population and living standards (Hinrichsen and Tacio, 2002). It
is predicted that water demand will increase by 50% in 2050 (Leflaive, 2012) with the increase
in population, water scarcity, and global climate change - making water supply and demand
more problematic and uncertain (Hallegatte, 2009). Climate change in recent decades has been
primarily caused by human activity, with only minor interference from natural cycles. Figure
1.1 shows the estimated human and natural influences on global temperature. Human activities
like greenhouse gas emissions from fossil fuel combustion, deforestation, land-use change trigger
climate change.

Figure 1.1: Human and natural forces affecting the global temperature. Source: U.S. Global
change research program

The Mediterranean region is more prone to global climate change (Lionello and Scarascia, 2018).
The Mediterranean region has shown a climate transition in the past (Tsimplis et al., 2006) and
is now considered a global ”hot-spot” for climate change (Giorgi, 2006), where a severe impact of
climate change is predicted (Stocker et al., 2014). Climate change in the Mediterranean region
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raises average annual temperatures by 1.5°C, exceeding current global warming trends (+1.1°C)
(Cramer et al., 2018). Summer becomes warmer as temperatures rise, and heat waves become
more frequent and severe (Kuglitsch et al., 2010; Jacob et al., 2014). In most places, partic-
ularly in the south, each degree increase in temperature reduces rainfall by 4% (Lionello and
Scarascia, 2018). The increased temperature and decreased precipitation lead to severe drought
conditions in the southern and eastern parts of the Mediterranean region (Lelieveld et al., 2012;
Yves et al., 2020). Heatwaves and droughts influence socioeconomic activities, biodiversity, and
public health (Fouillet et al., 2006). Due to climate change, the Mediterranean region is also
considered a hot-spot for biodiversity change, losing at least 70% of its habitat (Myers, 1990).

Water availability in the Mediterranean region is likely to reduce by 2% to 15%, the most sig-
nificant decrease globally (Schleussner et al., 2016). The decline in rainfall and changes in the
precipitation regimes directly affect the water quantity that reaches the soil or surface runoff or
discharge into the river. The increase in temperature and the change in other parameters such as
solar radiation, wind speed, and humidity increase plants’ transpiration process and the evapo-
ration process from the soil and the water bodies. These changes affect river flows as well as the
quality and quantity of the water resources and knowledge about dynamics of water resources at
regional/local scale is necessary.

1.1.2 Dynamics of water resources in the Mediterranean region

It is essential to understand the distribution of water resources and the effect of climate change on
water supply in the future, especially in the water-scarce regions. Understanding the impact of
climate change on society is becoming more critical, particularly in water resource management.
It is essential to understand the different environmental and human modifications responsible for
the change in water resource management and hydrology, such as the impact of climate change
on water balance, water runoff, change in land use and land cover, urbanization, and irrigation.

Water is limited in the Mediterranean region, and it mainly depends on the water runoff from
the mountainous regions (Viviroli and Weingartner, 2004; de Jong et al., 2009). Mountains pro-
vide a significant portion of the overall runoff in Mediterranean areas, accounting for between
20% and 90% of total runoff (Viviroli et al., 2007). The increase in water demand also creates
pressure on the mountainous region. Long-term climatic conditions are becoming more apparent
and impacting the ecosystem of the Mediterranean mountains (Giorgi and Lionello, 2008), and
hence the stability of the water supply is not maintained.

Land use and land cover (LULC) changes are the main characteristics of the Mediterranean
landscape and environmental alteration. Land use affects the hydrological process through inter-
ception, evapotranspiration, infiltration, and runoff (Cosandey et al., 2005; Foley et al., 2005).
Land cover changes have significantly affected hydrological response at the basin scale (Andréas-
sian, 2004). Land-use change has been rapid during recent decades due to the rapid extension
of urbanization and irrigation. The development of new irrigation and crops in Mediterranean
lowland areas requires more water for consumption. The newly irrigated areas cover almost 10
million ha and consume a large volume of water. These areas are far from the river valleys, so
water transport in these areas puts pressure on the complex infrastructure (reservoir and canals)
and over-exploits groundwater.

The proper water resources management can fulfill the increase in demand of water supply at
the regional scale. The water management strategies will benefit from continuous monitoring the
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surface water status as a result of climate and LULC dynamics and change. Strong knowledge in
different fields such as climate change, river regimes, hydrology, etc., helps develop a framework
for water resource management.

1.1.3 Spatio-temporal variability of soil moisture

In this section, we define soil moisture, how it is linked with the water and energy budget of the
surface, and how its measurement at various spatial and temporal scales will be helpful in water
resource management and other applications. Soil moisture (SM) is the water content available
in the unsaturated zone. SM is a key variable as it controls water and energy exchange from the
land surface to the atmosphere and links the water and energy balance models (Figure 1.2 shows
the water and energy balance models).

The water balance model is expressed as:

dW

dt
= P − ET − R (1.1)

where dW
dt is the change in water content in a given soil layer, P is precipitation, ET is evap-

otranspiration, and R is surface runoff. Water is exchanged from the surface to the atmosphere
via ET, and rainfall is partitioned into infiltration, and runoff in the water balance model. Both
ET and runoff, as well as infiltration, are affected by the SM content.

The energy balance model is expressed as:

dQ

dt
= Rnet − H − λ ∗ LE − G (1.2)

where dQ
dt is energy change in a given soil layer, H is sensible heat flux, λ ∗ LE is ET, G is

surface heat flux, and Rnet is net radiation. The land surface available energy is partitioned into
sensible heat flux and latent heat flux. This partitioning is dependent on the SM in a transitional
zone (Seneviratne et al., 2010).

It can be seen from equations 1.1 and 1.2 that both the energy and water balance model is
coupled through ET.
ET is the result of a combination of evaporation and transpiration. Evaporation occurs when
water evaporates from soil surfaces, while transpiration occurs when water evaporates from veg-
etation leaves. ET is an essential variable that controls the energy and mass exchange between
the surface and the atmosphere. ET plays a vital role in flood (Bouilloud et al., 2010), rainfall
forecast (Findell et al., 2011), drought forecast (Gao et al., 2011), and agriculture (Allen et al.,
2005). As a result, knowledge of daily measurements of ET is essential.

A conceptual/theoretical framework is used to define the ET system as a function of SM (shown
in Figure 1.3). SM limited condition and energy limited condition are the two ET systems char-
acterized by the evaporative fraction (EF, which is the ratio of ET to the energy available at
the surface) (Koster et al., 2004; Seneviratne et al., 2010). In SM limited conditions, SM val-
ues are below the critical SM value, and SM mainly controls ET. In energy-limited conditions,
SM is above critical SM value, and ET is independent of SM and primarily influenced by the
atmospheric demand. The critical SM (SMcritical) is defined as the SM between the SM at field
capacity (SMfc, above which water is not held against gravitational drainage) and SM at wilting
point (SMwilting above which the water is retained too firmly by the soil matrix that it is not
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Figure 1.2: Schematic representation of (a) water balance model and (b) energy balance model

accessible to plants). The conceptual framework describes three SM modes based on the im-
pact of SM on ET variability: wet (SM>SMcritical), dry (SM<SMwilting), and transitional zone
(SMwilting < SM > SMcritical).

For instance, in first-generation land surface models, ET was estimated as a function of the SM
simulated by the bucket model.

The importance of SM in ecohydrological and land surface processes is recognized by various
researchers (Robinson et al., 2008; Seneviratne et al., 2010; Jung et al., 2010; Evaristo et al.,
2015). SM varies greatly over vast spatio-temporal scales, with spatial scales ranging from a
few centimeters to thousands of kilometers and time scale ranging from minutes to years. Many
studies have investigated the spatial variability of SM at different ranges of scale such as field
scale (Nielsen et al., 1973; Bell et al., 1980), catchment scale (Nielsen et al., 1973; Western et al.,
2004), regional scale (Romshoo, 2004; Zhao et al., 2013) and continental scale (Entin et al., 2000;
Li and Rodell, 2013). Western et al. (2002) examined several scaling strategies to relate the
spatial variability of SM across spatial scales. Vanderlinden et al. (2012) analyzed the temporal
variability of SM at different scales. They explored several interconnected elements such as soil,
vegetation, topography, and climate that play an essential role in determining the temporal sta-
bility of SM.

It is essential to understand the features of SM patterns across space and time that reflect an in-
tegrated effect of various environmental factors on SM dynamics (Famiglietti et al., 2008; Brocca
et al., 2010; Ochsner et al., 2013). Due to the complex interaction of SM with the surround-
ing environment with significant spatio-temporal variability, it is difficult to predict the temporal
evolution of SM at any spatial scale, even with the knowledge of the fundamental process (Senevi-
ratne et al., 2010; Vereecken et al., 2014) . It is essential to determine the factors that control
the spatio-temporal variability of SM and those that drive the evolution of SM spatio-temporal
patterns at various scales. The factors affecting the spatio-temporal variability of SM at the
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Figure 1.3: Conceptual structure of the dependence of EF on SM. Source: (Seneviratne et al.,
2010)

field and regional scales are notably the soil characteristics, depth, vegetation dynamics, and
topographical aspects (Mohanty and Skaggs, 2001; Teuling and Troch, 2005; Vereecken et al.,
2014; Wang, 2014; Wang et al., 2015).

Different quantitative methods analyzed spatio-temporal variability and soil properties across a
diverse range of scales. These methods are geostatistics, spectral and wavelet analysis, multi-
fractal analysis, state-space analysis, and fuzzy-set analysis (Si, 2008; Molero et al., 2018). Cur-
rently, various new techniques are used to measure the SM spatial and temporal variability using
in situ measurements, land surface or hydrological models, and remote sensing satellites. Those
techniques are described in detail in the next section.

1.2 Soil moisture monitoring

Three broad ranges of methodologies can be used to estimate SM: in situ measurement, land
surface modeling, and remote sensing. While in situ measurements have been and are still used
as a reference for evaluating the other methods, they are limited by their spatial representa-
tiveness (Western et al., 2002). Given the physics, forcing data, and calibration parameters of
soil water transfers at the soil-vegetation-atmosphere interface, land surface models can simulate
SM continuously in time and space. Unfortunately, accurately determining the forcing data and
model parameters is complex, and all models tend to diverge from reality after more or less run-
ning time. Remote sensing techniques have the unique asset of providing SM data at a range of
spatial resolutions. The point is that they are subject to two main limitations: a low frequency
of observations (smaller than 1 per day) and the uncertainty in remotely sensed data associated
with the impact of disturbing factors specific to the wavelength used. Because each method has
advantages and disadvantages, most studies combine SM information from in situ measurements,
models, and remote sensing data.
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7 CHAPTER 1. INTRODUCTION

1.2.1 In situ soil moisture

SM measurements are categorized into direct and indirect methods (Yoder et al., 1998). On the
one hand, the direct method is used to measure the gravimetric soil water content, from which
the volumetric SM is derived through the density of the soil sample. On the other hand, the
indirect method estimates the volumetric soil water content by calibrating a function based on
other measurable variables that vary with soil water content (Evett and Parkin, 2005). Various
direct and indirect ground measurement techniques for SM monitoring are discussed below:

Gravimetric method

The gravimetric method is an ancient and classical method to determine SM content. This is
the oven-dry method most widely used for SM measurement (Schmugge et al., 1980). It is in
particular used as the standard reference for calibration of other SM methods (Walker et al.,
2004; Merlin et al., 2007). The wet soil sample is dried at 105°C until the constant weight of the
soil sample is obtained. The gravimetric method measures SM as the ratio of the weight of water
present in the soil to the weight of the soil sample. The weight of the water content is derived
from the difference between the wet weight of the soil sample and the oven-dried weight. The
gravimetric method gives the SM as a percentage of the dry weight of the soil. For calculating
the volumetric water content, the gravimetric water volume is multiplied by the bulk density of
the soil. The advantages of this technique : 1) robust, easy, and accurate, 2) sample acquisition
is inexpensive, 3) SM content is easily calculated. However, the disadvantages of this technique
: 1) SM estimation is difficult in heterogeneous soil, 2) this method is destructive and difficult
to use for a long time 3) it is labor and time-intensive.

Dielectric technique

This is the most common technique due to its capability to monitor localized SM continuously
in time at a relatively low cost. It estimates SM by measuring the soil dielectric constant. Since
the dielectric constant of the liquid water is larger than the soil constitutes, the soil’s total per-
mittivity is governed by liquid water. Time-domain reflectometry (TDR) and frequency domain
reflectometry (FDR) are the major techniques that use the soil’s dielectric property for SM mea-
surement.

TDR is widely used to measure SM content (Rao and Singh, 2011). It measures the propagation
velocity of the electromagnetic wave in the soil and the dielectric constant as the amount of elec-
trical energy in the substance. Soil water content is estimated by calibrating the function relating
SM to the measured soil dielectric constant.The advantages of TDR : 1) it is non-destructive,
less labor-intensive than the gravimetric method, easy to install 2) no specific calibration is re-
quired (Topp and Davis, 1985) 3) it provides an accurate result at a high temporal resolution
(Chandler et al., 2004) 4) this technique is independent of the soil texture, temperature and soil
content 5) this technique can be automated as it does not require daily maintenance and can
be automatically regulated. The disadvantages of this technique : 1) high initial cost 2) limited
applicability in highly saline soils (Ferrara and Flore, 2003) 3) specific calibration is required for
bound water in organic soil, volcanic soil, etc.

FDR estimates the SM content from the signal frequency that varies according to the dielectric
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constant of the soil. FDR uses a capacitor and the soil as a dielectric material to measure the SM
content. The capacitor is connected with the oscillator to form an electrical circuit. The change
in SM is estimated by the difference in the frequency of the operating circuit. The oscillatory
frequency is restricted under a specific range to determine the resonant frequency. It gives the
measurement of the water content in the soil (Muñoz-Carpena, 2004). The advantages of FDR
: 1) it gives accurate results but requires specific site calibration, 2) applicable in highly saline
soil conditions 3) flexibility in probe designers. The disadvantages of FDR : 1) higher sensitivity
to temperature, bulk density, air gaps, and clay content limits the use of this method compared
to TDR (Erlingsson et al., 2009), 2) restricted sphere of influence, 3) for reliable measurements,
ensuring a good contact between the sensor and the soil is very critical.

Nuclear technique

The neutron scattering technique is an indirect way of determining the SM content. It estimates
the SM by measuring the thermal or slow neutron density. The radioactive source emits high-
energy fast neutrons into the soil, and they slow down when they collide with the same mass
as a neutron (i.e., proton H+) and build a cloud of thermalized neutrons. The density of the
thermalized neutron around the probe is proportional to the volume fraction of water present in
the soil because water is the main source of hydrogen in the soil. The neutron probe is of two
types: depth and surface probes. The depth probe is used to measure SM below the soil at a
given depth, while the surface probe measures the soil water content in the uppermost layer of
the soil (Schmugge et al., 1980). The advantages of nuclear technique : 1) it is more robust and
accurate 2) it can detect the rapid and temporal change in the SM estimation 3) it measures
a large soil volume, and also measure the SM profile at different depths 4) it is not affected by
the soil salinity or the air gaps. The disadvantages : 1) the initial cost of the instrumentation is
expensive, 2) a low degree of spatial resolution 3) the operator must take care to minimize the
health risks.

Another nuclear-based technique is the gamma-ray attenuation technique. This is a radioactive
technique that measures SM at a depth of 25 cm or less. This technique assumes that the scat-
tering and absorption of gamma rays are related to density of the matter in their path. The
specific gravity of the soil remains constant as the SM changes. The advantages of the gamma-
ray attenuation technique : 1) is to provide temporal SM measurements at different depths 2)
measurement is non-destructive 3) data can be obtained over small and horizontal distances.
The disadvantages : 1) costly and difficult to use, 2) requires extreme care to reduce the risk of
health hazards, and 3) being impacted by the significant variation in bulk density.

Tensiometer technique

A tensiometer measures the tension or the energy with which the soil holds water. SM can
be derived from the soil water tension, given the soil’s hydraulic properties. The tensiometer
consists of a water-filled cylindrical tube with ceramic tips on the end and a vacuum gauge at the
top. A tensiometer is installed into the soil at a depth at which the SM measurement is required.
At this depth, the water in the tensiometer comes to an equilibrium with the surrounding soil.
When the soil dries, the water is pulled out through the tip and creates tension on vacuum tubes.
When the SM is wet, the stress is reduced, and it allows the water to enter into the vacuum
tubes through the cylindrical tubes, and the vacuum is reduced. The pressure generated by the
tensiometer is equivalent to the tension used by the plant to extract water from the soil. The
advantages of the tensiometer technique : 1) easy to install and cost-effective, 2) SM distribution
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information is obtained under both saturated and unsaturated soil conditions, 3) the equipment
can be easily placed in the soil and provides continuous measurement of the soil with minimal
disturbance and 4) use of ethylene glycol water solution makes the tensiometer suitable to be
installed in the cold regions. The disadvantage : 1) unsuitable for dry soil 2) high maintenance
is required 3) SM information can only be obtained within the water tension range of 0 to 85
centibar 4) the relationship between SM and the measured soil water tension is highly nonlinear.

1.2.2 Dynamic models

Land surface models describe the interactions between the land surface and the atmosphere, i.e.,
heat, energy, and water exchange. SM is simulated in time and space using a dynamic model
that integrates the physics of the soil water transfers. It provides a boundary condition for the
atmospheric model and plays an essential role in the numerical weather prediction and climate
change projection system. It also plays a vital role in representing hydrological processes by
modeling the interaction with the land surface and the atmosphere.

Land surface models can differ in representing the spatial variability of the SM, vegetation, to-
pography, surface runoff, water storage, etc. They are categorized into three generations (Sellers
et al., 1997; Pitman, 2003). The first generation of land surface models provides a straight-
forward representation that considers simple interactions with the land surface, atmosphere, or
vegetation. Two examples of the first-generation models are given below.

Bucket model (Manabe, 1969) is the first simple land surface model used to model hydrological
fluxes at a global scale. In this model, the soil layer has a fixed water capacity, constant soil
depth, and soil properties. The basic principle of this model is that the bucket is filled with
precipitation, and it will become empty with evaporation and runoff.

Force-restore model (Deardorff, 1978) based on the ”force restore” method (Bhumralkar, 1975)
was developed from an efficient time-dependent equation to estimate SM. The force and restore
model usually involves two prognostic equations: surface or root zone layers, representing the
evolution of the surface and root zone SM. It is the most popular SM prediction model because
of its computation efficiency, and it employs a minimum number of prognostic variables and
captures the most important physical processes.

Second and third-generation land surface models are formed by combining simple models to
develop the complicated relationship between the land surface and the atmosphere at different
scales in a more realistic manner. The more complex models can provide information about SM
and other land surface and atmospheric variables such as surface temperature, precipitation, etc.

An example of a new generation land surface model is given by Surface Externalisée (SUR-
FEX), which is the surface model developed by Meteo France. The SURFEX model provides
consistent stability of the land surface and atmosphere coupling. First, each surface grid box
receives the air temperature, pressure, specific humidity, total precipitation, long and short wave
radiation, chemical species, and aerosol concentration during a model timestamp. Then SUR-
FEX computes the average flux for momentum, sensible heat, latent heat, chemical species, and
aerosol and sends these quantities back to the atmosphere with the addition of radiative surface
temperature, diffuse albedo, and surface emissivity. In SURFEX, each model grid box is repre-
sented by different surface coverage: soil and vegetation, urban areas, and water bodies (sea or
ocean or lake). These surface coverages are obtained through the global ECOCLIMAP database
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that combines land cover maps and satellite information. The SURFEX averages all the fluxes
computed over soil and vegetation, urban, and water (sea or lake or ocean) by their respective
fractions. All this information is used in the lower boundary condition for atmospheric radiation
and turbulent flux. A different model represents each surface type. The SURFEX model consists
of physical models such as ISBA for land surfaces, Town Energy Balance (TEB) for urban areas,
and Flakes for lakes and oceans.

As the land surface component of SURFEX, Interaction between soil biosphere and atmosphere
(ISBA) integrates the interaction between the land surface and atmosphere. ISBA includes sev-
eral models that transfer energy and water into the soil, vegetation, surface hydrology, and snow.
The ISBA model is built to reduce the complexity level by reducing the number of parameters
while still representing the physics of the land-atmosphere interaction. ISBA is a simple land
surface model that can use the ’force restore’ method (Deardorff, 1977) to calculate the surface
and mean soil temperature over time and the soil water budget (IBA-2L, (Noilhan and Planton,
1989)). In this model, the upper layer acts as a reservoir for the evaporation from the soil surface,
and the single subsurface soil layer is used to model the mean water content from the root and
the sub root zone layer. Standard ISBA-2 layer can also define the routing layer and include
a third layer that distinguishes between the surface root and sub-root-zone soil water basins
(ISBA-3L, (Boone et al., 1999)). ISBA was further modified to account for the atmospheric
carbon dioxide concentration on the stomatal aperture (ISBA-Ags, (Calvet et al., 1998)). The
standard ISBA model was updated to represent better the surface and the sub-grid runoff for
hydrological applications (Habets et al., 1999).

The dynamic modeling used to estimate SM thus faces a compromise in terms of SM accuracy
between the physics implemented in the model equations, the number of represented layers, the
availability of the parameters, and forcing data needed as input to the model. In general, a
simple model allows for sampling its entire parameter set and inferring an optimal calibration.
However, it cannot replace sophisticated models that account for the complex relationships in
soil and vegetation to produce more comprehensive results in different hydro-climatic conditions.
The main advantage of simple models is that they require fewer input parameters, improving
their calibration capabilities to reduce associated uncertainty in the output data.

1.2.3 Satellite information

SM is spatially variable, and the factors that affect the variability of SM are especially soil types,
vegetation cover, climatic conditions, and topography. In situ measurements of SM are limited
to the point scale at a particular location. Such point-based measurement cannot cover such a
high variability of SM (Srivastava et al., 2013). Extrapolating such point scale measurements via
geostatistical techniques (Qiu et al., 2001) is practically expensive, time-consuming, and com-
plex, especially over heterogeneous land surfaces (Qin et al., 2013; Byun et al., 2014). Although
the in situ SM measurement has more significant potential for SM estimation, it is impractical
to measure the spatial and temporal SM variability at a regional and global scale.

The problem is solved by developing remote sensing techniques that can estimate SM from re-
gional to global scale at a daily temporal scale. Microwave satellite observation from active and
passive sensors is most suitable for retrieving SM (Schmugge et al., 2002; Mohanty et al., 2017).
Microwave sensor cannot estimate SM directly, but it has a direct relationship between soil di-
electric constant and water content. This section describes remote sensing techniques based on
passive microwave, active microwave, and optical/thermal remote sensors, estimating SM over

10



11 CHAPTER 1. INTRODUCTION

large extents.

Passive microwave sensors

The earth continuously receives electromagnetic radiation from the sun. Some of the radiation
gets absorbed/reflected or gets transmitted from the earth’s surface. The energy absorbed is
transformed into thermal energy and increases the temperature of the surface until it reaches
thermodynamic equilibrium. In this state, all media radiate energy to keep the energy balance.
Passive microwave sensors are susceptible and detect the emitted or radiated energy from the
earth’s surface at the wavelength of 1 to 30 cm, expressed as brightness temperature. The emit-
ted energy absorbed by the passive microwave includes the contribution from the atmosphere,
land surface, and the reflected radiation from the sky. The passive microwave can provide SM
information as there is a significant difference between the dielectric constant of water ( 80) and
soil ( 4). Soil texture and the variability in the temperature of soil and vegetation also affect
the microwave spectrum’s retrieval. The advantage of a passive microwave radiometer is that
the cloud cover does not limit its weather conditions and is minor dependent on the daytime
acquisition, and when vegetation is not present, SM is the dominant parameter affecting the
received signal from passive microwave (Njoku and Entekhabi, 1996). The passive microwave is
adequate for monitoring SM globally (Owen et al., 1998). Generally, the two-parameter retrieval
technique has been used to retrieve SM and vegetation optical depth simultaneously. This tech-
nique is well suited for passive microwave observation using dual-polarization multi-frequency
or multi-angular L-band observations (Peischl et al., 2014). Various passive microwave remote
sensing satellites have been launched in the past 35 years (Chen et al., 2012). Some of the passive
microwave sensors are shown in Figure 1.4.

Various microwave bands such as L, C, X, and K are used by radiometers. Currently, L-band
is used to estimate SM because data at L band frequencies are sensitive to the SM through
vegetation up to 5 kg/m2 and can provide SM in all weather conditions. In contrast, other
higher frequency (C, X, and K) bands are sensitive to vegetation but are more attenuated by
the vegetation effect and are hence limited in applicability to areas of moderate vegetation (< 3
kg/m2). The L-band frequency gives the information from the top surface to a few centimeters of
the soil surface ( 5 cm) and is less affected by the Radio Frequency Interference (RFI). Note that
sensors operating at lower frequencies (P-band) could also be used to obtain information more
profoundly into the soil. However, the antenna size (increasing with the increase in wavelength)
and the significant presence of RFI make it challenging to build a remote sensing satellite using
P-band passive microwave.

Currently, two L-band missions, Soil Moisture Ocean Salinity (SMOS, (Kerr et al., 2010)) and
Soil Moisture Active and Passive (SMAP, (Entekhabi et al., 2010)), are used to provide SM at a
global scale and are used extensively in this thesis.

SMOS is the first L-band microwave satellite launched by the European Space Agency on 2nd
November 2009. SMOS provides SM and ocean salinity data using a radiometer at a frequency of
1.4 GHz using a Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) instrument.
It provides SM images at 35 km spatial resolution with a temporal resolution of 1-3 days. SMOS
has a sun-synchronous, quasi-circular orbit with an altitude of 758 km with an ascending (6 pm)
and descending (6 am) overpass. SMOS is a 2-D interferometer, which provides the brightness
temperature in horizontal and vertical polarisation at a range of incidence angles (ranging from
0 to 55 degrees). The SMOS algorithm uses a dual-polarised multi-incidence angle to separate
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Figure 1.4: List of past and current passive microwave sensors until today.

the soil and vegetation contributions to land emissivity. SMOS provides SM products at Level
2 and Level 3. Along with the SM product, the SMOS mission provides ancillary data such as
surface temperature, roughness parameter, and optical thickness at the top of the atmosphere. It
provides a global SM product with a specified accuracy of 0.04 m3/m3 derived from the bright-
ness temperature (Kerr et al., 2001). The validation experiment of the Level 2 SMOS product
shows satisfying results in SM estimation over different ecosystems and different spatial scales.
For example, validation studies have been performed in various areas such as South America
(Escorihuela et al., 2012), Europe (Lacava et al., 2012; Srivastava et al., 2013; Petropoulos et al.,
2014), Australia (Panciera et al., 2011; Peischl et al., 2014) and the United States (Jackson et al.,
2011; Al Bitar et al., 2012) ranging from the continental scale (Dente et al., 2012; Zhao et al.,
2014) to the catchment scale (Bircher et al., 2012; Srivastava et al., 2013).

SMAP is a L-band satellite launched by NASA on 31st January 2015. SMAP is designed to use
active and passive microwave sensors by incorporating L-band radar (VV, HH, and HV polar-
izations) and L-band radiometer (V, H, and 3rd and 4th Stokes parameter polarizations). But
due to the failure of the radar, currently, the SMAP radiometer mission provides SM data at 36
km spatial resolution on a revisit cycle of 3 days on a global scale. The SMAP satellite has a
sun-synchronous polar orbit with an altitude of 658 km with a descending/ascending overpass at
6:00 a.m./p.m. local time. The SMAP mission provides SM products with a specified accuracy
better than 0.04 m3/m3. Various validation results show satisfactory results for different spa-
tial resolution SM products from SMAP (Vreugdenhil et al., 2013; Cai et al., 2017; Colliander
et al., 2017a; Ma et al., 2017; Bhuiyan et al., 2018; Colliander et al., 2019). The SMAP mission
currently provides SM on a 9 km resolution grid (Das et al., 2013) by interpolating the L-band
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radiometer using the Backus-Gilbert method (Backus and Gilbert, 1970). The SMAP mission
also combines the SMAP radiometer with Sentinel-1 radar to provide SM at 9 km and 3 km
(Das et al., 2018), but this approach is limited by the requirement of having quasi-simultaneous
overpass times of SMAP and Sentinel-1.

Active microwave sensors

Active microwave (or radar) satellites use their radiation source to illuminate the targeted objects
and calculate the backscattering coefficient, the difference between the transmitted and received
electromagnetic radiation. Active microwave sensors are divided into imaging (e.g., synthetic
aperture radar (SAR) and non-imaging instruments, including scatterometers and altimeters.
The radar backscattering coefficient is related to SM because of the significant difference be-
tween the soil dielectric constant of dry soil and water, but the accuracy of the retrieved SM is
affected by the soil roughness and vegetation biomass (Moran et al., 2004). Due to the complex
connection between the backscattering coefficient and surface reflectivity, the complex structure
of soil surface and vegetation has a significant impact on the measurements

”
and a simple proce-

dure for removing those effects is challenging to develop. By considering the sensor configuration
and surface parameters, various backscattering models have been developed over the past 30
years (a list of active microwave sensors is shown in Figure 1.5), categorized into three groups:
physical or theoretical, empirical, and semi-empirical models.

Figure 1.5: List of past and current active microwave sensors till today. Source: UNAVCO
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Physical or theoretical models compute the radar backscattering coefficient in terms of dielec-
tric constant and soil roughness by computing the interaction between microwave radiation and
soil. In these models, the SM is estimated by the mathematical inversion of the backscattering
coefficient. The advantage of the theoretical approach is that it is independent of the sensor’s
local site condition and typical features. It provides SM with high accuracy (Notarnicola and
Solorza, 2014) and can be implemented in specific roughness conditions. The disadvantage is
that it requires many input parameters that make the parameterization difficult and complex
(Moran et al., 2004). This model also provides difficulty in describing the soil roughness (Zribi
and Dechambre, 2003). The most commonly used physical model nowadays is the Integral Equa-
tion Model (IEM).

IEM (Fung et al., 1992) is a physical-based radiative transfer model that calculates dry soil’s
backscattering coefficient with given radar properties such as wavelength, polarization, surface
characteristics such as dielectric constant, and surface roughness, and local incidence angle. This
model is one of the widely used inversion models to estimate SM and surface roughness (Shi
et al., 1997; Satalino et al., 2002; Zribi and Dechambre, 2003). Nonetheless, IEM shows difficulty
over the natural surfaces due to the sensitivity of the models to the surface roughness parameters
and the problem associated with their correct measurements (Zribi and Dechambre, 2003). This
model neglects the scattering from the subsurface soil volume that may be important for the dry
soil condition (Schanda, 1987). Therefore these models require very detailed knowledge of the
surface roughness.

Consequently, empirical models are also used to derive the direct relationship between the radar
backscattering coefficient and SM. The empirical studies are based on the experimental results
associated with the experimental sites’ surface conditions and radar parameters. Many empirical
studies show a linear relation between radar backscattering coefficient and SM for specific sites
where the SM ranges from 0.10 to 0.35 m3/m3 by assuming that roughness does not change
between successive radar measurements (Zribi et al., 2005). This model directly relates radar
backscattering to SM. However, this empirical-based approach requires specific datasets and
implementation conditions, e.g., incidence angle, observation frequency, and surface roughness.
Another limitation is that they need high-quality situ SM measurements to perform the calibra-
tion step, which is costly and challenging. In addition, those empirical models may not be valid
outside the conditions for which they have been calibrated.

Intermediate between theoretical and fully empirical approaches, the semi-empirical models,
combine the numerical radiative transfer model (physical model) and analyzed or experimental
datasets (empirical model) to provide a simple relationship between surface properties and the
physics of the backscattering mechanism. The model generally provides a good compromise be-
tween the theoretical model’s complexity and the empirical model’s simplicity. The advantage of
this type of model is that it is site-independent and can be applied when there is little or no infor-
mation of soil roughness available (Baghdadi et al., 2008). The most widely used semi-empirical
model is the Oh model (Oh et al., 1992) and the water cloud model (Attema and Ulaby, 1978).

The water cloud model is a volume scattering model over the vegetated areas. This model was
developed by assuming that the canopy ”cloud” is made up of identical water droplets randomly
distributed within the canopy. Due to its simplicity, it is most extensively used for SM estima-
tion, especially over agricultural areas (Bindlish and Barros, 2001; Dabrowska-Zielinska et al.,
2007; Baghdadi et al., 2017; Li and Wang, 2018). This model expresses the complex scattering
characteristics in the vegetated areas and provides attenuation information from the vegetation
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layer.

Optical/thermal remote sensing sensors

Visible/shortwave sensors depend on the sun as a source of illumination and use visible, near-
infrared, and short wave infrared to image the earth’s surface. Different objects observe and
reflect differently at different wavelengths. Their spectral signature can differentiate the reflected
objects in the remotely sensed image. Various optical/thermal sensors at different resolutions
have been launched since the 1970s, as shown in Figure 1.6.

Figure 1.6: List of past and current optical/thermal sensors until today. Source: Houborg et al.
(2015)

Visible/shortwave sensors depend on the sun as a source of illumination and use visible, near-
infrared, and short wave infrared to image the earth’s surface. Different objects observe and
reflect differently at different wavelengths. Their spectral signature can differentiate the re-
flected objects in the remotely sensed image.

Optical remote sensing is classified based on the spectral bands:

1. Panchromatic uses a single band to record radiation for a longer wavelength. e.g. SPOT
HRV-Pan, Ikonos Pan.
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2. A multispectral sensor (multichannel detector) uses few spectral bands and records electro-
magnetic radiation in the narrow wavelength, e.g., Landsat MSS, Landsat TM, SPOT HRV-XS,
Ikonos MS.

3. Superspectral sensor uses more than ten spectral bands and record electromagnetic radi-
ation on the short wavelengths that enable the more exemplary spectral characteristics of the
target to be captured, e.g., MODIS, MERIS

4. Hyperspectral sensor uses more than 100 spectral bands, and the precise spectral signature
better classifies the objects and is used for different applications such as forestry, agriculture,
etc., e.g., Airborne Visible Infrared Imaging Spectrometer (AVIRIS)

Several studies document an empirical relationship between soil surface reflectance and SM (Gao
et al., 2013) and the non-linear relationship between SM and reflectance (Lobell and Asner, 2002;
Nocita et al., 2013). The main disadvantage of the optical sensors for SM monitoring is that
they have limited ability to penetrate clouds and are highly attenuated by the vegetation cover
(Zhao and Li, 2013). In addition, soil reflectance measurements are strongly affected by the
many physical properties of the soil, such as organic matter content, roughness, texture, angle of
incidence, plant cover, etc. that makes the soil reflectance highly variable regardless of the SM.
The relationship between soil reflectance and SM is only achieved when the model is fitted to
specific soil types (Muller and Decamps, 2001). In general, reflected spectral information alone
could not provide a viable solution to provide SM.

Thermal images use infrared sensors to detect the infrared radiation emitted from the earth’s
surface. This radiation is emitted from the warm earth’s surface, and they are used in remote
sensing satellites to measure the land and sea surface temperature. The amount of thermal ra-
diation emitted by the objects depends on their temperature.

Since evaporation is the most efficient way to calculate the energy loss at the surface, there is a
strong coupling between the land surface temperature (LST) and water availability in the water
stress condition. Therefore the use of thermal data is the most appropriate way to access the
actual evaporation and SM status at a suitable space and time scale (Boulet et al., 2007). In ad-
dition to this, thermal data have the advantage of detecting vegetation water stress information
and water stress variability at field scale (Anderson et al., 2012). The residual method and the
EF method are used to determine ET and SM using LST data.

The residual method estimates ET as the residual term in the energy surface model, defined
as available energy at the surface minus the sensible heat flux. This approach is based on a
single-pixel method to calculate ET for each pixel independently. Models that use this approach
are, for instance, Two-Source Energy Balance (TSEB, (Norman et al., 1995)), Surface Energy
Balance Model (SEBS, (Su, 2002)), and Two-Source Time Integrated Model (Anderson et al.,
1997). The approach is computationally efficient and offers a reasonable estimate of ET with high
accuracy over homogeneous areas. This approach requires ground measurements such as wind
speed, humidity, vegetation height, air temperature, etc. However, due to the limited availability
of ground measurements over the heterogeneous area, this model is rarely used to estimate ET
and SM over large areas on operational application (Jiang and Islam, 2003).

The other range of methods to estimate ET and SM from LST data are based on EF. EF can
be estimated from the optical/thermal image, where the LST in dry and wet conditions can
be estimated from the LST and fractional vegetation cover data. This method is based on the
contextual-based method that uses the heterogeneity of the land surface within the remotely
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sensed LST image and uses the whole image to estimate EF at each pixel. Models that use
this approach are Surface Energy Balance Index (SEBI, (Menenti et al., 1989)), Simplified Sur-
face Energy Balance Index (S-SEBI, (Roerink et al., 2000)), Monosource Surface energy Balance
Model (SEB-1S, (Merlin et al., 2013)), Vegetation Temperature Condition Index (VTCI, (Wan
et al., 2004)), and Temperature Vegetation Dryness Index (TVDI, (Sandholt et al., 2002)).

Thermal infrared remote sensing can also be used to decouple the surface thermal properties from
the ambient temperature (daily temperature cycle) by calculating the apparent thermal inertia
(Qin et al., 2013; Lei et al., 2014). The thermal inertia depends on thermal conductivity and
heat capacity, which increases with the SM (Olsen et al., 2013). So, a relationship is developed
between the LST change and SM by measuring the amplitude of the daily temperature change.
The relationship between the daily temperature change and SM is a function of soil type and
limited to bare soil conditions (Van de Griend et al., 1985). Recent studies have shown that SM
can be estimated over vegetated areas if the linear relationship is maintained between the ground
flux and LST (Maltese et al., 2013a,b).

1.2.4 Downscaling methods

Remote sensing satellites monitor SM at a global scale with passive radiometry at L-band (SMOS
and SMAP) but with a spatial resolution far from the requirement for many applications, in-
cluding fine scale hydrological studies and basin-scale water and irrigation management. Hence
to overcome the limitations of low resolution SM and provide SM at a higher spatial resolution,
various downscaling methods have been proposed to disaggregate the passive microwave derived
SM data. Peng et al. (2017) categorized the existing downscaling methods into three different
types: 1) geo-information based 2) model-based 3) satellite-based.

1. Geo-information-based models use land surface parameters (such as vegetation attributes,
topography, and soil characteristics) to downscale coarser resolution to fine resolution. The
downscaling approach can be helpful at the field scale where the in situ information is available,
but its applicability is limited at the coarser scale.

2. Model-based downscaling methods can be based on statistical, hydrological, or land surface
models. The statistical model is computationally inexpensive and the best way to use the large
historical data to make a statistical relationship. A statistical model is prevalent in climatology
for future prediction. Various statistical downscaling models are developed to downscale SM at
fine resolution: the wavelet coefficient (Kaheil et al., 2008) and fractal interpolation (Kim and
Barros, 2002) are two examples. Another model-based approach uses a hydrological or land sur-
face model to downscale low resolution to high resolution observation by linear regression (Low
and Mauser 2008), bivariate distribution (Verhoest et al., 2015), and assimilation of coarser-
resolution in land surface/hydrological models to provide fine-scale resolution. The model-based
approach can be used to provide SM globally, but the main limitation is that the error in the
model or the remotely-sensed observations fully contributes to the finer resolution of SM. It also
depends on the availability of the information at the finer scale resolution, such as soil types,
soil texture, precipitation and irrigation data, which somehow restricts its usefulness to provide
SM data at high resolution on a global daily basis. Another major problem is developing a
hydrological or land surface model to represent the physics and remote sensing observations with
better robustness and accuracy.
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3. Satellite-based downscaling methods are developed based on a synergy between coarse reso-
lution satellite data and fine resolution satellite data to provide high resolution SM as described
below :

a) Synergy between active and passive microwave data :

It is found that the L-band radiometer is very efficient in providing SM information more
accurately as compared to other satellite information. Based on this concept, the low resolution
L-band derived SM is disaggregated at high resolution using fine scale remotely sensed ancillary
data. Especially the SMAP mission combines the L-band radiometer at low resolution with the
Sentinel-1 radar to downscale SM at 3 km and 1 km. But the main limitation is that it depends
on the quasi-simultaneous overpass time of the Sentinel-1 and SMAP data.

b) Synergy between optical/thermal and passive microwave data :

Merlin et al. (2013) developed the DISaggregation based on the Physical and Theoretical
scale CHange (DISPATCH) algorithm that uses optical/thermal data as a SM proxy to down-
scale low resolution microwave SM data. The DISPATCH algorithm uses the evaporation-based
method. DISPATCH is a physical and theoretical approach to disaggregate coarser microwave
low resolution to provide high resolution SM. Peng et al. (2015) use the VTCI as the thermal-
based SM proxy to downscale low resolution SM. VTCI is calculated from triangular/trapezoidal
feature space from optical/thermal data at high resolution. Fang et al. (2013) use the thermal
inertia relationship between daily temperature change and daily average SM by using SM at low
resolution and optical/thermal data at high resolution. Song et al. (2013) downscale microwave
brightness temperature using high-resolution optical/thermal data. Then, high-resolution bright-
ness temperature is used to retrieve SM using a single-chain algorithm (Jackson, 1993).

1.3 Research objectives and outline of the thesis

For SM monitoring, in situ measurements and land surface modeling are useful as a localized
reference for validation purposes and as a physical tool to extrapolate results in both space and
time, respectively. However, both have substantial limitations related to the spatial represen-
tativeness of SM estimates. In this context, remote sensing techniques have a strong potential
to provide SM estimates at various spatial scales, which are required in many applications, in-
cluding meteorology and climatology, hydrology, and agriculture (e.g., irrigation scheduling, for
instance). Spaceborne sensors based on passive microwave, active microwave, and optical/ ther-
mal data can provide SM information at different spatial and temporal scales.

The remote sensing community generally acknowledges passive microwave at L-band as one of
the most accurate techniques. However, on the order of several tens of kilometers, its spa-
tial resolution is not adapted to most fine-scale hydrological and agricultural uses. Therefore,
other non-optimal but complementary methods are investigated based on radar and/or opti-
cal/thermal data available at higher spatial resolution. Still, no approach combines the available
multi-sensor (passive/active microwave/optical/thermal) data to exploit each technique’s advan-
tages efficiently. This thesis aims to develop an algorithm that combines multi-sensor/multi-
resolution/multi-wavelength data to provide SM data with improved robustness and accuracy at
high spatio-temporal resolution.

Based on this idea, the research proposed herein develops and evaluates a new algorithm and
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methodology for SMmonitoring. In particular, a synergy is investigated between the SMAP/SMOS
passive microwave-derived SM data disaggregated using optical/thermal data (with DISPATCH
downscaling algorithm) and the SM retrieved from radar data (with an active microwave radia-
tive transfer model). To do this, three successive steps are identified to disaggregated the 40 km
resolution SMOS/SMAP data at the 1 km resolution (step 1), to disaggregate the SMOS/SMAP
data at the 100 m resolution (step 2), and to build a synergy at the 100 m resolution with active
microwave data (step 3). As a final step, the disaggregated SM data are assimilated into a land
surface model to improve the accuracy and the frequency of SM estimates. The main objectives
of the research are illustrated in Figure 1.7.

Figure 1.7: Schematic diagram of the main research objective split into four successive steps.

This research is expected to provide a new understanding of the advantage of the multi-sensor
synergy and its applicability to provide SM at high spatio-temporal resolution. The algorithm
used in this research is intended to be quite generic and could be applied for future upcoming
remote sensing data.

In summary, the underlying scientific questions that this thesis proposes to address are:

1) How can we retrieve high-resolution SM data - which will be helpful for agriculture and hy-
drological purposes - meaning data at high spatial and temporal resolution (repeat cycle of a few
days)?

2) Is it possible to provide high spatio-temporal resolution SM information from the readily
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available remote sensing observations over different land covers?

3) What are the possible synergies between passive microwave, active microwave, and opti-
cal/thermal data for SM retrieval?

The thesis is organized to describe the approaches or algorithms implemented to combine and
overcome limitations of passive microwave, active microwave, and optical/thermal observations,
and the final objective is to provide SM at high spatio-temporal resolution with improved ro-
bustness and accuracy. In practice, the document is organized as follows:

Chapter 1 introduces the importance of SM from a broad perspective and discusses the avail-
ability and limitations of existing SM products derived from the different sensors and models at
a range of resolutions.

Chapter 2 describes the study areas used for this research, i.e., the region selected for the analysis
purpose within the Mediterranean region.

Chapter 3 gives a generic description of the DISPATCH downscaling algorithm used to provide
SM at high resolution by downscaling the low resolution passive microwave-derived SM data
using optical/thermal data. The downscaling algorithm is implemented globally to provide SM
at 1 km resolution.

Chapter 4 presents the new implementation and improvement in the DISPATCH algorithm to
increase the spatial coverage and improve the retrieved SM’s accuracy. This chapter also presents
a comparative qualitative and quantitative accuracy assessment with two different SM products
at 1 km resolution.

Chapter 5 presents a new algorithm to provide SM data at 100 m resolution from the passive
microwave observations at 40 km resolution using the DISPATCH algorithm. The two-step
downscaling algorithm is used to disaggregate the SMOS/SMAP SM data at 100 m resolution.

Chapter 6 presents a new methodology that builds on a synergy between passive microwave,
optical/thermal, and active microwave data sets. As a synergy strategy, radar model parameters
are calibrated at the radar spatial resolution from the downscaled passive microwave-derived SM
product. The algorithm is quite generic, and the main advantage is that it is independent of the
in situ SM datasets for calibration purposes.

Chapter 7 investigates the usefulness of integrating SM products at high resolution into a land
surface model to provide SM data at a daily field scale over an irrigated area. The approach
is unique because the 100 m SM product is used to assess the sensitivity of the disaggregation-
assimilation coupling scheme to irrigation, which is not included in the forcing data of the model.

Chapter 8 summarizes the research works and highlights their original contribution. It also
opens a new path of future research avenues concerning SM monitoring from remote sensing and
multiple applications.
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1.1 Contexte

1.1.1 Changements globaux

L’eau couvre les deux tiers de la surface de la terre. Ainsi, 97 % de l’eau de la terre est contenue
dans les océans sous forme d’eau salée, et 2 % de l’eau est stockée sous forme d’eau douce dans
les calottes glaciaires, les glaciers, les châınes de montagnes enneigées, et seulement 1 % est dis-
ponible pour les besoins quotidiens. L’eau douce est stockée dans le sol, les eaux de surface, les
eaux souterraines, les lacs, les rivières et les ruisseaux, entre autres. L’eau douce est nécessaire à
toutes les activités écologiques et sociétales, notamment la production de nourriture et d’énergie,
le transport, l’élimination des déchets, le développement industriel et la santé humaine (Baron
et al., 2002). Néanmoins, les réserves d’eau douce sont réparties de manière inégale et aléatoire,
et certaines régions du monde sont soumises à un stress hydrique important (Chitonge, 2020).
Au cours du XXe siècle, la demande en eau douce a augmenté en raison de l’accroissement de
la population humaine et de l’amélioration du niveau de vie (Hinrichsen and Tacio, 2002). On
prévoit que la demande en eau augmentera de 50 % en 2050 (Leflaive, 2012) avec l’augmentation
de la population, la pénurie d’eau et le changement climatique mondial - rendant l’offre et la
demande en eau plus problématiques et incertaines (Hallegatte, 2009). Au cours des dernières
décennies, le changement climatique a été principalement causé par l’activité humaine, les cycles
naturels n’ayant qu’une incidence mineure. La Figure 1.1 montre les influences humaines et na-
turelles estimées sur la température globale. Les activités humaines, telles que les émissions de
gaz à effet de serre provenant de la combustion de combustibles fossiles, la déforestation et le
changement d’affectation des terres, sont à l’origine du changement climatique.

La région méditerranéenne est plus exposée au changement climatique mondial (Lionello and
Scarascia, 2018). La région méditerranéenne a montré une transition climatique dans le passé
(Tsimplis et al., 2006) et est maintenant considérée comme un ”point chaud” mondial pour le
changement climatique (Giorgi, 2006), où un impact sévère du changement climatique est prévu
(Stocker et al., 2014). Le changement climatique dans la région méditerranéenne augmente les
températures annuelles moyennes de 1,5°C, dépassant les tendances actuelles du réchauffement
climatique (+1,1°C) (Cramer et al., 2018). L’été devient plus chaud à mesure que les tempéra-
tures augmentent, et les vagues de chaleur deviennent plus fréquentes et plus graves (Kuglitsch
et al., 2010; Jacob et al., 2014). Dans la plupart des endroits, notamment dans le sud, chaque
degré d’augmentation de la température réduit les précipitations de 4 % (Lionello and Scaras-
cia, 2018). L’augmentation de la température et la diminution des précipitations entrâınent de
graves conditions de sécheresse dans les parties sud et est de la région méditerranéenne (Le-
lieveld et al., 2012; Yves et al., 2020). Les vagues de chaleur et les sécheresses influencent les
activités socio-économiques, la biodiversité et la santé publique (Fouillet et al., 2006). En raison
du changement climatique, la région méditerranéenne est également considérée comme un point
chaud pour le changement de la biodiversité, perdant au moins 70 % de son habitat (Myers, 1990).

La disponibilité de l’eau dans la région méditerranéenne est susceptible de diminuer de 2 % à
15 %, soit la diminution la plus importante au niveau mondial (Schleussner et al., 2016). La
diminution des précipitations et les changements dans les régimes de précipitations affectent
directement la quantité d’eau qui atteint le sol ou le ruissellement de surface ou le rejet dans
la rivière. L’augmentation de la température et la modification d’autres paramètres tels que le
rayonnement solaire, la vitesse du vent et l’humidité augmentent le processus de transpiration
des plantes et le processus d’évaporation du sol et des masses d’eau. Ces changements affectent le
débit des rivières, la qualité et la quantité des ressources en eau, et pour comprendre les facteurs
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Figure 1.1 : Forces humaines et naturelles affectant la température globale. Source : Programme
américain de recherche sur le changement global.

de ces changements, il est nécessaire de connâıtre la dynamique des ressources en eau à l’échelle
régionale/locale.

1.1.2 Dynamique des ressources en eau dans la région méditerranéenne

Il est essentiel de comprendre la répartition des ressources en eau et l’effet du changement cli-
matique sur la disponibilité de l’eau à l’avenir, en particulier dans les régions en manque d’eau.
La compréhension de l’impact du changement climatique sur la société devient de plus en plus
critique, notamment dans la gestion des ressources en eau. Il est primordial de comprendre les
différentes modifications environnementales et humaines responsables du changement de la ges-
tion des ressources en eau et de l’hydrologie, comme l’impact du changement climatique sur le
bilan hydrique, le changement de l’utilisation et de la couverture des sols (LULC), l’urbanisation
et l’irrigation.

La quantité d’eau est limitée dans la région méditerranéenne, et elle dépend principalement
de l’écoulement des eaux provenant des régions montagneuses (Viviroli and Weingartner, 2004;
de Jong et al., 2009). Les montagnes fournissent une part importante du ruissellement dans les
zones méditerranéennes, représentant entre 20 et 90 % du ruissellement total (Viviroli et al.,
2007). L’augmentation de la demande en eau crée également une pression sur les zones monta-
gneuses. Les modifications des conditions climatiques à long terme deviennent plus apparentes
et ont un impact sur l’écosystème des montagnes méditerranéennes (Giorgi and Lionello, 2008),
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et donc la stabilité de l’approvisionnement en eau n’est pas maintenue.

Les changements de LULC sont les principales caractéristiques du paysage méditerranéen et
de l’altération de l’environnement. L’utilisation des sols affecte les processus hydrologiques par
l’interception, l’évapotranspiration, l’infiltration et le ruissellement (Cosandey et al., 2005; Foley
et al., 2005). Les changements de la couverture terrestre ont considérablement affecté les réponses
hydrologiques à l’échelle du bassin (Andréassian, 2004). Le changement d’utilisation des terres
a été rapide au cours des dernières décennies en raison de l’extension rapide de l’urbanisation et
de l’irrigation. Le développement de nouvelles zones d’irrigations et de cultures dans les zones de
plaine méditerranéennes nécessite plus d’eau pour la consommation. Les zones nouvellement ir-
riguées couvrent près de 10 millions d’hectares et consomment un grand volume d’eau. Ces zones
étant éloignées des vallées fluviales, le transport de l’eau dans ces zones exerce une pression sur
les infrastructures complexes (réservoirs et canaux) et surexploite les eaux souterraines.

Une gestion appropriée des ressources en eau peut répondre à l’augmentation de la demande
d’approvisionnement en eau à l’échelle régionale. Les stratégies de gestion de l’eau doivent bé-
néficier d’une surveillance continue de l’état hydrique des sols résultant de la dynamique et des
changements du climat et de LULC. De solides connaissances dans différents domaines tels que
le changement climatique, les régimes fluviaux, l’hydrologie, etc. permettent de développer un
cadre pour la gestion des ressources en eau.

1.1.3 Variabilité spatio-temporelle de l’humidité du sol

Nous définissons ici l’humidité du sol et expliquons comment cette variable est liée au bilan
hydrique et énergétique de la surface, et comment sa mesure à différentes échelles spatiales et
temporelles est essentielle pour la gestion des ressources en eau et d’autres applications. L’hu-
midité du sol (SM) est la teneur en eau disponible dans la zone non saturée. L’humidité du sol
est une variable clé en hydrologie car elle contrôle les échanges d’eau et d’énergie de la surface
terrestre vers l’atmosphère et relie les modèles de bilan hydrique et énergétique (voir la Figure
1.2 qui présente les modèles de bilan hydrique et énergétique).

Le modèle de bilan hydrique est exprimé comme suit

dW

dt
= P − ET − R (1.1)

où dW
dt est le changement de SM dans une couche de sol donnée, P est la précipitation, ET est

l’évapotranspiration, et R est le ruissellement de surface. L’eau est échangée de la surface à l’at-
mosphère par l’ET, et les précipitations sont réparties en ET, infiltration et ruissellement dans
le modèle de bilan hydrique. L’ET et le ruissellement, ainsi que l’infiltration, sont affectés par la
teneur en SM.

Le modèle de bilan énergétique est exprimé comme suit

dQ

dt
= Rnet − H − λ ∗ LE − G (1.2)

où dQ
dt est le changement d’énergie dans une couche de sol donnée, H est le flux de chaleur sen-

sible, LE est l’ET, G est le flux de chaleur dans le sol, et Rnet est le rayonnement net. L’énergie
disponible à la surface du sol (Rn - G) est partitionnée en flux de chaleur sensible et flux de cha-
leur latente. Cette partition dépend de SM dans une zone de transition (Seneviratne et al., 2010).
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Les équations 1.1 et 1.2 montrent que les bilans énergétique et hydrique sont couplés par le terme
d’ET. L’ET est un processus combiné d’évaporation et de transpiration. L’évaporation se produit
lorsque l’eau s’évapore des surfaces du sol, tandis que la transpiration se produit lorsque l’eau
s’évapore des feuilles de la végétation. L’ET est une variable essentielle qui contrôle l’échange
d’énergie et de masse entre la surface et l’atmosphère. L’ET joue un rôle essentiel dans la pré-
vision des inondations (Bouilloud et al., 2010), des précipitations (Findell et al., 2011), de la
sécheresse (Gao et al., 2011) et de l’agriculture (Allen et al., 2005). Par conséquent, la connais-
sance des mesures quotidiennes de l’ET est essentielle.

Figure 1.2 : Représentation schématique du modèle de (a) bilan hydrique et (b) énergétique.

Un cadre conceptuel/théorique est utilisé pour définir le système d’ET en fonction de SM (voir
la Figure 1.3). Les conditions limitées par SM et les conditions limitées par l’énergie sont les
deux systèmes d’ET caractérisés par la fraction évaporative (EF), qui est le rapport entre l’ET
et l’énergie disponible à la surface (Koster et al., 2004; Seneviratne et al., 2010). Les valeurs de
SM sont inférieures à la valeur critique de SM dans des conditions limitées en SM, et l’ET dépend
principalement de SM. Inversement, les valeurs de SM sont supérieures à la valeur critique de
SM dans des conditions limitées en énergie, et l’ET est indépendante de SM et contrôlée par la
demande atmosphérique. La valeur critique de SM critique (SMcritical) est définie comme l’hu-
midité entre SM à la capacité au champ (SMfc, au-dessus duquel l’eau n’est pas retenue contre
le drainage gravitationnel) et SM au point de flétrissement (SMwilting au-dessus duquel l’eau est
retenue trop fermement par la matrice du sol qu’elle n’est pas accessible aux plantes). Le cadre
conceptuel décrit trois modes de SM basés sur l’impact de SM sur la variabilité de l’ET : humide
(SM>SMcritical), sec (SM<SMwilting), et zone de transition (SMwilting<SM >SMcritical). Par
exemple, dans les modèles de surface terrestre de première génération, l’ET était estimée en
fonction de la SM simulée par le modèle à réservoirs.

L’importance de SM dans les processus écohydrologiques et de surface terrestre est reconnue par
diverses recherches (Robinson et al., 2008; Jung et al., 2010; Seneviratne et al., 2010; Evaristo
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Figure 1.3 : Structure conceptuelle de la dépendance de l’ET à SM.. Source : (Seneviratne
et al., 2010)

et al., 2015). SM varie fortement sur une très vastes plage d’échelles spatio-temporelles, avec
des échelles spatiales allant de quelques centimètres à des milliers de kilomètres et des échelles
temporelles allant de quelques minutes à des années. De nombreuses études ont examiné la varia-
bilité spatiale de SM à différentes échelles telles que l’échelle de la parcelle (Nielsen et al., 1973;
Bell et al., 1980), l’échelle du bassin versant (Nielsen et al., 1973; Western et al., 2004), l’échelle
régionale (Romshoo, 2004; Zhao et al., 2013) et l’échelle continentale (Entin et al., 2000; Li and
Rodell, 2013). Western et al. (2002) ont examiné plusieurs stratégies de mise à l’échelle pour
mettre en relation la variabilité spatiale de SM à travers les échelles spatiales intégrées. Vander-
linden et al. (2012) ont analysé la variabilité temporelle de la SM à différentes échelles embôıtées.
Ils ont exploré plusieurs éléments interconnectés tels que le sol, la végétation, la topographie et
le climat qui jouent un rôle essentiel dans la détermination de la variabilité temporelle de SM.

Les variabilités de SM à travers l’espace et le temps reflètent un effet intégré de divers facteurs
environnementaux (Famiglietti et al., 2008; Brocca et al., 2010; Ochsner et al., 2013). En raison
de l’interaction complexe de SM avec le milieu environnant, avec une variabilité spatio-temporelle
importante, il est difficile de prédire l’évolution temporelle du SM à n’importe quelle échelle spa-
tiale, même avec la connaissance du processus fondamental (Seneviratne et al., 2010; Vereecken
et al., 2014). Il est donc essentiel de déterminer les facteurs qui contrôlent la variabilité spatio-
temporelle de SM à diverses échelles. Les facteurs qui affectent la variabilité spatio-temporelle
de SM à l’échelle de la parcelle agricole et de la région sont notamment les caractéristiques
et la profondeur du sol, la dynamique de la végétation et les aspects topographiques (Mohanty
and Skaggs, 2001; Teuling and Troch, 2005; Vereecken et al., 2014; Wang, 2014; Wang et al., 2015)

Différentes méthodes quantitatives ont permis d’analyser la variabilité spatio-temporelle et les
propriétés des sols à travers une gamme diverse d’échelles. Ces méthodes sont la géostatistique,
l’analyse spectrale et par ondelettes, l’analyse multifractale, l’analyse de l’espace d’état et l’ana-
lyse par ensembles flous (Si, 2008; Molero et al., 2018). De manière déterministe, diverses tech-
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niques sont utilisées pour estimer la variabilité spatiale et temporelle de SM à l’aide de mesures
in situ, de modèles de surface terrestre ou hydrologiques, et de satellites de télédétection. Ces
techniques sont décrites en détail dans la section suivante.

1.2 Suivi de l’humidité du sol

Trois grandes catégories de méthodes peuvent être utilisées pour estimer SM : les mesures in situ,
la modélisation des surfaces et la télédétection. Si les mesures in situ ont été et sont toujours
utilisées comme référence pour évaluer les autres méthodes, elles sont limitées par leur représen-
tativité spatiale (Western et al., 2002). Compte tenu de la physique, des données de forçage et
des paramètres de calibration des transferts d’eau du sol à l’interface sol-végétation-atmosphère,
les modèles de surface terrestre peuvent simuler SM de façon continue dans le temps et l’espace.
Malheureusement, la détermination précise des données de forçage et des paramètres du modèle
est complexe, et tous les modèles ont tendance à diverger de la réalité après un temps de fonc-
tionnement plus ou moins long. Les techniques de télédétection ont l’atout unique de fournir
des données de SM sur une gamme de résolutions spatiales. Le fait est cependant qu’elles sont
soumises à deux limitations principales : une faible fréquence d’observations (inférieure à 1 par
jour) et l’incertitude des données de télédétection associée à l’impact des facteurs perturbateurs
spécifiques à la longueur d’onde utilisée. Comme chaque méthode présente des avantages et des
inconvénients, la plupart des études combinent les informations de SM provenant des mesures in
situ, des modèles et des données de télédétection.

1.2.1 Mesure in situ de l’humidité du sol

La mesure de SM est classée en méthodes directes et indirectes (Yoder et al., 1998). D’une part,
la méthode directe est utilisée pour mesurer la teneur en eau gravimétrique du sol, à partir de
laquelle la SM volumétrique est dérivée connaissant la densité de l’échantillon de sol. D’autre
part, la méthode indirecte estime la teneur en eau volumétrique du sol en calibrant une fonction
basée sur d’autres variables mesurables qui varient avec la teneur en eau du sol (Evett and Par-
kin, 2005). Les différentes techniques de mesure directe et indirecte du sol pour le suivi de SM
sont présentées ci-dessous.

Méthode gravimétrique

La méthode gravimétrique est une méthode ancienne et classique pour déterminer la teneur en
eau du sol. La méthode à l’étuve est la plus utilisée pour la mesure de SM (Schmugge et al., 1980).
Elle est notamment utilisée comme référence standard pour la calibration des autres méthodes
de SM (Walker et al., 2004; Merlin et al., 2007). L’échantillon de sol humide est séché à 105°C
jusqu’à l’obtention d’un poids constant de l’échantillon de sol. La méthode gravimétrique mesure
la SM comme le rapport entre le poids de l’eau présente dans le sol et le poids de l’échantillon de
sol. Le poids de la teneur en eau est dérivé de la différence entre le poids humide de l’échantillon
de sol et le poids séché au four. La méthode gravimétrique donne la valeur de SM en pourcentage
du poids sec du sol. Pour calculer la teneur en eau volumétrique, le volume d’eau gravimétrique
est multiplié par la densité apparente du sol.

Les avantages de cette technique sont 1) elle est robuste, facile et précise, 2) l’acquisition d’échan-
tillons est peu coûteuse, 3) SM est facilement calculée. Cependant, les inconvénients de cette
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technique sont : 1) l’estimation de la SM est difficile dans les sols hétérogènes, 2) cette méthode
est destructive et difficile à utiliser sur une longue période 3) elle demande beaucoup de travail
et de temps.

Technique diélectrique

Il s’agit de la technique la plus courante en raison de sa capacité à assurer un suivi localisé de
SM de manière continue dans le temps pour un coût relativement faible. Elle estime la SM en
mesurant la constante diélectrique du sol. Comme la constante diélectrique de l’eau liquide est
plus grande que celle du sol, la permittivité totale du sol est régie par l’eau liquide. La réflecto-
métrie dans le domaine temporel (TDR) et la réflectométrie dans le domaine fréquentiel (FDR)
sont les principales techniques qui utilisent la propriété diélectrique du sol pour mesurer SM.

La TDR est largement utilisée pour mesurer SM (Rao and Singh, 2011). Elle mesure la vitesse
de propagation de l’onde électromagnétique dans le sol et la constante diélectrique comme la
quantité d’énergie électrique dans la substance. La teneur en eau du sol est estimée en calibrant
la fonction reliant SM à la constante diélectrique du sol mesurée. Les avantages de la TDR sont
les suivants : 1) elle n’est pas destructive, elle demande moins de travail que la méthode gravi-
métrique et elle est facile à installer ; 2) aucun étalonnage spécifique n’est nécessaire (Topp and
Davis, 1985) ; 3) elle fournit un résultat précis à haute résolution temporelle (Chandler et al.,
2004) ; 4) cette technique est indépendante de la texture, de la température et de la teneur en eau
du sol ; 5) cette technique peut être automatisée car elle ne nécessite pas d’entretien quotidien et
peut être régulée automatiquement. Les inconvénients de cette technique sont 1) un coût initial
élevé, 2) une applicabilité limitée dans les sols hautement salins (Ferrara and Flore, 2003), 3) une
calibration spécifique est nécessaire pour l’eau liée dans les sols organiques, les sols volcaniques,
etc.

La FDR estime la teneur en SM à partir de la fréquence du signal qui varie en fonction de la
constante diélectrique du sol. La FDR utilise un condensateur et le sol comme matériau diélec-
trique pour mesurer la teneur en SM. Le condensateur est connecté à l’oscillateur pour former
un circuit électrique. La variation de la SM est estimée par la différence de fréquence du circuit
de fonctionnement. La fréquence de l’oscillateur est limitée dans une plage spécifique pour dé-
terminer la fréquence de résonance (Muñoz-Carpena, 2004). Les avantages de la FDR sont les
suivants : 1) elle donne des résultats précis mais nécessite un étalonnage spécifique du site, 2) elle
est applicable dans des conditions de sols hautement salins, 3) elle est flexible dans la conception
des sondes. Les inconvénients de la FDR sont les suivants : 1) une plus grande sensibilité à la tem-
pérature, à la densité apparente, aux vides d’air et à la teneur en argile limite l’utilisation de cette
méthode par rapport à la TDR (Erlingsson et al., 2009) ; 2) une sphère d’influence restreinte ;
3) pour des mesures fiables, il est très important d’assurer un bon contact entre le capteur et le sol.

Technique nucléaire

La technique de diffusion des neutrons est un moyen indirect pour déterminer la SM. Elle estime
SM en mesurant la densité des neutrons thermiques ou lents. La source radioactive émet des
neutrons rapides à haute énergie dans le sol, et ils ralentissent lorsqu’ils entrent en collision avec
la même masse qu’un neutron (c’est-à-dire un proton H+) et construisent un nuage de neutrons
thermalisés. La densité des neutrons thermalisés autour de la sonde est proportionnelle à la frac-
tion volumique de l’eau présente dans le sol car l’eau est la principale source d’hydrogène dans
le sol. Les sondes neutroniques sont de deux types : les sondes de profondeur et de surface. La
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sonde de profondeur est utilisée pour mesurer la SM sous le sol à une profondeur donnée, tandis
que la sonde de surface mesure la teneur en eau du sol dans la couche la plus superficielle du
sol (Schmugge et al., 1980). Les avantages de la technique nucléaire sont les suivants : 1) elle est
plus robuste ; 2) elle peut détecter les changements rapides et temporels dans l’estimation de la
SM ; 3) elle mesure un grand volume de sol, et mesure également le profil de la SM à différentes
profondeurs ; 4) elle n’est pas affectée par la salinité du sol ou les lames d’air. Les inconvénients
sont 1) le coût initial de l’instrumentation est élevé, 2) un faible degré de résolution spatiale 3)
l’opérateur doit veiller à minimiser les risques pour la santé.

Une autre technique basée sur le nucléaire est la technique d’atténuation des rayons gamma.
Il s’agit d’une technique radioactive qui mesure la SM à une profondeur de 25 cm ou moins.
Cette technique part du principe que la diffusion et l’absorption des rayons gamma sont liées à la
densité de la matière se trouvant sur leur trajectoire. La densité spécifique du sol reste constante
alors que SM change. Les avantages de la technique d’atténuation des rayons gamma sont 1)
de fournir des mesures temporelles de la SM à différentes profondeurs, 2) la mesure est non-
destructive, et 3) les données peuvent être obtenues sur de petites distances et horizontalement.
Les inconvénients sont 1) la technique est coûteuse et difficile à utiliser, 2) elle nécessite une
attention extrême pour réduire le risque de danger pour la santé, et 3) elle est impactée par la
variation significative de la densité apparente.

Tensiomètrie

Un tensiomètre mesure la tension ou l’énergie avec laquelle le sol retient l’eau. La SM peut
être dérivée de la tension de l’eau du sol, étant donné les propriétés hydrauliques du sol. Le
tensiomètre se compose d’un tube cylindrique rempli d’eau avec des embouts en céramique à
l’extrémité et une jauge à vide au sommet. Le tensiomètre est installé dans le sol à la profondeur
à laquelle la mesure de la SM est requise. À cette profondeur, l’eau contenue dans le tensiomètre
est en équilibre avec le sol environnant. Lorsque le sol sèche, l’eau est extraite par la pointe et
crée une tension sur les tubes à vide. Lorsque le sol est humide, la tension est réduite, et elle
permet à l’eau de pénétrer dans les tubes à vide à travers les tubes cylindriques, et le vide est
réduit. La pression générée par le tensiomètre est équivalente à la tension utilisée par la plante
pour extraire l’eau du sol.

Les avantages de la technique du tensiomètre sont 1) il est facile à installer et rentable, 2) les
informations sur la distribution de la SM sont obtenues dans des conditions de sol saturé et non
saturé, 3) l’équipement peut être facilement placé dans le sol et fournit une mesure continue
du sol avec une perturbation minimale et 4) l’utilisation d’une solution aqueuse d’éthylène gly-
col rend le tensiomètre approprié pour être installé dans les régions froides. Les inconvénients
de cette technique sont les suivants : 1) elle ne convient pas aux sols secs ; 2) elle nécessite une
maintenance importante ; 3) les informations relatives à la SM ne peuvent être obtenues que dans
une plage de tension d’eau comprise entre 0 et 850 hPa ; 4) la relation entre SM et la tension
d’eau du sol mesurée est non linéaire.

1.2.2 Modèles dynamiques

Les modèles de surface décrivent les interactions entre la surface terrestre et l’atmosphère, c’est-à-
dire les échanges d’énergie et d’eau. SM est simulée dans le temps et l’espace à l’aide d’un modèle
dynamique qui intègre la physique des transferts d’eau du sol. La modélisation de surface fournit
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une condition limite pour le modèle atmosphérique et joue un rôle essentiel dans le système de
prévision numérique du temps et de projection du changement climatique. Il joue également un
rôle essentiel dans la représentation des processus hydrologiques en modélisant l’interaction avec
la surface terrestre et l’atmosphère.

Les modèles de surface peuvent différer dans la représentation de la variabilité spatiale de SM,
de la végétation, de la topographie, du ruissellement de surface, du stockage de l’eau, etc. Ils
sont généralement classés en trois générations (Sellers et al., 1997; Pitman, 2003). La première
génération de modèles de surface terrestre fournit une représentation directe qui considère des
interactions simples avec la surface terrestre, la végétation et l’atmosphère. Deux exemples de
modèles de première génération sont donnés ci-dessous.

Le modèle Bucket (Manabe, 1969) est le premier modèle simple de surface utilisé pour modéliser
les flux hydrologiques à l’échelle globale. Dans ce modèle, la couche de sol a une capacité en
eau fixe, une profondeur et des propriétés de sol constants. Le principe de base de ce modèle est
que le réservoir du sol est rempli par les précipitations, et qu’il se vide avec l’évaporation et le
ruissellement.

Le modèle Force-Restore (Deardorff, 1978) basé sur la méthode ”force restore” (Bhumralkar,
1975) a été développé à partir d’une équation efficace dépendant du temps pour estimer le SM.
Le modèle ”force et restore” implique généralement deux équations pronostiques correspondant
à une couche de surface du sol et la zone racinaire, représentant respectivement l’évolution de
SM en surface et en zone racinaire. Il s’agit du modèle de prévision de la SM le plus populaire en
raison de son efficacité de calcul. Il utilise de plus un nombre minimum de variables pronostiques
et capture les processus physiques les plus importants.

Les modèles de surface de deuxième et troisième génération sont développés en combinant des
modèles plus spécifiques afin de représenter de manière plus réaliste la relation complexe entre
la surface terrestre et l’atmosphère à différentes échelles. Ces modèles plus complexes peuvent
fournir des informations sur SM et d’autres variables de la surface terrestre et de l’atmosphère
telles que la température de surface, les flux de surface, etc.

Un exemple de modèle de surface de nouvelle génération est donné par Surface Externalisée
(SURFEX), qui est le modèle de surface développé par Météo France. Le modèle SURFEX as-
sure un couplage entre la surface terrestre et l’atmosphère. Tout d’abord, chaque maille de la
surface reçoit la température de l’air, la pression, l’humidité spécifique, les précipitations totales,
le rayonnement des ondes longues et courtes, les espèces chimiques et la concentration des aéro-
sols pendant un horodatage du modèle. Ensuite, SURFEX calcule le flux moyen de la quantité de
mouvement, de la chaleur sensible, de la chaleur latente, des espèces chimiques et des aérosols et
renvoie ces quantités à l’atmosphère en y ajoutant la température radiative de la surface, l’albédo
diffus et l’émissivité de la surface. Dans SURFEX, chaque maille du modèle est représentée par
une couverture de surface différente : sol et végétation, zones urbaines et masses d’eau (mer ou
océan ou lac). Ces couvertures de surface sont obtenues à partir de la base de données mondiale
ECOCLIMAP qui combine des cartes de couverture des sols et des informations satellitaires.
SURFEX fait la moyenne de tous les flux calculés sur le sol et la végétation, les zones urbaines,
et l’eau (mer ou lac ou océan) par leurs fractions respectives. Toutes ces informations sont utili-
sées comme condition aux limites basses pour le rayonnement atmosphérique et le flux turbulent.

Dans SURFACE, un modèle différent représente chaque type de surface. Le modèle SURFEX
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est en effet constitué de modèles physiques plus spécifiques tels que l’interaction entre le sol,
la biosphère et l’atmosphère (ISBA) pour les surfaces terrestres, Town Energy Balance (TEB)
pour les zones urbaines, et Flakes pour les lacs et les océans. ISBA comprend lui-même plusieurs
modèles qui transfèrent l’énergie et l’eau dans le sol, la végétation, l’hydrologie de surface et la
neige. Le modèle ISBA est construit pour limiter le niveau de complexité en réduisant le nombre
de paramètres tout en représentant la physique de l’interaction terre-atmosphère. ISBA est un
modèle simple de surface terrestre qui peut utiliser la méthode de ”restauration de force ” (Dear-
dorff, 1977) pour calculer la température de surface et la température moyenne du sol au cours
du temps ainsi que le bilan hydrique du sol (ISBA-2L, (Noilhan and Planton, 1989)). Dans ce
modèle, la couche supérieure agit comme un réservoir pour l’évaporation de la surface du sol, et
la seule couche de sol de subsurface est utilisée pour modéliser le contenu en eau moyen de la
racine et de la couche de la zone sous-racinaire. La couche standard ISBA-2L peut également
définir une couche d’acheminement et inclure une troisième couche qui distingue les bilans hy-
driques du sol de la surface et de la zone sous-racinaire (ISBA-3L, (Boone et al., 1999)). ISBA a
encore été modifié pour tenir compte de la concentration de dioxyde de carbone atmosphérique
sur l’ouverture des stomates (ISBA-Ags, (Calvet et al., 1998)). Le modèle standard ISBA a été
mis à jour pour mieux représenter le ruissellement en surface pour les applications hydrologiques
(Habets et al., 1999).

La modélisation dynamique utilisée pour estimer SM fait donc face à un compromis en termes
de précision du SM entre la physique implémentée dans les équations du modèle, le nombre
de couches représentées, et la disponibilité des paramètres et les données de forçage nécessaires
en entrée du modèle. En général, un modèle simple permet d’échantillonner l’ensemble de ses
paramètres et d’en déduire une calibration optimale. Cependant, il ne peut pas remplacer les
modèles sophistiqués qui tiennent compte des relations complexes dans le sol et la végétation
pour produire des résultats plus complets dans différentes conditions pédo-hydro-climatiques. Le
principal avantage des modèles simples est qu’ils nécessitent moins de paramètres d’entrée, ce qui
améliore leurs capacités de calibration et réduit par conséquent l’incertitude associée aux erreurs
de calibration sur les données de sortie.

1.2.3 Informations satellitaires

La SM est variable dans l’espace, et les facteurs qui affectent la variabilité de la SM sont no-
tamment les types de sol, la couverture végétale, les conditions climatiques et la topographie.
Les mesures in situ de SM sont limitées à l’échelle du point à un endroit particulier. De telles
mesures ponctuelles ne peuvent pas couvrir une si grande variabilité de SM (Srivastava et al.,
2013). L’extrapolation de ces mesures ponctuelles par des techniques géostatistiques (Qiu et al.,
2001) est coûteuse, longue et complexe, en particulier sur des surfaces terrestres hétérogènes (Qin
et al., 2013; Byun et al., 2014). La mesure in situ n’est pas pratique pour mesurer la variabilité
spatiale et temporelle de SM à l’échelle régionale et mondiale.

Le problème est résolu en développant des techniques de télédétection qui peuvent estimer SM
de l’échelle régionale à l’échelle globale. L’observation par satellite à partir de capteurs micro-
ondes actifs et passifs est la plus appropriée pour estimer SM (Schmugge et al., 2002; Mohanty
et al., 2017). Les capteurs micro-ondes ne peuvent pas estimer directement SM, mais il existe
une relation directe entre la constante diélectrique du sol et la teneur en eau. Cette section décrit
les techniques de télédétection basées sur les capteurs micro-ondes passifs, micro-ondes actifs
optiques/thermiques, permettant d’estimer SM sur de grandes étendues.
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Capteurs micro-ondes passifs

La terre reçoit en permanence les rayonnements électromagnétiques du soleil. Une partie de ce
rayonnement est absorbée/réfléchie ou transmise par la surface de la terre. L’énergie absorbée
est transformée en énergie thermique et augmente la température de la surface jusqu’à ce qu’elle
atteigne l’équilibre thermodynamique. Dans cet état, tous les milieux rayonnent de l’énergie pour
maintenir l’équilibre énergétique. Les capteurs micro-ondes passifs sont très sensibles et détectent
l’énergie émise ou rayonnée par la surface de la terre à la longueur d’onde de 1 à 30 cm, expri-
mée en température de brillance. L’énergie émise absorbée dans les micro-ondes comprend la
contribution de l’atmosphère, de la surface terrestre et du rayonnement réfléchi par le ciel. Les
micro-ondes passives peuvent fournir des informations sur SM car il existe une différence signifi-
cative entre la constante diélectrique de l’eau ( 80) et celle du sol sec ( 4). La texture du sol et la
variabilité de la température du sol et de la végétation affectent également l’extraction du spectre
micro-onde. L’avantage d’un radiomètre micro-ondes est que la couverture nuageuse ne limite
pas ses capacités d’observation, qui dépendent peu de l’heure d’acquisition. Lorsque la végétation
n’est pas présente, SM est le paramètre dominant qui affecte le signal micro-onde reçu (Njoku and
Entekhabi, 1996). Les micro-ondes passives sont adéquates pour assurer le suivi de SM à l’échelle
globale (Owen et al., 1998). En général, la technique de récupération à deux paramètres a été
utilisée pour inverser simultanément SM et l’épaisseur optique de la végétation. Cette technique
est bien adaptée aux observations multi-fréquences à double polarisation ou multi-angulaires en
bande L (Peischl et al., 2014). Divers satellites de télédétection à micro-ondes passives ont été
lancés au cours des 35 dernières années (Chen et al., 2012). Certains des capteurs micro-ondes
passifs sont présentés dans la Figure 1.4

Diverses bandes micro-ondes telles que L, C, X et K sont utilisées par les radiomètres. Actuel-
lement, la bande L est utilisée pour estimer SM car les données aux fréquences de la bande
L sont sensibles à SM y compris à travers la végétation jusqu’à 5 kg/m2 et peuvent fournir
une estimation de SM dans toutes les conditions météorologiques. En revanche, les bandes de
fréquences plus élevées (C, X et K) sont davantage sensibles à la végétation. Les observatitons
à ces fréquences sont donc plus atténuées par l’effet de la végétation et leur applicabilité est
donc limitée aux zones de végétation modérée (< 3 kg/m2). La fréquence de la bande L donne
une information sur la couche de quelques centimètres de la surface du sol ( 5 cm) et est moins
affectée par l’interférence des fréquences radio (RFI) que les fréquences supérieures. Notez que les
capteurs fonctionnant à des fréquences plus basses (bande P) pourraient également être utilisés
pour obtenir des informations plus profondément dans le sol. Cependant, la taille de l’antenne
(qui augmente avec la longueur d’onde) et la présence importante de RFI rendent difficile la
construction d’un satellite de télédétection utilisant des micro-ondes passives en bande P.

Actuellement, deux missions en bande L, Soil Moisture Ocean Salinity (SMOS, (Kerr et al.,
2010)) et Soil Moisture Active and Passive (SMAP, (Entekhabi et al., 2010)), sont utilisées pour
fournir la SM à une échelle globale et sont largement utilisées dans cette thèse.

SMOS est le premier satellite micro-ondes en bande L lancé par l’Agence spatiale européenne
le 2 novembre 2009. SMOS fournit des données de SM et de salinité des océans à l’aide d’un
radiomètre à une fréquence de 1,4 GHz, utilisant un instrument MIRAS (Microwave Imaging
Radiometer with Aperture Synthesis). Il fournit des images de SM à une résolution spatiale de
35 km avec une résolution temporelle de 1-3 jours. SMOS a une orbite quasi-circulaire héliosyn-
chrone à une altitude de 758 km avec un passage ascendant (18 h) et descendant (6 h). SMOS
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Figure 1.4 : Liste des capteurs micro-ondes passifs passés et actuels jusqu’à aujourd’hui

est un interféromètre 2-D, qui fournit la température de brillance en polarisation horizontale et
verticale à une gamme d’angles d’incidence (allant de 0 à 55 degrés). L’algorithme SMOS utilise
des angles d’incidence multiples à double polarisation pour séparer les contributions du sol et
de la végétation de l’émissivité de la surface. SMOS fournit des produits SM de niveau 2 et de
niveau 3. En plus du produit SM, la mission SMOS fournit des données auxiliaires telles que la
température de surface, le paramètre de rugosité et l’épaisseur optique au sommet de l’atmo-
sphère. Elle fournit à partir de la température de brillance mesurée un produit SM global avec
une précision spécifiée de 0,04 m3/m3 (Kerr et al., 2001). L’expérience de validation du produit
SMOS de niveau 2 montre des résultats satisfaisants dans l’estimation de SM sur différents éco-
systèmes et différentes échelles spatiales. Par exemple, des études de validation ont été réalisées
dans diverses régions telles que l’Amérique du Sud (Escorihuela et al., 2012), l’Europe (Lacava
et al., 2012; Srivastava et al., 2013; Petropoulos et al., 2014), l’Australie (Panciera et al., 2011;
Peischl et al., 2014) et les États-Unis (Jackson et al., 2011; Al Bitar et al., 2012) allant de l’échelle
continentale (Dente et al., 2012; Zhao et al., 2014) à l’échelle du bassin versant (Bircher et al.,
2012; Srivastava et al., 2013).

SMAP est un satellite en bande L lancé par la NASA le 31 janvier 2015. SMAP est conçu pour
utiliser des capteurs micro-ondes actifs et passifs en intégrant un radar en bande L (polarisations
VV, HH et HV) et un radiomètre en bande L (polarisations V, H et 3e et 4e paramètres de
Stokes). Mais en raison de la défaillance du radar, la mission radiométrique SMAP fournit ac-
tuellement des données SM à une résolution spatiale de 36 km sur un cycle de revisite de 3 jours
à l’échelle mondiale. Le satellite SMAP a une orbite polaire héliosynchrone d’une altitude de
658 km avec un passage descendant/ascendant à 6 heures du matin/après midi, heure locale. La
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mission SMAP fournit des produits SM avec une précision spécifiée meilleure que 0,04 m3/m3.
Divers résultats de validation montrent des résultats satisfaisants pour différents produits SM
de SMAP (Vreugdenhil et al., 2013; Colliander et al., 2017a; Cai et al., 2017; Ma et al., 2017;
Bhuiyan et al., 2018; Colliander et al., 2019). La mission SMAP fournit également un produit
SM sur une grille de résolution de 9 km (Das et al., 2013) en interpolant les données issus du
radiomètre en bande L à l’aide de la méthode Backus-Gilbert (Backus and Gilbert, 1970). La
mission SMAP combine également le radiomètre SMAP avec le radar Sentinel-1 pour fournir SM
à 9 km et 3 km (Das et al., 2018), mais cette approche est limitée par la nécessité d’avoir des
temps de passage quasi-simultanés de SMAP et Sentinel-1.

Capteurs micro-ondes actifs

Les capteurs micro-ondes actifs ou radars utilisent leur source de rayonnement pour illuminer les
objets ciblés et calculer le coefficient de rétrodiffusion, c’est-à-dire la différence entre le rayon-
nement électromagnétique émis et reçu. Les radars sont divisés en instruments d’imagerie (par
exemple, les radars à ouverture synthétique (SAR)) et en instruments non imageurs, notamment
les diffusiomètres et les altimètres. Le coefficient de rétrodiffusion radar est lié à SM en raison
de la différence significative entre la constante diélectrique du sol sec et celle de l’eau, mais la
précision du SM récupéré est affectée par la rugosité du sol et la biomasse végétale (Moran et al.,
2004). En raison du lien complexe entre le coefficient de rétrodiffusion et la réflectivité de la
surface, la structure complexe de la surface du sol et de la végétation a un impact significatif
sur les mesures, et il est difficile de développer une procédure simple pour éliminer ces effets. En
tenant compte de la configuration du capteur et des paramètres de surface, divers modèles de
rétrodiffusion ont été développés au cours des 30 dernières années (une liste de capteurs hyper-
fréquences actifs est présentée à la Figure 1.5), classés en trois groupes : modèles physiques ou
théoriques, empiriques et semi-empiriques.

Les modèles physiques ou théoriques calculent le coefficient de rétrodiffusion radar en fonction
de la constante diélectrique et de la rugosité du sol en calculant l’interaction entre le rayonne-
ment micro-ondes et le sol. Dans ces modèles, SM est estimée par l’inversion mathématique du
coefficient de rétrodiffusion. L’avantage de l’approche théorique est qu’elle est indépendante des
conditions locales du site et des caractéristiques typiques du capteur. Elle fournit une valeur de
SM avec une grande précision (Notarnicola and Solorza, 2014) et peut être mise en œuvre dans
des conditions de rugosité spécifiques. L’inconvénient est qu’elle nécessite de nombreux para-
mètres d’entrée qui rendent le paramétrage difficile et complexe (Moran et al., 2004). Ce type de
modèle présente également des difficultés pour décrire la rugosité du sol (Zribi and Dechambre,
2003).

Le modèle physique le plus utilisé de nos jours est le modèle d’équation intégrale (IEM). L’IEM
(Fung et al., 1992) est un modèle de transfert radiatif basé sur la physique qui calcule le coeffi-
cient de rétrodiffusion du sol sec avec des propriétés radar données telles que la longueur d’onde,
la polarisation, les caractéristiques de surface telles que la constante diélectrique, la rugosité de
surface et l’angle d’incidence local. Ce modèle est l’un des modèles d’inversion les plus utilisés
pour estimer la SM et la rugosité de surface (Shi et al., 1997; Satalino et al., 2002; Zribi and
Dechambre, 2003). Néanmoins, l’IEM montre des difficultés sur les surfaces naturelles en raison
de la sensibilité des modèles aux paramètres de rugosité de surface et du problème associé à
leurs mesures correctes (Zribi and Dechambre, 2003). Ce modèle néglige la diffusion à partir du
volume de sol de subsurface qui peut être importante pour les conditions de sol sec (Schanda,
1987). Par conséquent, ces modèles nécessitent une connaissance très détaillée de la rugosité de
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la surface.

Des modèles empiriques sont également utilisés pour dériver la relation directe entre le coefficient
de rétrodiffusion radar et le SM. Les études empiriques sont basées sur des résultats expérimen-
taux associés aux conditions de surface des sites expérimentaux et aux paramètres radar. De
nombreuses études empiriques montrent une relation linéaire entre le coefficient de rétrodiffusion
radar et le SM pour des sites spécifiques où le SM varie de 0,10 à 0,35 m3/m3 en supposant
que la rugosité ne change pas entre les mesures radar successives (Zribi et al., 2005). Ce modèle
relie directement la rétrodiffusion radar à la SM. Cependant, cette approche empirique nécessite
des ensembles de données et des conditions de mise en œuvre spécifiques, par exemple, l’angle
d’incidence, la fréquence d’observation et la rugosité de la surface. Une autre limitation est que
cette approche nécessite des mesures de SM in situ de haute qualité pour effectuer l’étape de
calibration, ce qui est coûteux et difficile. En outre, ces modèles empiriques peuvent ne pas être
valables en dehors des conditions pour lesquelles ils ont été calibrés.

Intermédiaires entre les approches théoriques et totalement empiriques, les modèles semi-empiriques
combinent le modèle numérique de transfert radiatif (modèle physique) et des ensembles de don-
nées analysées ou expérimentales (modèle empirique) pour fournir une relation simple entre les
propriétés de surface et la physique du mécanisme de rétrodiffusion. Ce type de modèle offre
généralement un bon compromis entre la complexité du modèle théorique et la simplicité du
modèle empirique. L’avantage de ce type de modèle est qu’il est indépendant du site et peut
être appliqué lorsque peu ou pas d’informations sur la rugosité du sol sont disponibles (Baghdadi
et al., 2008). Le modèle semi-empirique le plus utilisé est le modèle de Oh (Oh et al., 1992) et le
modèle de nuage d’eau (Attema and Ulaby, 1978).

no Le modèle de nuage d’eau est un modèle de diffusion de volume sur les zones végétalisées.
Ce modèle a été développé en supposant que le ”nuage”de la canopée est constitué de gouttelettes
d’eau identiques distribuées de manière aléatoire dans la canopée. En raison de sa simplicité, il
est le plus utilisé pour l’estimation de SM, en particulier sur les zones agricoles (Bindlish and
Barros, 2001; Dabrowska-Zielinska et al., 2007; Baghdadi et al., 2017; Li and Wang, 2018). Ce
modèle exprime les caractéristiques complexes de diffusion dans les zones végétalisées et fournit
des informations sur l’atténuation à partir de la couche de végétation.

Capteurs optiques/thermiques

capteurs visibles/à ondes courtes dépendent du soleil comme source d’éclairage et utilisent
le visible, le proche infrarouge et l’infrarouge courtes longueurs d’onde pour obtenir des images
de la surface de la terre. Différents objets observent et réfléchissent différemment à différentes
longueurs d’onde. Leur signature spectrale permet de différencier les objets réfléchis dans l’image
télédétectée. Divers capteurs optiques/thermiques à différentes résolutions ont été lancés depuis
les années 1970, comme le montre la Figure 1.6.

La télédétection optique est classée en fonction des bandes spectrales utilisées :

1. Le capteur panchromatique utilise une seule bande pour enregistrer le rayonnement sur
une plus grande longueur d’onde, par exemple SPOT HRV-Pan, Ikonos Pan.
2. Un capteur multispectral est un détecteur multicanal qui utilise quelques bandes spectrales
et enregistre le rayonnement électromagnétique dans la longueur d’onde étroite, par exemple,
Landsat MSS, Landsat TM, SPOT HRV-XS, Ikonos MS.
3. Les instruments supraspectraux utilisent plus de dix bandes spectrales et enregistrent le rayon-
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Figure 1.5 : Liste des capteurs micro-ondes actifs (ou radars) passés et actuels jusqu’à aujour-
d’hui. Source : UNAVCO

nement électromagnétique sur les courtes longueurs d’onde qui permettent de saisir les caracté-
ristiques spectrales les plus exemplaires de la cible, par exemple MODIS, MERIS.
4. Les capteurs hyperspectraux utilisent plus de 100 bandes spectrales et la signature spectrale
précise permet de mieux classifier les objets et est utilisée pour différentes applications telles que
la foresterie, l’agriculture, etc.

Plusieurs études documentent une relation empirique entre la réflectance de la surface du sol et
SM (Gao et al., 2013) et la relation non linéaire entre le SM et la réflectance (Lobell and Asner,
2002; Nocita et al., 2013). Le principal inconvénient des capteurs optiques pour le suivi de la
SM est qu’ils ont une capacité limitée à pénétrer les nuages et sont fortement atténués par la
couverture végétale (Zhao and Li, 2013). En outre, les mesures de réflectance du sol sont for-
tement affectées par les nombreuses propriétés physiques du sol, telles que la teneur en matière
organique, la rugosité, la texture, l’angle d’incidence, la couverture végétale, etc. qui rend la
réflectance du sol très variable indépendamment du SM. La relation entre la réflectance du sol
et le SM n’est obtenue que lorsque le modèle est adapté à des types de sol spécifiques (Muller
and Decamps, 2001). En général, l’information spectrale réfléchie seule ne pourrait pas fournir
une solution viable pour fournir des images de SM.

Les imageurs thermiques font également partie des instruments optiques. Ils utilisent des cap-
teurs infrarouges pour détecter le rayonnement infrarouge émis par la surface de la terre. . Ils
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Figure 1.6 : Liste des capteurs optiques/thermiques passés et actuels jusqu’à aujourd’hui.
Source : Houborg et al. (2015)

sont utilisés dans les satellites de télédétection pour mesurer la température de la surface de la
terre et de la mer. La quantité de rayonnement thermique émise par les objets dépend de leur
température.

L’évaporation étant le moyen le plus efficace de calculer la perte d’énergie à la surface, il existe
un lien étroit entre la température de la surface terrestre (LST) et la disponibilité en eau du
sol, notamment dans des conditions de stress hydrique. Par conséquent, l’utilisation de données
thermiques est le moyen le plus approprié pour accéder à l’évaporation réelle et à l’état hydrique
du sol (SM) à une échelle spatiale et temporelle appropriée (Boulet et al., 2007). En plus de cela,
les données thermiques ont l’avantage de détecter les informations sur le stress hydrique de la
végétation et la variabilité du stress hydrique à l’échelle du champ (Anderson et al., 2012).

La méthode résiduelle et la méthode EF sont toutes deux utilisées pour déterminer l’ET et SM
en utilisant les données LST. La méthode résiduelle estime l’ET comme le terme résiduel du
modèle de surface énergétique, défini comme l’énergie disponible à la surface moins le flux de
chaleur sensible. Cette approche est basée sur une méthode à pixel unique pour calculer l’ET
pour chaque pixel indépendamment. Les modèles qui utilisent cette approche sont, par exemple,
le Two-Source Energy Balance (TSEB, (Norman et al., 1995)), le Surface Energy Balance Model
(SEBS, (Su, 2002)), et le Two-Source Time Integrated Model (Anderson et al., 1997). Cette ap-
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proche est efficace sur le plan informatique et offre une estimation raisonnable de l’ET avec une
grande précision sur des zones homogènes. Cette approche nécessite des mesures au sol telles que
la vitesse du vent, l’humidité, la hauteur de la végétation, la température de l’air, etc. Cependant,
en raison de la disponibilité limitée des mesures au sol dans les zones hétérogènes, ce modèle est
rarement utilisé pour estimer l’ET et la SM sur de grandes surfaces dans le cadre d’applications
opérationnelles (Jiang and Islam, 2003).

L’autre gamme de méthodes d’estimation de l’ET et de la SM à partir des données LST est basée
sur l’EF. L’EF peut être estimée à partir de l’image optique/thermique, où la LST en conditions
sèches et humides peut être dérivée à partir de la LST observée et des données de couverture végé-
tale. Cette méthode est basée sur la méthode contextuelle qui utilise l’hétérogénéité de la surface
terrestre dans l’image LST télédétectée et utilise l’image entière pour estimer l’EF à chaque pixel.
Les modèles qui utilisent cette approche sont l’indice d’équilibre énergétique de surface (SEBI,
(Menenti et al., 1989)), l’indice d’équilibre énergétique de surface simplifié (S-SEBI, (Roerink
et al., 2000)), le modèle d’équilibre énergétique de surface monosource (SEB-1S, (Merlin et al.,
2013)), l’indice de température et de condition de la végétation (VTCI, (Wan et al., 2004)) et
l’indice de sècheresse de la végétation dérivée de la température (TVDI, (Sandholt et al., 2002)).

La télédétection infrarouge thermique peut également être utilisée pour découpler les propriétés
thermiques de la surface de la température ambiante (cycle de température quotidien) en calcu-
lant l’inertie thermique apparente (Qin et al., 2013; Lei et al., 2014). L’inertie thermique dépend
de la conductivité thermique et de la capacité thermique, qui augmente avec SM (Olsen et al.,
2013). Ainsi, une relation est développée entre le changement de TCL et SM en mesurant l’ampli-
tude du changement de température quotidien. La relation entre le changement de température
quotidienne et la SM est fonction du type de sol et est limitée aux conditions de sol nu (Van de
Griend et al., 1985). Recent studies have shown that SM can be estimated over vegetated areas
if the linear. Des études récentes ont montré que la SM peut être estimée sur des zones végé-
talisées si la relation linéaire est maintenue entre le flux au sol et la LST (Maltese et al., 2013a,b).

1.2.4 Méthodes de réduction d’échelle ou désagrégation de données

Les satellites de télédétection assurent un suivi de la SM à l’échelle globale grâce à la radiométrie
en bande L (SMOS et SMAP), mais avec une résolution spatiale qui est loin de répondre aux
besoins de nombreuses applications, notamment les études hydrologiques à petite échelle et la
gestion de l’eau et de l’irrigation à l’échelle du bassin. Par conséquent, pour surmonter les li-
mites des données disponibles à basse résolution et fournir une SM à une résolution spatiale plus
élevée, diverses méthodes de réduction d’échelle ont été proposées pour désagréger les données
SM dérivées des micro-ondes passives. Peng et al. (2017) ont classé les méthodes de réduction
d’échelle existantes en trois types différents : 1) basés sur la géo-information 2) basés sur des
modèles 3) basés sur des satellites.

1) Les modèles basés sur la géo-information utilisent les paramètres de la surface terrestre (tels
que les attributs de la végétation, la topographie et les caractéristiques du sol) pour réduire
l’échelle d’une résolution plus grossière à une résolution fine. L’approche de réduction d’échelle
peut être utile à l’échelle du champ où l’information in situ est disponible, mais son applicabilité
est limitée à l’échelle la plus grossière.

2) Les méthodes de réduction d’échelle basées sur des modèles peuvent être basées sur des mo-
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dèles statistiques, hydrologiques ou de surface terrestre. Le modèle statistique est peu coûteux en
termes de calcul et constitue le meilleur moyen d’utiliser les grands jeux de données historiques
pour établir une relation statistique. Un modèle statistique est prévalent en climatologie pour la
prédiction future. Divers modèles statistiques de réduction d’échelle sont développés pour réduire
l’échelle du SM à une résolution fine : le coefficient d’ondelette (Kaheil et al., 2008) et l’inter-
polation fractale (Kim and Barros, 2002) en sont deux exemples. Une autre approche basée sur
la physique utilise un modèle hydrologique ou de surface terrestre pour désagréger l’observation
basse résolution à haute résolution par régression linéaire (Low et Mauser 2008), distribution
bivariée (Verhoest et al., 2015) et assimilation d’une résolution plus grossière dans les modèles
de surface terrestre/hydrologiques pour fournir une résolution à fine échelle. L’approche basée
sur les modèles peut être utilisée pour fournir une SM à l’échelle mondiale, mais la principale
limitation est que l’erreur dans le modèle ou les observations télédétectées contribue pleinement
aux incertitudes sur les valeurs de SM à la résolution plus fine. Elle dépend également de la
disponibilité des informations à l’échelle de résolution la plus fine, comme les types de sol, la
texture du sol, les précipitations et les données d’irrigation, ce qui limite quelque peu son uti-
lité pour fournir des données SM à haute résolution sur une base quotidienne globale. Un autre
problème majeur est le développement d’un modèle hydrologique ou de surface terrestre pour re-
présenter les observations physiques et de télédétection avec une meilleure robustesse et précision.

3) Basé sur les satellites : diverses méthodes de réduction d’échelle basées sur les satellites sont
développées sur la base d’une synergie entre les données satellitaires de résolution grossière et les
données satellitaires auxiliaires de résolution fine pour fournir des données SM à haute résolution,
comme décrit ci-dessous.

a) Synergie entre les données micro-ondes actives et passives : on constate que le radiomètre
en bande L est très efficace pour fournir des informations sur SM plus précises que les autres
informations satellitaires. Sur la base de ce concept, le SM dérivé de la bande L à basse résolu-
tion est désagrégé à haute résolution en utilisant des données auxiliaires de télédétection à fine
échelle. En particulier, la mission SMAP combine le radiomètre en bande L à basse résolution
avec le radar Sentinel-1 pour réduire l’échelle du SM à 3 km et 1 km. Mais la principale limi-
tation est que cela dépend du temps de passage quasi-simultané des données Sentinel-1 et SMAP.

b) Synergie entre les données optiques/thermiques et les données micro-ondes passives :

Merlin et al. (2013) ont développé l’algorithme DISPATCH (DISaggregation based on the
Physical and Theoretical scale CHange) qui utilise les données optiques/thermiques comme proxy
de SM pour réduire l’échelle des données SM micro-ondes à basse résolution. L’algorithme DIS-
PATCH utilise la méthode basée sur l’évaporation. DISPATCH est une approche physique et
théorique pour désagréger les micro-ondes à résolution plus grossière afin de fournir une esti-
mation de SM à haute résolution. Peng et al. (2015) utilisent le VTCI comme proxy thermique
de la SM pour réduire l’échelle de la SM à basse résolution. Le VTCI est calculé à partir d’un
espace caractéristique triangulaire/trapézöıdal à partir de données optiques/thermiques à haute
résolution. Fang et al. (2013) utilisent la relation d’inertie thermique entre le changement de
température quotidien et la SM moyenne quotidienne en utilisant la SM à basse résolution et
les données optiques/thermiques à haute résolution. Song et al. (2013) réduisent l’échelle de la
température de brillance des micro-ondes en utilisant des données optiques/thermiques à haute
résolution. Ensuite, la température de brillance à haute résolution est utilisée pour récupérer la
SM en utilisant un algorithme à châıne unique (Jackson, 1993).
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1.3 Objectifs de recherche et plan de la thèse

Pour le suivi de SM, les mesures in situ et la modélisation de la surface terrestre sont utiles comme
référence localisée à des fins de validation et comme outil physique pour extrapoler les résultats
dans l’espace et dans le temps, respectivement. Cependant, ces deux méthodes présentent des
limites importantes liées à la représentativité spatiale des estimations de la SM. Dans ce contexte,
les techniques de télédétection ont un fort potentiel pour fournir des estimations SM à diverses
échelles spatiales, qui sont requises dans de nombreuses applications, y compris la météorologie
et la climatologie, l’hydrologie et l’agriculture (par exemple, la programmation de l’irrigation).
Les capteurs spatiaux basés sur les micro-ondes passives, les micro-ondes actives et les données
optiques/thermiques peuvent fournir des informations sur SM à différentes échelles spatiales et
temporelles. La communauté de la télédétection reconnâıt généralement que les micro-ondes pas-
sives en bande L sont l’une des techniques les plus précises. Cependant, , sa résolution spatiale,
qui est de l’ordre de plusieurs dizaines de kilomètres, n’est pas adaptée à la plupart des utilisa-
tions hydrologiques et agricoles à échelle fine. C’est pourquoi d’autres méthodes non optimales
mais complémentaires sont étudiées sur la base de données radar et/ou optiques/thermiques
disponibles à plus haute résolution spatiale. Pourtant, aucune approche ne combine les don-
nées multi-capteurs (passive/active micro-ondes/optique/thermique) disponibles pour exploiter
efficacement les avantages de chaque technique. Pour combler ce manque, cette thèse vise à dé-
velopper un algorithme qui combine les données multi-capteurs/multi-résolution/multi-longueur
d’onde afin de fournir des données de SM avec une robustesse et une précision améliorées à haute
résolution spatio-temporelle.

Sur la base de cette idée, la recherche proposée ici développe et évalue un nouvel algorithme et
une nouvelle méthodologie pour le suivi de SM. En particulier, une synergie est étudiée entre les
données de SM dérivées des micro-ondes passives SMAP/SMOS désagrégées à l’aide de données
optiques/thermiques (avec l’algorithme de réduction d’échelle DISPATCH) et le SM récupéré à
partir de données radar (avec un modèle de transfert radiatif micro-onde actif). Pour ce faire,
trois étapes successives sont identifiées pour désagréger les données SMOS/SMAP à 40 km de
résolution à la résolution de 1 km (étape 1), pour désagréger les données SMOS/SMAP à la
résolution de 100 m (étape 2), et pour construire une synergie à la résolution de 100 m avec les
données micro-ondes actives (étape 3). Enfin, les données SM désagrégées sont assimilées dans
un modèle de surface terrestre pour améliorer encore la précision et la fréquence des estimations
SM. Les principaux objectifs de la recherche sont illustrés sur la Figure 1.7.

Ces travaux devraient permettre une nouvelle compréhension de l’avantage de la synergie multi-
capteurs et de son applicabilité pour fournir un produit de SM à haute résolution spatio-
temporelle. L’algorithme utilisé dans cette recherche est destiné à être assez générique et pourrait
être appliqué aux futures données de télédétection. En résumé, les questions scientifiques sous-
jacentes que ce projet de doctorat propose d’aborder sont les suivantes :

1) Comment pouvons-nous estimerSM à haute résolution – information utile en agriculture et
hydrologie - c’est-à-dire inverser des données à haute résolution spatiale et temporelle (cycle de
répétition de quelques jours) ?

2) Est-il possible de fournir des informations de SM à haute résolution spatio-temporelle à par-
tir des observations de télédétection facilement disponibles sur différentes couvertures terrestres ?

3) Quelles sont les synergies possibles entre les micro-ondes passives, les micro-ondes actives et
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les données optiques/thermiques pour l’extraction de la SM?

Figure 1.7 : Schéma de l’objectif principal de recherche divisé en quatre étapes successives.

La thèse est organisée de manière à décrire les approches ou les algorithmes mis en œuvre
pour combiner et surmonter les limitations des observations micro-ondes passives, micro-ondes
actives et optiques/thermiques, et l’objectif final est de fournir un SM à haute résolution spatio-
temporelle avec une robustesse et une précision améliorées. En pratique, le document est organisé
comme suit :

Le Chapitre 1 présente l’importance du SM d’un point de vue général et discute la disponibilité
et les limites des produits SM existants dérivés des différents capteurs et modèles sur une plage
de résolutions.

Le Chapitre 2 décrit les zones d’étude utilisées pour cette recherche, c’est-à-dire la région sélec-
tionnée pour l’analyse dans la région méditerranéenne.

Le Chapitre 3 donne une description générique de l’algorithme de réduction d’échelle DISPATCH
utilisé pour fournir la SM à haute résolution en réduisant l’échelle des données SM à basse réso-
lution dérivées des micro-ondes passives à l’aide de données optiques/thermiques. L’algorithme
de réduction d’échelle est mis en œuvre pour fournir la SM en global à une résolution de 1 km.

Le chapitre 4 présente la nouvelle mise en œuvre et l’amélioration de l’algorithme DISPATCH
afin d’augmenter la couverture spatiale et d’améliorer la précision de la SM récupérée. Ce cha-
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pitre présente également une évaluation comparative qualitative et quantitative de la précision
avec deux autres produits de SM différents disponibles à la même résolution (1 km).

Le Chapitre 5 présente un nouvel algorithme pour fournir des données de SM à une résolution
de 100 m à partir des observations micro-ondes passives à une résolution de 40 km en utilisant
l’algorithme DISPATCH. L’algorithme de réduction d’échelle en deux étapes est utilisé pour
désagréger les données SM SMOS/SMAP à 100 m de résolution.

Le Chapitre 6 présente une nouvelle méthodologie qui s’appuie sur une synergie entre les en-
sembles de données micro-ondes passives, optiques/thermiques et micro-ondes actives. Comme
stratégie de cette synergie, les paramètres du modèle radar sont calibrés à la résolution spatiale
du radar à partir du produit SM dérivé des micro-ondes passives à échelle réduite. L’algorithme
est assez générique, et son principal avantage est qu’il est indépendant des ensembles de données
SM in situ pour la calibration.

Le Chapitre 7 étudie l’utilité de l’asssimilation des produits de SM à haute résolution dans un
modèle de surface terrestre pour fournir des données SM à l’échelle quotidienne sur une zone
irriguée. Cette approche est unique car le produit SM à 100 m est utilisé pour évaluer la sensi-
bilité du schéma de couplage désagrégation-assimilation à l’irrigation, qui n’est pas incluse dans
les données de forçage du modèle.

Le Chapitre 8 résume les travaux de recherche et souligne leur contribution originale. Il ouvre
également de nouvelles voies de recherches futures concernant le suivi de SM à partir de la
télédétection multi-capteurs et ses multiples applications.
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2.1 Introduction

The Mediterranean sea is surrounded by the Mediterranean region extending between 40°N and
30°N and covering around 4,300,300 km2. The area has a temperate climate (cooler) in the north
and a subtropical climate (hot) in the south. The seasonal variability characterizes the climatic
conditions in the Mediterranean region. Winter is cold and wet, and summer is hot and dry.
For example, in summer, the mean temperature increases or decreases from north to south. The
average winter precipitation is 30% of the total in the western and northern Mediterranean areas
and 70% in the eastern and southern Mediterranean areas (Xoplaki et al., 2004). Such high
spatial and temporal variability of temperature and precipitation occurs between the mid and
tropical latitudes and is called a transitional climatic zone. The region is affected by tropical and
subtropical subsystems and mid-latitude cyclones which also affect precipitation. The area shows
sizable spatial variability due to its complex morphology, such as islands, mountains, basins, gulf,
and many other meteorological factors that fully contribute to diverse spatial variability.

The main characteristic of the region is that it is densely populated, and due to this, it causes
demographic pressure and anthropogenic effects that lead to environmental degradation. It is
also strongly affected by climate change, which implies changes in the availability of water re-
sources. Hydrological changes directly impact agricultural productivity, irrigation supply, energy
use, and so on.

Agriculture is an important sector in the Mediterranean region that helps in sustainable economic
development. However, the over-extraction of water for consumption degrades water quality,
makes the water unavailable for irrigation, and leads to a water crisis (Pisinaras et al., 2010;
Berahmani et al., 2012). In the semi-arid Mediterranean region, water scarcity is mainly due to
its high population density, which leads to pressure on water resources and their use for irrigation.

The strong spatial (from north to south) and temporal (mainly seasonal) variabilities of the hy-
drological functioning within the Mediterranean region provide a distinct feature of soil moisture
and ecosystem water stress dynamics. Therefore, the region offers a very peculiar interest in
studying soil moisture’s spatial distribution and evolution. This is especially true when consid-
ering the impact of natural (precipitation) and human-made (irrigation) forcing, which occur
at a range of spatio-temporal scales. The thesis undertakes the methodological development
for monitoring soil moisture (SM) over four basins (see Figure 2.1) in the Mediterranean region
covering the climatic gradient from arid to temperate, presented in the following sections.

2.1.1 Tensift basin, central Morocco

The Tensift basin is located amid Morocco’s western region, near Marrakech. It covers 20,450
km², extending between latitudes 32°10 ’and 30°50’ North and longitudes 9°25 ’and 7°12 West.
The basin is bordered on the north by mountainous terrain, south by the high Atlas mountains,
west by the Atlantic Ocean, and east by the Tensift drainage basin. The basin includes the
Haouz plain and the high Atlas mountains. The Haouz plain was chosen as the study area. The
climate on the Haouz plain is semi-arid, with cold winters and hot summers. The average annual
precipitation is 250 mm, with an evaporative demand of 1600 mm.

Agriculture in this region is the principal source of economic growth and food security. In sum-
mer, due to hot climatic conditions, there is a tendency for irregular and intense rainfall. 87%
of the area is rainfed, and the agricultural productivity depends on the rain. The demand for
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1. Garonne Basin 2. Ebro Basin

3. Duero Basin 4. Tensift  Basin

Figure 2.1: Study area including 1.Garonne Basin 2. Ebro Basin 3. Duero Basin 4. Tensift Basin

water irrigation will rise as the temperature rises in summer, putting pressure on the limited
water resources. The dry period diminishes the impact of agriculture by 50 to 70% in rainfed
areas. Water scarcity for irrigation reduces productivity and SM. Evapotranspiration rises due
to warmer temperatures, resulting in lower agricultural yields and productivity.

The Tensift basin receives water from the high atlas range, basin transfer, and groundwater.
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The high atlas range receives precipitation either in the form of snow or rain, and then the main
river coming from the mountains drains the water into the basin through the Tensift river and
its tributaries. The water supply from the basin uses different infrastructures and is categorized
into the irrigation technique: Traditional irrigation technique where water is transferred through
”seguis” consisting of small canals that divert the river’s main flow into irrigated areas. Modern
irrigation technique where water is transferred from the dam through the canal de Rocade and
Lalla Takerkourst dam. Private irrigation technique where water is used from groundwater and
puts higher pressure on the aquifer.

The R3 irrigated zone, Sidi Rahal site, and Chichaoua site are selected for the study over the
Haouz plain. The R3 irrigated zone, Chichoua and Sidi Rahal study sites are 100 kilometers from
Marrakesh in Morocco’s Haouz plain. The soil texture is clayey for R3 irrigated zone, sandy for
Sidhi Rahal and loamy clayey for the Chichaoua site. Wheat is the most widely grown crop for
all the three sites.

In R3 irrigation district, crop fields have a typical size of 2-4 ha. Flood irrigation is used to culti-
vate the crop. Wheat is typically planted in November or December, with irrigation beginning in
February and ending in April. A total of six irrigations are generally employed during the wheat
crop’s growth. Harvest is completed by May or June. Theta probes are used to manually collect
SM at a depth of 0-5 cm. Then, the collected SM is calibrated using gravimetric measurements
based on the soil samples collected for each sampling date. For each crop field, theta probes were
utilized to measure the SM for ten discrete SM measurements. The in situ SM is collected at 5
cm for the five sampling days of year 14, 30, 38, 62, 78 for 2016.

In Chichaoua and Sidi Rahal a TDR sensor are used to collect the SM for every 30 min auto-
matically. The gravimetric SM is used for the calibration of soil dielectric properties from the
sensor. The in situ SM was collected at 5 cm from 2017 to 2018.

2.1.2 Ebro basin, northeastern Spain

The Ebro basin has a triangular structure with a coverage of 85,530 km². It is one of Spain’s
greatest hydrographic basins, accounting for 17.3% of the country’s total surface area. The basin
is surrounded on the west by the Pyrenees and Cantabrian mountains, north and east by the
Catalan coastal range, and south by the Iberian massif. The middle of the Ebro basin area is flat
and lies between the Pyrenees and the Iberian peninsula, which is called the Ebro depression.
The average annual rainfall ranges from 3000 mm in the Pyrenees to less than 100 mm in the
plain. Rainfall in the basin varies from year to year. The area in the Ebro depression has a
Mediterranean climate (hot in summer and cold in winter) and the annual evapotranspiration in
the Pyrenees is 600 mm and 800 mm in the central depression. The population density of this
basin is 2.8 million. The population is heterogeneously distributed, and half of the population
is situated in the central basin. The middle and lower parts of the Ebro basin are irrigated, and
land cover is agricultural-type crops such as vineyards, maize, and orchards.

According to The Confederación Hidrográfica del Ebro (CHE, 2005), the annual water yield in
the river basin is 18 km3, of which 12 km3 of water runoff to the sea. As a result, only 6 km3 of
water is consumed. The majority of water taken from the Ebro basin is used for irrigation, with
the remainder going to urban and other industrial uses and hydroelectric, thermal, and nuclear-
generating facilities. Only 60% of the entire average mean runoff is stored in dams intended for
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storage. Low precipitation and an increase in yearly temperature have resulted in a 15% decrease
in precipitation and a 4% increase in temperature in the Pyrenees (López-Moreno et al., 2008).
The different study areas used from the Ebro-basin are explained below in detail. The sites used
in this study are Urgell, Agramunt, Fordada, in the north west of the basin and a dry land area
in the south east.

Urgell has a Mediterranean climate, which is hot in the summer and cold in the winter. The
annual precipitation averages 376 mm. An ancient flood irrigation technology and a new sprin-
kler or drip irrigation methods are used to irrigate the study area. The Segarra–Garrigues (SG)
system, which aims to transform dry grounds into agricultural land, uses spray or drip irriga-
tion. The area that is not included in the SG irrigation system plan stays dry. As a result, the
irrigated region is bordered by unirrigated dryland. Irrigation is mostly done in the summer.
The location was chosen because of its unique characteristics, e.g. fact that the area remains the
same as the surrounding area during the winter, but the agricultural area becomes wet during
the summer, while the surrounding area remains dry. The land is covered by agricultural crops,
mainly corn, wheat, and alfalfa. The trees grown primarily in this region are olive trees, fruit
trees, and vineyards.

Fordada and Agramunt sites are a part of SG system located at 41.866°N, 1.015°E and 41.782°N,
1.089°E. Fordada experimental field covers an area of 20 ha and Agramunt experimental field
covers an area of 20.5 ha. The soil texture of Fordada is 41.5% sand, 42.3% silt, and 16.2% clay,
and the soil texture of the Agramunt is 52.1% sand, 35.3% silt, and 12.6% clay. The area is
irrigated with sprinkler irrigation, and the Agramunt area is irrigated with subsurface drippers.
SM data collected for Agramunt and Fordada is 2015 and 2017, respectively.

The dryland experimental crop selected in the southern part of the basin is located in Tarragona
province, Catalunya, east of Spain. The area has a semi-arid Mediterranean climate with annual
average precipitation of 385 mm. The site has mainly rainfed crops, and the soil texture is clayey.
TDR sensors are used to measure the SM at a depth of 5 cm. The network consists of 7 stations,
and the SM is collected for six months from June to November 2019.

2.1.3 Duro basin, northwestern Spain

The basin is located north of the Iberian peninsula, with a total size of 97290 km2, 80% (78954
km2) within the Spanish territory. The basin is depressed in the middle, and a mountainous
region with an altitude of 2500 m surrounds most of the basin. The annual average rainfall
varies from mountain to central depression. The yearly average rainfall in the mountain is 1000
mm, while the average rainfall is less than 400 mm in the central depression. The Mediterranean
climate with a continental feature may be seen in the main central depression area. The land
in the mountainous region is covered by forest, shrublands, grasslands, and the cropland area.
This basin shows a transitional climate like the Ebro basin, i.e., summer is hot, and winter is cold.

The SM monitoring network named Rhemdus is located near the center of the Duro basin. The
Rhemedus network is very dense and consists of 20 stations. Only 13 stations are used in this
thesis. The network is located near the center of the Duro basin, west of Spain. The site has a
semi-arid Mediterranean climate with annual average precipitation of 385 mm. The land cover
of this network is rainfed croplands (78%), forests and pastures (13%), irrigated crops (5%), and
vineyards (5%) (Sáchez et al., 2012). Soil texture is silty and clayey sand. TDR probes measure
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the soil dielectric properties and the volumetric SM at a 0-5 cm depth. In situ SM measurement
is collected from the International Soil Moisture Network (ISMN) for the time period of 2017.

2.1.4 Garonne basin, southwestern France

Garonne basin is located between the depressions of the Atlantic ocean and Mediterranean sea.
The basin covers an area of 56000 km², located at 42°36 ’N and 0°57’ E. The basin is surrounded
in the southeast by the Mediterranean Sea, on the west and south by the Pyrenees Mountains,
and on the northeast by the Massif Central. The basin has a relatively flat surface and a low
elevation. The basin is subjected to two climatic influences: one from the Atlantic Ocean, which
is characterized by the western wind and heavy precipitation, and the other from the Mediter-
ranean Sea, which is characterized by the hot and dry southeastern winds.

The climate varies with temperatures below freezing point in the mountains and rarely below
freezing in the plains. In the mountainous terrain, forest and alpine grasslands cover the soil,
while agriculture is practiced in the plain. The impact of agricultural practices on streamflow
has been studied from a hydrological standpoint since 1983 in this basin. Because of the diverse
environment, the area is vital from a hydrological standpoint. The average annual precipitation
is 664 mm, with 1020 mm of potential evapotranspiration. The majority of the water is used
in agriculture. The water quality is acceptable near the Pyrenees, but as it reaches the plain,
it deteriorates due to extensive agricultural usage and other anthropogenic influences. Wheat,
barley, corn, and fodder cultures are the crop types.

Auradé (43°3259N, 1°0622E) and Lamasquère (43°2947N, 1°1416E) sites are used in this thesis.
Both study areas are located near Toulouse (south-west of France), separated by a distance of
12 km. The climate is temperate, with an average annual precipitation of 700 mm. Auradé
soil texture is clay loam (20.6 percent sand, 47.1 percent loam, and 32.3 percent clay), while
Lamasquère soil texture is clay (12.0% sand; 33.7% loam, and 54.3% clay). Both areas are
covered by agricultural land. Winter wheat and sunflower are grown in the Auradé area, while
winter wheat and wheat are grown in Lamasquère. Crop rotation techniques are used at both
sites to cultivate crops. Both study areas are irrigated mainly covered by agricultural fields. For
both, the study areas, the in situ measurements are collected over 2017 and 2018.
The SM is measured every 30 minutes with CS616 TDR probes (Campbell Scientific Inc., Logan,
UT, USA) at depths of 0.05 m, 0.10 m, and 0.30 m. The volumetric SM is computed from the
measured soil’s dielectric permittivity and a site-specific calibration equation. Tallec et al. (2013)
and Béziat et al. (2009) provide detailed information about the study area (2013).

2.2 Conclusion

The Mediterranean region is located in the transitional climatic zone, covering both wet and
dry climatic conditions. The selected study areas include SM monitoring sites in four basins,
one in Morocco (Tensift), two in Spain (Ebro, Duro), and one in France (Garonne). Those sites
provide very heterogeneous conditions in terms of climate, soil type, hydrological functioning,
and agricultural practices. They are thus very suitable to analyze the spatio-temporal variability
of SM at a range of spatio-temporal resolutions and to test the SM monitoring methods in such
conditions. Most of the experimental sites are agricultural, either rainfed or irrigated (according
to various irrigation techniques), illustrating our effort in this thesis to retrieve SM at fine-scale,
i.e., the crop field scale.
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3.1 Introduction

Nowadays, microwave radiometers are widely used for the estimation of soil moisture (SM) on
a global basis. L-band radiometry is indeed widely accepted and optimal for SM estimation
(Wagner et al., 2007). Based on this principle, two satellites were made operational - SMOS
and SMAP - to provide SM data worldwide. Both satellites provide SM images at 40 km spatial
resolution with a sensing depth of 5 cm. Such a coarse resolution is far from the requirement of
most hydro-agricultural studies, which generally need SM data at a sub-kilometric scale (Walker
and Houser, 2004). So in this context, disaggregation/downscaling approaches are used to im-
prove the spatial resolution and to reduce the gap between the available low resolution and the
required high resolution in SM data sets.

The methodological developments made in this thesis have been based on a downscaling algo-
rithm named DISaggregation based on Physical and Theoretical scale CHange (DISPATCH).
DISPATCH algorithm (Merlin et al., 2012, 2013) has been originally designed to disaggregate
the 40 km resolution SMOS SM data to 1 km resolution using the optical/thermal data collected
by MODIS aboard Aqua and Terra. The soil evaporative efficiency estimated at 1 km resolution
from MODIS data is used to re-distribute the SM values at 1 km resolution within the 40 km
resolution SMOS pixel. This is done given a relationship between SM and soil evaporative effi-
ciency across scales, and a calibration of that model at the low resolution.

This chapter thus provides a brief and generic overview of the DISPATCH method, as well
as its implementation at the quasi global scale by the Centre Aval deTraitement des Données
SMOS (CATDS) in the SMOS French ground segment. The processor is named as CATDS
Level-4 Disaggregation processor (C4DIS). While C4DIS was originally developed for SMOS and
MODIS sensors, it can be adapted to other similar data. The adaptation of C4DIS to SMAP
and Sentinel-3 data is also presented in this chapter.

3.2 Downscaling algorithm

The DISPATCH model relies on physical considerations because it provides a physical link be-
tween soil temperature, evaporation, and SM using a temperature-derived soil evaporation model.
It also relies on a theoretical consideration because it uses mathematical tools such as Taylor
series expansion and projection to develop a downscaling relationship between the low resolution
SM and the targeted high resolution SM.

The downscaling algorithm captures the sub-pixel variability of SM at high spatial resolution
within a low spatial resolution satellite image pixel. One key step is to estimate the soil evapora-
tion rate from the optical/thermal data. In practice, the algorithm decouples the soil evaporation
from the surface soil and the vegetation transpiration from the root-zone layer by separating
the optical/thermal data into soil and vegetation components in the trapezoidal method. The
LST/NDVI data are first used to calculate the soil evaporative efficiency (SEE, the ratio of actual
to potential soil evaporation), generally constant during the day in cloud-free conditions. The
calculated SEE is then used as a proxy for SM variability within the low-resolution pixel. The
DISPATCH downscaling relationship establishes a link between SEE and SM to provide SM at
high resolution, which is expressed as:
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SMHR = SMLR + ((∂SEE

∂SM
)−1
LR ∗ (SEEHR − SEELR)) (3.1)

where SMHR is the disaggregated SM at high resolution, SMLR is the SM derived at low resolu-
tion from L-band microwave data, SEEHR is the SEE at high resolution, SEELR is aggregated
value at low resolution and (∂SEE

∂SM )−1
LR is the inverse partial derivative of SEE model evaluated

at low-resolution (around to low resolution SM observation).

The SEE used in the downscaling relationship of Equation 3.1 is calculated from the optical/thermal-
derived LST and NDVI data. As mentioned before, SEE is used because, over partially vegetated
pixels, it provides a strong correlation with SM, and it is relatively constant during daytime and
in a clear sky. SEE shows a linear relationship with the soil surface temperature (Merlin et al.,
2012). This behavior was verified using a physical-based two-source energy model (Merlin et al.,
2016). SEE is hence written as:

SEEHR = Ts,dry − Ts,HR

Ts,dry − Ts,wet
(3.2)

where Ts,HR is the soil temperature at high resolution, Ts,dry is the fully dry soil temperature with
SEE=0, and Ts,wet is the fully wet soil temperature with SEE=1. The temperature endmem-
bers Ts,dry and Ts,wet are calculated from the LST-fvg feature space obtained by plotting LST as
a function of the fvg (fvg, fractional vegetation cover obtained from the NDVI at high resolution).

The soil temperature at high resolution is calculated as the linear decomposition of LST into
the soil and vegetation temperature using the trapezoid method (Merlin et al., 2012). It was
suggested by Merlin et al. (2012) that retrieval of soil temperature is dependent on the vegetation
temperature and is calculated by the hour-glass approach (Moran et al., 1994).

Soil temperature is thus expressed as:

Ts,HR = LSTHR − fvg,HR ∗ Tv,HR

1 − fvg,HR
(3.3)

where LSTHR is the LST at high-resolution, fvg,HR is the fractional vegetation derived from
NDVI data, and Tv,HR is the vegetation temperature at high resolution. Fractional vegetation
cover is expressed as:

fvg = NDV IHR − NDV Is

NDV Iv − NDV Is
(3.4)

where NDV IHR is the NDVI estimated at high resolution and NDV Is and NDV Iv are the
NDVI values at bare soil and NDVI values at full vegetation cover for a particular pixel. In
DISPATCH, NDV Is and NDV Iv are set to 0.15 and 0.90, respectively.

To better understand the retrieval of soil temperature from the LST-fvg feature space, Figure
3.1 illustrates the trapezoid drawn in the LST-fvg feature space and dividing the space into four
different surface areas: bare soil areas, mainly dry and partially vegetated areas, mainly wet
and partially vegetated areas and mainly vegetated areas named as zone A, B, C, and D. Note
that the contextual method of Figure 3.1 assumes that the low-resolution pixel (let us say the
40 km resolution SMOS pixel) covers full SM conditions from residual to saturation and a range
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Figure 3.1: Visual representation of LST and fvg feature space graph and a trapezoid is drawn
to divide the land surface into four different surface area: mainly bare soil (zone A), mainly
dry and partially vegetated ( zone B), mainly wet and partially vegetated (zone C) and mainly
vegetated (zone D). Source: (Merlin et al., 2016)

of vegetation covers.

In zone A, the LST is mainly controlled by soil evaporation. It has an optimal sensitivity to
SM. In contrast, in zone D, the LST is mainly controlled by vegetation transpiration with no
significant sensitivity to surface SM. Zones B and C are mixed surfaces; the LST is controlled by
both soil evaporation and vegetation transpiration. They have an intermediate sensitivity to SM.

The SEE is used as a proxy of SM in zones A, B, and C because of the sensitivity of soil tempera-
ture to SM in those zones. So, it means that the downscaling algorithm only applied to partially
vegetated areas, which represents an essential limitation of the original version of DISPATCH.

Now SEE is used to develop a relationship with SM in the downscaling relationship of Equation
3.1 to account for the spatial variability of SM by considering that the SEE-SM relationship
varies with soil type and atmospheric conditions. The SEE-SM relationship can be modeled as
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linear or non-linear. According to (Merlin et al., 2013), linear relationship between SEE and SM
is suitable for the downscaling at 1 km resolution and expressed as:

SEELR = SMLR

SMp
(3.5)

where SMp is a SM parameter that depends on soil properties and atmospheric conditions. SMp

is calculated at the low-resolution pixel scale from SM and SEE estimated at low resolution.

Note that DISPATCH was also applied at 100 m resolution by using Landsat optical/thermal
data instead of MODIS data (Merlin et al., 2013). At higher spatial resolution, the heterogene-
ity of the land surface increases, and it requires a more robust representation of the SEE-SM
relationship. In fact, SEE(SM) shows a strongly non-linear behavior, which can be modeled by
an exponential formulation (Komatsu, 2003). In that case, the SEE is expressed as:

SEELR = 1 − exp(SMLR

SMp
) (3.6)

Similarly to the linear case, SMp is a SM parameter that can be estimated from SEE and SM
estimates at low resolution.

Input data

Input data of DISPATCH are composed of high and low resolution data.
Low-resolution data:

DISPATCH uses SMOS Level-3 daily global soil moisture product (MIR CLF31A/D). SMOS
provides a 40 km spatial resolution with a temporal coverage of 3 days at the equator with an
ascending (6 a.m) and descending overpass (6 p.m). Level-3 soil moisture products are presented
on the Equal-Area Scalable Earth (EASE) grid netCDF format, with a grid spacing of 25 x 25
km with a sensing depth of 5 cm.

High-resolution data:

DISPATCH uses high resolution ancillary data to downscale each low resolution pixel: the land
surface temperature (LST) and normalized difference vegetation index (NDVI). Terra and Aqua
satellites were launched in 1999 and 2002 by the National Aeronautics and Space Administra-
tion (NASA). MODIS provides data from 35 spectral bands - wavelengths ranging from 0.4 m
to 14.4 m - with different spatial coverage of 250 m, 500 m, and 1 km. Terra and Aqua are
sun-synchronous, polar orbit satellites that provide data with a temporal cycle of 1 to 3 days
with an ascending node and an overpass time of 10:30 a.m (Terra) and 1:30 p.m (Aqua).

LST datasets were acquired at 1 km resolution fromMODIS version 5, Level-3 Terra (MOD11A1),
and Aqua (MYD11A1) daily data. NDVI datasets were obtained from MODIS version 5, Level-
3 terra (CATDS), on 16-days interval of global vegetation indices at 1 km resolution. The
DISPATCH method also uses as input the GTOPO30 product of the digital elevation model
(DEM) to correct the elevation effect on the MODIS LST data. GTOPO30 is provided by the
U.S. Geological Survey (USGS) EROS Data Center. The product has a grid spacing of 30 arc
seconds, which approximately correspond to 1 km resolution.

53



CHAPTER 3. DISAGGREGATION OF PASSIVE MICROWAVE SOIL MOISTURE USING
OPTICAL/THERMAL DATA 54

3.3 C4DIS processor

C4DIS is the first operational processor based on the DISPATCH algorithm (Merlin et al., 2012,
2013, 2016). The processor provides SM products at 1 km resolution on a global daily basis only
on the cloud-free condition and availability of the input data. A description of the schematic
diagram of the C4DIS processor is provided in Figure 3.2.

Figure 3.2: Schematic diagram of C4DIS operational processor. Source: (Molero et al., 2016)

The C4DIS processor is divided into two sections: inputs and processing chain. The processor
requires 40 km resolution SMOS SM data, and 1 km resolution ancillary LST, and NDVI data
from MODIS and DEM data from GTOPO30.

The input data to C4DIS include 40 km resolution SMOS products obtained by shifting the 40
km grid of half a grid resolution in east-west and north-south direction (the resampling of level-3
SMOS data is the double of its spatial resolution) for ascending and descending overpass sepa-
rately; 6 MODIS LST products received for one day before, same day, and one day after for Aqua
and Terra data separately. Each SMOS SM product is individually used for disaggregation using
the 6 MODIS LST products (one day before, same day, and one day after), 1 NDVI product,
and 1 DEM to produce 24 high-resolution SM products. The processor gives as output a single
high-resolution SM product by compositing (averaging) the 24 individual output images.

The processing chain is subdivided into Preprocessing, Processor, and Post-processor steps.
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Preprocessing includes the projection where all the input datasets are projected into a similar
WGS 84 projection. Each low-resolution SMOS product is re-sampled to a 0.4° grid and high
resolution data such as LST, NDVI, and DEM products into a 0.01° grid. All the gridded images
for each day are gridded into the MODIS tile.

The processor selects a low resolution SMOS pixel and a high resolution LST pixel that falls
within it and selects only the high-quality LST pixels i.e. with quality control equal to either
0 (best quality) or 17 with an estimated error on LST of less than 1 K. The high-quality LST
pixels are used for the disaggregation of the SMOS pixel if 2/3 of the SMOS pixel is in cloud-free
condition.

The post-processor converts the output composited image back into netCDF format. Along with
the high-resolution SM product, it also provides the standard deviation and count (number of
elements within the disaggregation input data sets ensemble) to estimate the uncertainty of each
disaggregated SM value. More detailed information about the C4DIS processor can be found in
Molero et al. (2016).

3.4 Adaptation of C4DIS to other sensors

C4DIS processor is generic so that it can accept a large number of other input datasets at low
resolution and high-resolution datasets. Other sensors such as SMAP and Sentinel-3 provided
similar data to SMOS and MODIS respectively, and can therefore be used as alternative input
data sets. SMAP is a L-band radiometer that provides global SM products at 40 km resolution
with an interval of 1-3 days. SMAP is similar to SMOS as both are L-band passive microwave
data have the same spatial and temporal resolutions. So, the plug-in has been developed only in
the C4DIS input processor to accept the SMAP datasets.

A plug-in was also added for using high resolution Sentinel-3 LST data as an input to C4DIS.
ESA launched the Sentinel-3 satellite in 2016. Sentinel-3 is a sun-synchronous polar orbit with
an overpass time of 9:30 a.m. The thermal data collected from Sentinel-3 is based on Sea and
Land surface temperature radiometer (SLSTR), a multichannel sensors consisting of 9 spectral
bands and three thermal bands to derive LST with an accuracy of 1 K (Sobrino et al., 2015).
Despite the earlier overpass and high accuracy of the data collection, it is similar to MODIS LST
in terms of spatio-temporal resolution. It provides LST globally with a spatial resolution of 1
km and a revisit cycle 1-2 days.

The similarity of SMAP SM with SMOS SM and Sentinel-3 LST with MODIS LST allow us
to check the performance and accuracy of 1 km SM product from different datasets. Moreover,
the combination of all input data is expected to enhance the spatio-temporal coverage of the
disaggregated SM data.

3.5 Conclusion

DISPATCH is a downscaling algorithm that disaggregates low resolution SMOS and SMAP SM
data using the soil temperature data derived at high resolution from optical/thermal sensors.
It uses a SEE model to represent a physical link between the evaporation rate and SM, and
first-order Taylor series mathematical tools to link SEE and SM across scales. C4DIS is the
operational processor that implements the DISPATCH algorithm on a global basis using SMOS
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1-day CLF31A/D products and ancillary data composed of MODIS LST and NDVI products
and GTOPO30 DEM data.

The SM output product at 1 km resolution was validated over the Australian region showing an
accuracy of 0.04 m3/m3 in semi-arid and flat areas (Malbéteau et al., 2016; Molero et al., 2016).
It should be noted that C4DIS SM products show better results in low vegetated areas, low
topography, and moderate drainage. Especially the availability of DISPATCH disaggregated SM
data is mainly constrained by cloud cover and vegetation cover. Moreover, the 1 km resolution
is often too coarse for many applications including irrigation monitoring.

The limitations of the current DISPATCH SM product open a new path of research in the
advancement of the SM products at 1 km and even finer resolutions. Further research is done
to overcome the effects of cloud cover and to improve the applicability of DISPATCH algorithm
over vegetated areas (described in Chapter 4) and to improve the spatial resolution to 100 m to
be useful for agricultural purposes (described in Chapter 5).
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4.1 Introduction

This chapter seeks to partially overcome two of the main limitations of DISPATCH algorithm,
the disaggregation algorithm that was described in the previous Chapter 3. The CATDS Level-4
Disaggregation (C4DIS) processor based on the DISPATCH algorithm uses SMOS soil moisture
(SM) at 40 km resolution and auxiliary data from MODIS and GTOPO30 to provide SM at 1
km daily on a global scale. The 1 km resolution disaggregated data set offers positive results,
especially for arid and semi-arid areas (Merlin et al., 2012; Molero et al., 2016; Malbéteau et al.,
2016; Mishra et al., 2018; Colliander et al., 2017b). However, the DISPATCH algorithm used
in the C4DIS processor has two significant limitations: 1) it cannot provide SM estimates un-
der fully vegetated areas, and 2) it cannot provide SM in the presence of cloud cover due the
unavailability of optical/thermal data. Such constraints significantly reduce the spatio-temporal
coverage of the optical-based disaggregated SM data. Hence, it inhibits its potential to be used
where SM is required at high temporal coverage.

In practice, we propose to make three substantial changes in the DISPATCH algorithm: 1) the
use of Temperature Vegetation Dryness Index (TVDI) approach in DISPATCH algorithm to
calculate SM over fully vegetated areas by assuming that TVDI provides a link between surface
SM and the root zone SM, 2) the use of Enhanced Vegetation Index (EVI) instead of Normalized
Difference Vegetation Index (NDVI) to improve the robustness of the disaggregated SM over
vegetated areas by assuming that EVI is more sensitive to the fully grown vegetation and cor-
rects for inaccuracies and uncertainty due to atmospheric conditions and soil conditions, and 3)
the use of Sentinel-3 land surface temperature (LST) as thermal data in DISPATCH algorithm
instead of MODIS LST by assuming that Sentinel-3 data have less cloud cover due to earlier
overpasses.

For brevity, the original DISPATCH algorithm is named DISPATCHclassic, and the improved
DISPATCH algorithm is called DISPATCHveg−ext. The modified algorithm is tested over
50 km *50 km areas mimicking three SMAP pixels in the southwest of France and northern
Spain. The study area has a wide climatic spectrum - one temperate and two semi-arid re-
gions. The study areas were chosen with the objectives 1) to evaluate the performance of the
DISPATCHveg−ext algorithm over temperate and semi-arid regions 2) to assess the performance
of DISPATCHveg−ext over different land cover types such as agricultural lands and drylands.
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4.2 A new SM index for DISPATCH algorithm mainly in vegetated
areas

In SM-limited regions, the spatial dynamics of evapotranspiration (ET) can be determined by
the spatial dynamics of LST. The conceptual framework of an evaporative fraction can justify
using temperature-derived SM proxies explained as the ratio of ET to available energy and its
relationships with SM (Seneviratne et al., 2010).

It is reminded that the original version of DISPATCH uses the soil evaporative efficiency (SEE,
ratio of actual to potential soil evaporation) as a SM index. SEE is supposedly more directly
linked to the surface SM than EF (Merlin et al., 2012). SEE is estimated from the soil tem-
perature retrieved from the feature space formed by plotting LST as a function of fractional
vegetation cover (fvg). Different strategies to separate the soil and vegetation component tem-
peratures are implemented in the four zones A, B, C, and D of the LST-fvg feature space. In
zones A, B, and C, SEE can be used to estimate SM in this region because LST is controlled
by soil evaporation. However, the SM is mainly controlled by vegetation transpiration in zone
D, so SEE is no longer a relevant SM proxy. Hence DISPATCHclassic, which uses SEE, is only
applied to regions that belong to zones A, B, and C of the LST-fvg feature space.

Therefore, a new SM index is required so that DISPATCH can also cover the regions that fall
under zone D of the LST-fvg feature space. A choice is made to use the TVDI in place of SEE.
TVDI provides water stress conditions over densely vegetated areas and can be used as a SM in-
dex in DISPATCH in these regions. Note that TVDI is derived from the vegetation temperature
instead of the soil temperature, consistent with the sensitivity of LST to vegetation temperature
in the vegetated pixels of zone D. The point is that TDVI is hence more sensitive to the root
zone SM via vegetation temperature than to the surface SM via soil temperature. Consequently,
an assumption is made to relate TVDI to the surface SM that the variability of surface SM is
linked to the variability of root zone SM.

In practice, TVDI is expressed as:

TV DIHR = LSTdry − LSTHR

LSTdry − LSTwet
(4.1)

where LSTdry and LSTwet are the dry and wet LST for a given fvg value, and LSTHR is the
LST obtained from MODIS or Sentinel-3. TVDI values range from 0 to 1 where 0 represents dry
edge (fully stress condition), and 1 represents wet edge (adequate water availability).

The main advantage of using TVDI over SEE is in providing vegetation water stress information
over densely vegetated areas and then translating it into SM variabilities in the DISPATCH
algorithm. In comparison, TVDI provides water stress conditions over densely vegetated areas
and can be used as a soil moisture index in DISPATCH in these regions. The main concern with
the use of TVDI is that it can show a non-linear relation between surface SM and root-zone SM
(Albergel et al., 2008; Ford et al., 2013).
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4.3 New estimates of temperature endmembers in DISPATCH algo-
rithm

To the change of SM proxy in DISPATCH algorithm for zone D, an improvement was also
proposed for estimating the temperature endmembers more accurately. It is reminded that tem-
perature endmembers (Ts,max, Ts,min, Tv,max, Tv,min) are determined from the distribution of
data points within the LST-fvg feature space using high-resolution MODIS (LST and NDVI)
data within each 40 km resolution SMOS/SMAP pixel. An accurate estimation of temperature
endmembers improves the DISPATCH algorithm’s accuracy via SEE and TVDI, both dependent
on those coarse-scale parameters. The description of the calculation of temperature endmembers
used in DISPATCHclassic can be found in (Molero et al., 2016).

The improvement suggested for the calculation of temperature endmembers in the DISPATCHveg−ext

algorithm in this thesis are:

1. An offset is applied to the dry or wet edge so that the dry or wet edge line passes through
maximum and minimum points within a given SMOS/SMAP pixel. It is assumed that all the
data points in the LST-fvg graph should be below the dry edge and above the wet edge.
2. The maximum vegetation temperature is subjected to an extra constraint. If the maximum
and minimum vegetation temperature is equal to or larger than half of the maximum to minimum
soil temperature, then vegetation temperature is set to:

Tv,max = Tv,min + 0.5 ∗ (Ts,max − Ts,min) (4.2)

The temperature endmembers derived from DISPATCHclassic (left) and DISPATCHveg−ext

algorithm (right) for a given SMOS/SMAP pixel are shown in Figure 4.1 for visual analysis. It is
observed that the DISPATCHveg−ext algorithm includes all the LST pixels within the polygon,
whereas in DISPATCHclassic, some LST pixel values are above the dry edge. Moreover, the
polygon size is increased in the DISPATCHveg−ext algorithm, and all LST points are inside the
polygon envelope compared to DISPATCHclassic.
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Figure 4.1: Illustration of the calculation of the temperature endmembers in Land surface tem-
perature - fractional vegetation graph for zone A, B, C and D from DISPATCHclassic (left) and
DISPATCHveg−ext (right) algorithms for MODIS data at 1 km resolution.

4.4 A new vegetation index for DISPATCH algorithm mainly in vege-

tated areas

A comparison study is undertaken to assess the usefulness of EVI within DISPATCH. MODIS
optical data are routinely used to monitor canopy structure, vegetation greenness and leaf area
index. The MODIS product named MOD13 is contains two vegetation indices:NDVI and EVI.
NDVI and EVI vegetation indices provide a global coverage of the vegetation at 1 km resolution
with a temporal cycle of 16 days. NDVI vegetation index is used in the DISPATCHclassic

algorithm to estimate the fvg used in the derivation of SEE and TVDI.

NDVI is expressed as:

NDV I = ρNIR − ρR

ρNIR + ρR
(4.3)

where ρNIR and ρR the surface reflectances in near-infrared and red bands.

fvg is computed from NDVI (Cleugh et al., 2007) as:

fvgNDV I = NDV IHR − NDV Is

NDV Iv − NDV Is
(4.4)

where NDV IHR is the NDVI at high-resolution, NDV Is is the NDVI in bare soil condition,
and NDV Iv is the NDVI at full cover vegetation. According to Gutman and Ignatov (1998),
NDV Is and NDV Iv values can be set to 0.15 and 0.90, respectively.

The limitation of NDVI is that it gets saturated in fully grown vegetation (Gitelson, 2004) and is
very sensitive to the canopy background condition (Huete et al., 2002). In addition to this, NDVI
gets affected by the atmospheric noise (Liu and Huete, 1995) and shows non-linear behavior like
ratio-based indices (Jiang et al., 2006). In contrast, EVI does not get saturated in high canopy
conditions, decouples the canopy background signal (Huete et al., 2002), is not affected by the
background soil condition, and reduces the influence of the atmospheric effect (Matsushita et al.,

61



CHAPTER 4. EXTENDING THE APPLICABILITY OF THE DISAGGREGATION
ALGORITHM 62

2007).

EVI is expressed as:

EV I = G ∗ ρNIR − ρR

ρNIR + C1 ∗ ρB − C2 ∗ ρB
+ L (4.5)

where G is the gain factor, C1 and C2 are the coefficients for aerosol correction, ρB is blue
band surface reflectance, and L is the canopy background adjustment.

Similar to NDVI, the fvg calculated from EVI is expressed as:

fvgEV I = EV IHR − EV Is

EV Iv − EV Is
(4.6)

where EV IHR is the EVI at high-resolution, EV Is is the EVI in bare soil condition, and
EV Iv is the EVI at full cover vegetation. Here, EV Is is set to 0.05 and EV Iv to 0.95 (Mu et al.,
2007).

Time series and scatter plot drawn between fvg of NDVI and EVI over three areas ICOS Net-
work, Rhemedus, dryland areas shown in Figure 4.2. In the plots, EVI shows smoother dynamics
in time series than NDVI because of the reduced atmospheric effect in EVI. The scatter plot is
presented here to study the spatial impact of different soil types. The relative difference between
them can be more significant in dryland areas. The vineyard mainly surrounds the dryland area,
so a substantial rise is not observed in the middle of the season. Both vegetation indexes be-
have differently in different regions based on the soil type, canopy structure, and meteorological
condition. EVI and NDVI vegetation indices are used separately to evaluate the SM accuracy
and performance in the DISPATCH algorithm (evaluation results reported in Table 4.1) over
the three different study areas. It can be observed that mean bias (MB) and root mean square
difference (RMSD) between the disaggregated and in situ SM are relatively similar while using
different vegetation indices in the DISPATCH algorithm. It is observed that the inclusion of EVI
slightly improves the performance over the temperate and semi-arid region with an increased
temporal correlation in ICOS network (agricultural land) of 7% and 1 to 4% for Rhemedus and
dryland areas. The increase in temporal correlation with the use of EVI is explained by the
higher the sensitivity of EVI to fvg over densely vegetated areas. Hence, EVI can improve the
accuracy and performance of the DISPATCH algorithm for different climatic conditions such as
semi-arid and temperate and other land cover types agricultural and dryland areas.
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N
et
w
o
rk

Site Year
DISPATCHveg−ext (NDVI) DISPATCHveg−ext (EVI)

NR R (-) Slope (-) MB
(m3/m3)

RMSD
(m3/m3)

NR R (-) Slope (-) MB
(m3/m3)

RMSD
(m3/m3)

IC
O
S

Auradé
2017 148 0.40 0.52 0.08 0.10 148 0.42 0.54 0.08 0.10
2018 141 0.36 0.54 0.10 0.14 141 0.39 0.58 0.08 0.10

Lamasquère
2017 150 0.40 0.69 0.04 0.08 150 0.40 0.67 0.04 0.08
2018 140 0.43 0.50 0.07 0.10 140 0.43 0.54 0.06 0.10
All 145 0.40 0.56 0.07 0.11 145 0.41 0.58 0.07 0.11

D
ry
la
n
d

BA

2019

56 0.65 0.65 0 0.04 56 0.71 0.66 0.01 0.04
GA 56 0.62 0.75 0.01 0.05 56 0.64 0.74 0.01 0.05
HA1 53 0.77 1.07 0.02 0.05 53 0.80 0.98 0.02 0.05
HA2 53 0.79 0.84 0.05 0.06 53 0.80 0.78 0.05 0.06
PM 54 0.68 0.89 0.01 0.04 54 0.68 0.82 0 0.04

All 54 0.70 0.84 0.02 0.05 54 0.73 0.80 0.02 0.05

R
H
E
M
E
D
U
S

K13

2017

157 0.44 0.40 0.11 0.13 157 0.43 0.39 0.11 0.12
K10 160 0.43 1.28 -0.02 0.07 160 0.43 1.27 -0.02 0.06
M05 161 0.70 1.06 0 0.05 161 0.71 1.04 0 0.04
N09 161 0.50 0.48 0.08 0.10 161 0.50 0.48 0.08 0.10
I06 176 0.59 3.61 -0.08 0.10 176 0.59 3.51 -0.08 0.10
M09 162 0.41 0.51 0.06 0.08 162 0.41 0.50 0.06 0.08
F06 176 0.51 0.47 0.06 0.09 176 0.53 0.47 0.06 0.09
H13 180 0.79 1.75 0.02 0.06 180 0.79 1.72 0.02 0.06
I03 179 0.67 1.88 -0.01 0.05 179 0.68 1.84 -0.01 0.05
O07 161 0.62 0.94 -0.03 0.05 161 0.63 0.93 -0.03 0.05
K04 179 0.77 2.95 -0.07 0.08 179 0.77 2.87 -0.07 0.08
L07 160 0.45 0.41 0.10 0.11 160 0.46 0.42 0.10 0.11
F11 177 0.77 1.37 -0.04 0.06 177 0.77 1.35 -0.04 0.06

All 168 0.59 1.32 0.01 0.08 168 0.59 1.29 0.01 0.08

Table 4.1: Statistical results in terms of correlation, slope, mean bias, RMSD between 1 km
resolution disaggregated and in situ SM for DISPATCHveg−ext algorithm using NDVI and EVI
vegetation index separately.
*NR: Number of retrieval
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Figure 4.2: Time series of the fractional vegetation cover derived from NDVI and EVI (left)
and scatter plot between fractional vegetation covers (right) for ICOS (a,b); dryland (c,d) and
Rhemedus (e,f) areas.
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4.5 Conclusion

DISPATCH is one downscaling algorithm that uses a thermal-derived SM proxy to disaggregate
passive microwave SM data to higher resolutions. The DISPATCH algorithm uses SMOS or
SMAP SM product and MODIS LST/NDVI data to downscale the 40 km resolution SM data at
1 km resolution. The original DISPATCH algorithm named DISPATCHclassic is only applicable
to partially vegetated areas and under cloud-free conditions.

A new extension for the DISPATCHclassic algorithm - that uses TVDI to include the vegetated
areas and the calculation of temperature endmembers - is proposed in this chapter and named
DISPATCHveg−ext. In this improved algorithm, EVI is used instead of NDVI to enhance the
robustness of disaggregation over vegetated areas. Sentinel-3 datasets are also used to increase
the spatial coverage of the DISPATCH data set and partially overcome the limitation of cloud
cover thanks to the earlier overpass of the Sentinel-3.

Both (DISPATCHclassic and DISPATCHvegext ) algorithms are tested over one temperate
site of the South of France (Aurade and Lamasquere) and two semi-arid regions (Rhemedus and
dryland areas). When using Sentinel-3 instead of MODIS, the visual interpretation of downscaled
product for the DISPATCHveg−ext algorithm shows a 58-86% increase in spatial coverage for
the whole MODIS tile and 6-9% over the temperate site and 3-6% over semi-arid zones. The
use of EVI improves the performance by 7% over the temperate region and 1-4% over the semi-
arid region without degrading the accuracy of the downscaled SM product. The significant
increase in the spatio-temporal coverage of the DISPATCH data set will be an asset for building
synergies with other remotely sensed data with different revisit times and observations capabilities
(Chapter 5 and Chapter 6) and assimilation studies (Chapter 7).
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4.6 Article : Extending the Spatio-Temporal Applicability of DISPATCH
Soil Moisture Downscaling Algorithm: A Study Case Using SMAP,
MODIS and Sentinel-3 Data

1. Ojha, N., Merlin, O., Suere, C. and Escorihuela, M.J., 2021. Extending the Spatio-
Temporal Applicability of DISPATCH Soil Moisture Downscaling Algorithm: A Study
Case Using SMAP, MODIS and Sentinel-3 Data. Frontiers in Environmental Science, 9,
p.40.
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Extending the Spatio-Temporal
Applicability of DISPATCH Soil
Moisture Downscaling Algorithm: A
Study Case Using SMAP, MODIS and
Sentinel-3 Data
Nitu Ojha1*, Olivier Merlin1, Christophe Suere1 and Maria José Escorihuela2

1CESBIO, Université de Toulouse, CNES/CNRS/INRA/IRD/UPS, Toulouse, France, 2isardSAT S.L, Parc Tecnologic Barcelona
Activa, Barcelona, Spain

DISPATCH is a disaggregation algorithm of the low-resolution soil moisture (SM) estimates
derived from passive microwave observations. It provides disaggregated SM data at
typically 1 km resolution by using the soil evaporative efficiency (SEE) estimated from
optical/thermal data collected around solar noon. DISPATCH is based on the relationship
between the evapo-transpiration rate and the surface SM under non-energy-limited
conditions and hence is well adapted for semi-arid regions with generally low cloud
cover and sparse vegetation. The objective of this paper is to extend the spatio-temporal
coverage of DISPATCH data by 1) including more densely vegetated areas and 2)
assessing the usefulness of thermal data collected earlier in the morning. Especially,
we evaluate the performance of the Temperature Vegetation Dryness Index (TVDI) instead
of SEE in the DISPATCH algorithm over vegetated areas (called vegetation-extended
DISPATCH) and we quantify the increase in coverage using Sentinel-3 (overpass at around
09:30 am) instead of MODIS (overpass at around 10:30 am and 1:30 pm for Terra and
Aqua, respectively) data. In this study, DISPATCH is applied to 36 km resolution Soil
Moisture Active and Passive SM data over three 50 km by 50 km areas in Spain and France
to assess the effectiveness of the approach over temperate and semi-arid regions. The use
of TVDI within DISPATCH increases the coverage of disaggregated images by 9 and 14%
over the temperate and semi-arid sites, respectively. Moreover, including the vegetated
pixels in the validation areas increases the overall correlation between satellite and in situ
SM from 0.36 to 0.43 and from 0.41 to 0.79 for the temperate and semi-arid regions,
respectively. The use of Sentinel-3 can increase the spatio-temporal coverage by up to
44% over the considered MODIS tile, while the overlapping disaggregated data sets
derived from Sentinel-3 and MODIS land surface temperature data are strongly correlated
(around 0.7). Additionally, the correlation between satellite and in situ SM is significantly
better for DISPATCH (0.39–0.80) than for the Copernicus Sentinel-1-based (−0.03 to 0.69)
and SMAP/S1 (0.37–0.74) product over the three studies (temperate and semi-arid) areas,
with an increase in yearly valid retrievals for the vegetation-extended DISPATCH algorithm.
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1 INTRODUCTION

Soil moisture (SM) is an important element in the hydrologic
cycle, especially influencing precipitation, infiltration, and runoff
(Hamlet et al., 2007). SM is thus useful for different applications
such as meteorology (Dirmeyer, 2000), climatology (Douville,
2004), hydrology (Chen et al., 2011) and agriculture (Guérif and
Duke, 2000). SM has a very high spatio-temporal variability and
to approximate such a variability of SM, in situmeasurements are
not applicable on a global basis. Instead remote sensing
techniques have a strong potential to provide SM estimates at
multiple scales globally.

Currently, L-band radiometry is acknowledged as one of the
most efficient technique to retrieve the surface SM on a global
scale. Based on L-band radiometer, Soil Moisture and Ocean
Salinity (SMOS, Kerr et al., 2012) satellite was launched by
European Space Agency (ESA) on November 2, 2009 and Soil
Moisture Active Passive (SMAP, Entekhabi et al., 2010) was
launched by National Aeronautics and Space Administration
(NASA) on January 31, 2015. Both satellites provide SM at a
sensing depth of 3–5 cm with a spatial resolution of about 40 km
and a revisit cycle of about 3 days on a global basis. Since L-band
emission is highly sensitive to SM and relatively less sensitive to
soil roughness and vegetation optical-depth (Wigneron et al.,
2017), it can be used to derive SM with high precision.

Passive (including L-band) microwave-derived SM products
are regularly evaluated and are found to be suitable for hydro-
climatic applications (Wanders et al., 2014; Lievens et al., 2015).
But for most of the hydrological and agricultural purposes, SM
data are required at a much higher (i.e., at least kilometric) spatial
resolution. Active microwave (e.g., Synthetic Aperture Radar) can
be used to derive SM at kilometric or sub-kilometric spatial
resolution (Wegmuller and Werner, 1997; Bauer-
Marschallinger et al., 2018). However, the major disadvantage
of the radar techniques is the high sensitivity of the surface
backscatter to disturbing factors such as notably vegetation
structure (Waite and MacDonald, 1971), soil roughness
(Verhoest et al., 2008) and topography (Atwood et al., 2014).
Consequently, to overcome the limitation of both microwave
techniques, various researches have been done in the past to
combine active and passive microwave data (Narayan et al., 2006;
Piles et al., 2009; Das et al., 2010). In particular, based on this
technique, NASA recently developed a method that provides SM
at 9 and 3 km resolution from SMAP data (Jagdhuber et al., 2017;
Lievens et al., 2017; Das et al., 2018).

Alternatively, optical/thermal sensors such as Moderate
resolution Imaging Spectroradiometer (MODIS) are
extensively used to retrieve SM proxies from land surface
temperature (LST) and normalized vegetation index (NDVI)
(Peng et al., 2015a; Zhang and Zhou, 2016). The triangle
(Carlson, 2007) or trapezoid (Moran et al., 1994) method is
built by assuming that it covers the sensitivity of LST for fully
vegetated areas and bare soil conditions. The fully dry and well-
watered surface conditions can be determined as edges of the
LST-NDVI feature space. Based on the LST-NDVI approach,
various moisture index methods have been proposed like the crop
water stress index (CWSI, Moran et al., 1994), the vegetation

condition index (VCI, Kogan, 1995), the normalized difference
water index (NDWI, Gao, 1996) and the temperature vegetation
dryness index (TVDI) (Sandholt et al., 2002). The TVDI in
particular is a land surface dryness index used to calculate
water-stress condition.

Further, an optical-derived SM proxy is used to disaggregate
passive microwave derived SM data by establishing a link between
LST and SM through the evapotranspiration process (Merlin
et al., 2005; Kim and Hogue, 2012; Peng et al., 2015a; Peng et al.,
2015b). Based on this, the DISPATCH method (Merlin et al.,
2012; Merlin et al., 2013) was developed. DISPATCH estimates
the soil evaporative efficiency (SEE, defined as the ratio of actual
to potential soil evaporation) from optical/thermal data and
expresses the disaggregated SM through a downscaling
relationship between the SM observed at low resolution (LR)
and the SEE derived at high resolution (HR). Given that SEE has a
mostly linear relationship with soil temperature (Merlin et al.,
2013), SEE is estimated as the optical-derived soil temperature
normalized by its maximum and minimum values corresponding
to dry and wet soil conditions in the LST-NDVI feature space
(Merlin et al., 2012). For routine application of DISPATCH, the
C4DIS processor was implemented at the Centre Aval de
Traitement des données SMOS (CATDS) as a level-4 SM
product (Molero et al., 2016). C4DIS processor provides SM at
1 km resolution product on a daily-global basis using LR SMOS
SM and HR MODIS data. The C4DIS was recently adapted to
integrate SMAP and Sentinel-3 data in replacement of SMOS and
MODIS data, respectively.

Various researches have shown that the application of
DISPATCH to SMAP or SMOS data provides a 1 km
resolution SM product with satisfying accuracy in arid and
semi-arid regions (Malbéteau et al., 2016; Molero et al., 2016;
Colliander et al., 2017; Mishra et al., 2018). However DISPATCH,
like all the optical-based SM disaggregation methods, has two
main intrinsic limitations: 1) the soil surface temperature that is
related to the surface (0–5 cm) SM cannot be retrieved
underneath the vegetation cover and 2) optical/thermal data
are unavailable in cloudy conditions. Such constraints
significantly reduce the spatio-temporal coverage of optical-
disaggregated SM images, which potentially hinders several
applications requiring data at high temporal frequency.

In this context, the paper aims to partly overcome the above
mentioned limitations by testing three significant changes in
the DISPATCH algorithm. Firstly, over densely vegetated
pixels, the DISPATCH downscaling relationship is
implemented using the TVDI (Sandholt et al., 2002), by
assuming over those areas a link between the surface SM
(as sensed by SMOS/SMAP) and the TVDI-derived root
zone SM. Secondly, the enhanced vegetation index (EVI) is
used in place of NDVI to improve the robustness of
disaggregated SM over vegetated region. In fact, EVI is
expected to be more sensitive to vegetation density and to
correct for inaccuracies due to atmospheric and soil
conditions. Thirdly, Sentinel-3 LST is tested as input to
DISPATCH in place of MODIS LST by assuming that an
earlier optical/thermal observation is generally less affected
by clouds (Georgiana Stefan et al., 2018).

Frontiers in Environmental Science | www.frontiersin.org March 2021 | Volume 9 | Article 5552162

Ojha et al. Extending DISPATCH Spatio-Temporal Applicability



The main objective of this paper is therefore to improve the
spatio-temporal coverage and the robustness over vegetated areas
of the 1 km resolution of DISPATCH SM. The approach is applied
to SMAP SM data and tested over three 50 km by 50 km study
areas in France and Spain with one temperate and two semi-arid
regions. Results of the new vegetation-extended DISPATCH
algorithm is assessed against in situ measurements collected in
all three study areas, as well as against the 1 km resolution,
Copernicus SM data derived from Sentinel-1 radar data and
SMAP/S1 data derived from Sentinel-1 and SMAP.

2 MATERIALS AND METHODS

2.1 Study Area and In Situ Data
Three study areas of 50 km by 50 km are selected in the South-
West of France (ICOS sites), and in theWest (REMEDHUS sites)
and East (dryland sites) of Spain (location is shown in Figure 1).
The extent of each study area is defined in order to encompass at
least one SMAP pixel and to represent the sub-pixel variability at
the 1 km resolution. The main objective for the selection of study
areas is two-fold 1) to evaluate the performance of DISPATCH
under different climatic conditions including temperate and
semi-arid, and 2) to evaluate the performance of DISPATCH
over different land cover types such as agricultural land and
dryland areas. A detailed description of the SM monitoring sites
within each of the three study areas is provided below.

i) ICOS network (South-West of France): It includes Auradé
(43°32′58.81 N, 01°06′22.08 E) and Lamasquère (43°50′05 N,
01°24′19 E), which are located near Toulouse at a distance of
12 km from each other. The study area has temperate climatic
conditions with an annual average precipitation of 700mm. The
land is mainly covered by agricultural field. Soil texture is clay
loam for Auradé with clay and sand contents of 32.3 and 20.6%,
respectively, while soil texture for Lamasquère is clay with clay
and sand fraction contents of 54 and 12%, respectively. SM is
measured by CS616 (Campbell Scientific Inc., Logan, UT, USA)
probes at depths of 0.05, 0.10, and 0.30m. CS616 probe uses soil
dielectric permittivity to measure the volumetric soil water
content. The in situ SM data collected at 5 cm depth for years
2017 and 2018 are used in this study. Detailed information about
field instrumentation and agricultural practices can be found in
Béziat et al. (2009) and Tallec et al. (2013).

ii) REMEDHUS network (West of Spain): REMEDHUS is a very
dense network, consisting of 20 stations located near the center of
Duero basin (41.1–41.5°N, 5.1–5.7°W). The study area has semi-
arid Mediterranean climate with an annual average precipitation
385mm. In this paper 13 stations are used. The land is mainly
covered by croplands, shrublands, forests and pasture. Soil type is
silty and clayey sand. SM ismeasured by a dielectric sensor (hydra
probe and Stevens watermonitoring system), whichmeasures the
volumetric SMat a depth of 0.00–0.05m. The in situ SMcollected
for 2017 are used in this study is obtained from the International
Soil Moisture Network (ISMN) (Dorigo et al., 2011).

iii) Dryland sites (East of Spain): Dryland areas are selected from the
Tarragona province of Catalunya, Spain. Land is mainly covered

by rainfed crops. Soil texture of this area is clayey. The
monitoring network consists of seven stations. SM is
measured at a depth of 5 cm by Teros sensor 10. The in situ
SM data collected from June to November 2019 are used in this
study. The dryland sites area exhibits a semi-arid Mediterranean
climate, which is dry and warm in summer and cold and wet in
winter. The average annual precipitation is 385 mm with an
elevation of 700–900m above sea level.

2.2 Remote Sensing Data
2.2.1 SMAP SM Data
SMAP is a L-band satellite mission, launched in January 2015,
that combines 1 km resolution radar and 36 km resolution
radiometer observations to provide SM at 9 km resolution. But
due to improper functioning of SMAP radar, currently SMAP
provides SM at 36 km resolution (radiometer) on a global-daily
basis. SMAP satellite has a near-polar sun-synchronous orbit with
an altitude of 658 km. The SMAP swath is about 1,000 km width
with a revisit cycle of 2–3 days. In this paper, SMAP level-3 daily
SM product (named as L3SMP A/D, version 005) with an
ascending and descending overpass of 6 pm/6 am is used
separately as an input to DISPATCH algorithm. These
products are in HDF format and cylindrically projected on the
EASE grid version 2.0. SMAP data can be downloaded from
https://nsidc.org/data/SPL3SMP/versions/5. In addition to this,
SMAP/S1 (named as L2_SM_SP) provides SM at 1 km resolution
is used for the statistical analysis with DISPATCH data. SMAP/S1
use Sentinel-1A and Sentinel-1B to disaggregate SMAP (∼36 km)
data at 1 km resolution.

2.2.2 MODIS Optical Data
The C4DIS processor presented in Molero et al. (2016) uses the
MODIS version 6 optical/thermal data. The Terra overpass (10:30
am)—named as MOD11A- and Aqua overpass (1:30 pm)—
named as MYD11A1—gives 1 km resolution LST data on a
daily basis. In DISPATCH algorithm, 6 MODIS LST products
(1 day before, same day and 1 day after the SMAP overpass) are
used as an input for each SMAP ascending and descending
overpass. MODIS version 6 MOD13 is used to monitor
canopy structure, leaf area index and vegetation greenness
extent, and contains two vegetation indices—NDVI and
EVI—as sub-datasets. MODIS NDVI and EVI products
provide data continuously at 1 km spatial and 16-day temporal
resolution for global vegetation coverage. NDVI is used in the
original DISPATCH algorithm for disaggregation of SM at HR
(Merlin et al., 2012). NDVI is defined as:

NDVI � ρNIR − ρR
ρNIR + ρR

(1)

where ρNIR and ρR are the surface reflectances from MODIS near
infrared and red bands, respectively.

The main limitation of NDVI is that it is very sensitive to

canopy background (Huete et al., 2002) and gets saturated in

conditions of high biomass (Gitelson, 2004). Another limitation is

that it shows a non-linear behavior like ratio-based indices (Jiang

et al., 2006) and is affected by atmospheric noise (Liu and Huete,
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1995). EVI was thus developed to improve the sensitivity to high

biomass conditions. It also decouples the canopy background

signal (Huete et al., 2002) and reduces atmospheric influence

(Matsushita et al., 2007). EVI is computed as:

EVI � GpρNIR − ρR
ρNIR + C1pρB − C2pρB

+ L (2)

where, ρB is the surface reflectance from blue band, L is the
canpoy background adjustment, C1 and C2 are the coefficients for
aerosol correction and G is the gain factor.

DISPATCH relies on the fractional vegetation cover (fvg)
derived from the vegetation index. Cleugh et al. (2007)
calculated fvg from NDVI:

fvgNDVI �
NDVIHR − NDVIs
NDVIv − NDVIs

(3)

where NDVIHR is the MODIS NDVI at 1 km resolution, NDVIs is
NDVI at bare soil and NDVIv is NDVI at full vegetation cover.
Here NDVIs and NDVIv are set to 0.15 and 0.90, respectively
(Gutman and Ignatov, 1998).

Similarly, fvg can be estimated from EVI:

fvgEVI �
EVIHR − EVIs
EVIv − EVIs

(4)

where EVIHR is the MODIS EVI at 1 km resolution, EVIs is EVI at
bare soil and EVIv is EVI at full vegetation cover. Here EVIs and
EVIv are set to 0.05 and 0.95, respectively (Mu et al., 2007).

EVI aims to provide a VI with reduced sensitivity to (daily)
atmospheric effects and to (constant) background soil effects,
while no such correction for soil or atmospheric effects is
undertaken for NDVI. The time series and scatter plot
comparisons between NDVI and EVI are hence presented to
visually assess the possible artifacts in the temporal and in spatial
pattern in NDVI that may occur due to atmospheric disruptive
effects and/or to the background soil variability between study
areas. Figure 2 presents the time series of the 1 km resolution
fractional vegetation cover derived from NDVI and EVI at
Auradé site (ICOS study area), BA (dryland area) and F11
(REMEDHUS network study area) (left side) and also presents
the scatter plot comparison of both fractional vegetation cover
estimates extracted over ICOS, dryland, and REMEDHUS study
areas (right side). The time series evolution in Figure 2 observed a
relatively smoother dynamics of EVI compared to NDVI,
suggesting that the atmospheric effects are reduced in EVI
data. The effect of different soil types is observed in the spatial
scatter plot of Figure 2 (right side) between the fractional
vegetation cover derived from NDVI and EVI over each of the
three study areas. Relative differences are more significant over
the dryland sites. Since the dryland sites are covered by vineyards,
a big jump of NDVI is not observed in the middle of the season. It
is therefore observed that NDVI and EVI behave differently in
different areas depending on meteorological conditions, canopy
structure and soil type. This is the rationale for evaluating the
performance of DISPATCH using EVI and NDVI vegetation
indices separately for different regions.

FIGURE 1 | Location of the three study areas: (A) ICOS network in South Western France (B) Dryland network in Eastern Spain and (C) REMEDHUS network in
Western Spain.
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2.2.3 Sentinel-3 Optical Data
Sentinel-3 satellite was launched by ESA in February 2016.
Sentinel-3 has a sun-synchronous polar orbit with an altitude
of 815 km and an overpass at 09:30 a.m. The LST Sentinel-3
product is derived from data collected by the Sea and Land
Surface Temperature Radiometer (SLSTR) instrument. SLSTR is
a multi-channel radiometer with nine spectral bands including
three thermal bands, which are used to derive LST from the split-
window method with an accuracy better than 1 K (Sobrino et al.,
2015). Despite the earlier overpass of Sentinel-3 and the expected
enhanced accuracy of Sentinel-3 LST data, SLSTR LST data are
pretty similar to MODIS LST data in terms of spatio-temporal
resolution: 1 km resolution with 1- or 2-day revisit time. In this

paper, the daily Sentinel-3 LST product named SL2LST downloaded
from https://scihub.copernicus.eu is used as input to DISPATCH
algorithm in place of MODIS LST. In the DISPATCH algorithm,
three Sentinel-3 LST images are used (1 day before, same day, and
1 day after) as input for each SMAP ascending and descending
overpass. Note that in this application, the NDVI/EVI data are still
derived fromMODIS to focus on the DISPATCH output differences
associated with the input data of (MODIS or Sentinel-3) LST.

2.2.4 DEM Data
GTOPO 30 digital elevation model (DEM) data at 30 arc second
resolution are used to correct the 1 km resolution MODIS/
Sentinel-3 LST for topographic effects, before its use for SEE/

FIGURE 2 | Times series of fractional vegetation cover derived from NDVI and EVI (left) and a spatial scatterplot of fractional vegetation cover derived from NDVI
and EVI (right) for Auradé (ICOS) site, 2017 (A,B); BA (dryland) site, 2019 (C,D); and L03 (REMEDHUS) site, 2017 (E,F).
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TVDI estimates within DISPATCH (Merlin et al., 2013). The
DEM can be downloaded from https://lta.cr.usgs.gov/GTOPO30.

2.2.5 Copernicus Sentinel-1 SM Product
Copernicus global land service provides a SM product over
Europe at 1 km resolution from 2016. The change detection
method from Technological University of Vienna (TU-Wien)
is used to derive daily relative SM estimates from the C-band
Sentinel-1 backscatter time series collected in Interferometric
Wade Swath (IW) and VV-polarization mode (Bauer-
Marschallinger et al., 2018). In practice, the Copernicus
Sentinel-1 relative SM (expressed in percentage from 0 to
100%) is derived from the angle-normalized backscattering
coefficient linearly scaled between wet and dry conditions at
each location individually. Data can be downloaded at https://
land.copernicus.eu/global/products/ssm.

For comparing the performance of Copernicus and DISPATCH
SM data sets at the validation sites, the Copernicus relative SM is
converted into volumetric SM from the extreme SMvalues estimated
at the site level using texture information:

SMS1 � SMmin + (SMmax − SMmin)pRSMS1 (5)

Where SMS1 is the re-scaled SM (m3/m3), RSMS1 is the relative
SM value (%) of Copernicus Sentinel-1 SM, and SMmax (m3/m3)
and SMmin (m3/m3) are the SM at saturation and the residual SM
estimated from pedotransfer functions in Cosby et al. (1984) and
Brisson and Perrier (1991), respectively (Merlin et al., 2016).

2.3 DISPATCH
2.3.1 General Equations
The DISPATCH downscaling equation relies on HR optical-
derived SM proxy (SEE in the current version of DISPATCH)
to disaggregate LR (SMOS or SMAP) SM at HR:

SMHR � SMLR + (δSEE
δSM

)
−1

LR

p(SEEHR − SEELR) (6)

where SMHR is the disaggregated SM at HR, SMLR is the SM at LR
observed by SMAP, SEEHR is the SEE at HR derived fromMODIS
and/or Sentinel-3 data, SEELR serves as the aggregated HR SEE at
LR and (δSEE/δSM)−1LR is the inverse of the partial derivate of
SEE(SM) at LR. In Eq. 6, SEE is expressed as:

SEEHR � Ts,max − Ts,HR

Ts,max − Ts,min
(7)

where Ts,max is the soil surface temperature at HR, and Ts,max and ‘
are the soil temperature in fully dry (SEE � 0) and water-saturated
(SEE � 1) conditions, respectively. Soil temperature endmembers
Ts,max and Ts,min are estimated from the extreme LST values
observed within the LST-fvg feature space obtained with MODIS
or Sentinel-3 data. The soil temperature in Eq. 7 is obtained from
the linear decomposition of LST into soil and vegetation
temperature using the trapezoid method (Merlin et al., 2012):

Ts,HR � LSTHR − fvg,HRpTv,HR

1 − fvg,HR
(8)

where, LSTHR is the HR LST derived from MODIS or Sentinel-
3 data, fvg,HR is the HR fractional vegetation cover derived from
MODIS data and Tv,HR is the HR vegetation temperature
bounded by its maximum (Tv,max) and minimum value
(Tv,min).

As fully described in Merlin et al. (2012), the retrieval of soil
temperature in Eq. 8 depends on the estimation of vegetation
temperature, which depends on the location of the associated HR
pixel in the LST-fvg feature space. As illustrated in Figure 3A, the
LST-fvg feature space is divided in four zones A, B, C, and D. In
zone D, where the LST is mainly controlled by the vegetation
temperature, the retrieved soil temperature is assumed to be
constant meaning that SEE is uniform with the SMOS/SMAP
pixel and the downscaling relationship is not applied. In
summary, the use of SEE in the downscaling relationship of
Eq. 6 implies that disaggregation is only possible in zones A, B,
and C. No disaggregated SM value is provided by DISPATCH for
the HR pixels located in zone D.

Note that Eq. 6 is applied to all SMOS/SMAP pixels over
which the cloud cover percentage is lower than a given threshold
(named the cloud cover threshold) set to 33% in the current
DISPATCH version. Under cloud cover, the SEE values are set to
the average SEE within the LR pixel, but no disaggregated SM
value is provided.

More details on the DISPATCH method are provided in
Merlin et al. (2012) and Merlin et al. (2013). Note that the
original DISPATCH algorithm as described by the above
equations and implemented in the current C4DIS processor
(Molero et al., 2016) is named DISPATCHclassic in this paper.

2.4 The Vegetation-Extended DISPATCH
Version (DISPATCHveg–ext)
The objective of the new DISPATCH version is to apply the
downscaling relationship of Eq. 6 to zone D, where the variability
of LST for a given fvg value is mainly attributed to the vegetation
temperature. DISPATCHveg–ext is thus an extension of
DISPATCHclassic algorithm to densely vegetated areas. The
main difference between DISPATCHclassic and
DISPATCHveg–ext is that SEE is replaced by TVDI in zone D
of the LST-fvg feature space. TVDI is hence used in the
DISPATCHveg–ext algorithm to calculate the disaggregated SM
over vegetated pixels where transpiration is dominant (over the
soil evaporation). By using TDVI instead of SEE, we are making
an implicit assumption that the surface SM is linked to the root
zone SM (Kumar et al., 2009).

TVDI is defined as

TVDIHR � LSTmax − LSTHR

LSTmax − LSTmin
(9)

where, LSTmin and LSTmax are defined as the minimum and
maximum LST the wet and dry edge and LSTHR is the observed
LST within a given MODIS/Sentinel-3 pixel. TVDI provides
values in the range of 0–1, where 1 represents a wet edge
(adequate water availability for vegetation) and 0 represents a
dry edge (vegetation water stress condition).
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2.5 Estimating Temperature Endmembers
It is reminded that DISPATCHclassic operates only on zones A,
B, C of the LST-fvg feature space where the soil temperature can
be retrieved but DISPATCHveg–ext algorithm additionally
operates on zone D where vegetation temperature is
dominant. Replacing SEE by TVDI in Eq. 6 thus involves
modifying the algorithm for estimating temperature
endmembers. SEE is more sensitive to the surface soil
moisture via the soil temperature retrieved over bare or
partially vegetated pixels, while TVDI is more sensitive to
the root zone soil moisture via the vegetation temperature
retrieved over vegetated pixels. As a matter of fact, SEE cannot
be retrieved from satellite over densely vegetated areas.
Therefore, TVDI has the advantage over SEE to provide
vegetation water stress information over densely vegetated
areas that can be translated into soil moisture variabilities
within DISPATCH. However, the main issue with the use of
TVDI instead of SEE is the link between the root zone soil
moisture (information provided by TVDI) and the surface soil
moisture (as retrieved from SMAP), which might not be linear
(Albergel et al., 2008; Ford et al., 2013).

Figure 3 gives an illustration of the temperature
endmembers retrieved from the DISPATCHclassic (A) and
DISPATCHveg–ext (B) algorithms for a given date within a
given SMAP pixel. In this example, the SMAP pixel over the
ICOS study area was selected. Note that the values of
temperature endmembers are calibrated and will be different
for each SMAP pixel and for each SMAP overpass time.
Visually, it is observed from the graph in Figure 3B that the
polygonal envelop for DISPATCHveg–ext includes all pixel LST
values (represented by black dots). This is not the case for
DISPATCHclassic as illustrated in the graph of Figure 3A where
several pixel LST values are clearly located above the dry edge.
Moreover, if we consider zone D uniquely (represented by a grey
area), the pixel LST values that come under zone D are discarded
from the disaggregation in DISPATCHclassic (Figure 3A),
whereas the pixel LST values in zone D are included for
disaggregation in DISPATCHveg–ext (Figure 3B). The
DISPATCHveg–ext algorithm thus extends the applicability of

DISPATCH to zone D as well as improves the robustness of dry/
wet edges determination. The main difference between
DISPATCHclassic and DISPATCHveg–ext for estimating
temperature endmembers is two-fold: 1) instead of using
directly the maximum and minimum observed LST values
(DISPATCHclassic) to determine respectively the dry bare soil
and wet full cover vertices, DISPATCHveg–ext iteratively ensures
that most of the data points are kept within the polygon, and 2)
the maximum to minimum vegetation temperature difference is
forced to be equal to or larger than half the maximum to
minimum soil temperature difference. The rationale behind
the second requirement is that the maximum to minimum
soil temperature difference and the maximum to minimum
vegetation temperature difference should be rather close from
the energy budget perspective (Stefan et al., 2015; Yang et al.,
2015). It has been demonstrated that the uncertainty in dry and
wet boundaries is reduced and the accuracy in the associated SM
proxies is increased when the second requirement is satisfied.

In practice, the new algorithm for estimating Ts,min, Ts,max,
Tv,min, and Tv,max is accomplished in three successive steps:

(1) First guess estimates of temperature endmembers are
provided by DISPATCHclassic algorithm (Figure 3A for
illustration).

(2) An offset is applied to the first guess dry (wet) edge to make it
pass through the point corresponding to the maximum
(minimum) observed LST.

(3) An additional constraint is applied to the maximum
vegetation temperature. In case the maximum to
minimum vegetation temperature difference is lower than
half the maximum to minimum soil temperature difference,
the final maximum temperature is set to:

Tv,max � Tv,min + 0.5p(Ts,max − Ts,min) (10)

The above requirement is especially useful over relatively wet
SMOS/SMAP pixels where water-stressed vegetation conditions
do not occur, i.e., where the first guess maximum vegetation
temperature is not sufficiently representative.

FIGURE 3 | Illustration of DISPATCHclassic (A) and DISPATCHveg–ext (B) polygons in the LST-fvg feature space for ICOS study area on DOY 204, 2018.
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3 RESULTS

In this section, the DISPATCHveg–ext algorithm is evaluated over
the study sites and its performance is assessed compared to the
DISPATCHclassic algorithm and to the Copernicus Sentinel-1-
based SM retrieval method. DISPATCHveg–ext is run in different
modes with the use of MODIS EVI instead of MODIS NDVI, and
the use of Sentinel-3 LST instead of MODIS LST. The objective is
to quantify the potential increase in the spatial coverage of
DISPATCH data and its accuracy over vegetated regions
under temperate and semi-arid conditions.

3.1 Evaluating the Spatio-Temporal
Coverage of DISPATCHveg–ext Dataset
DISPATCHclassic and DISPATCHveg–ext algorithms are run with
the same input data to compare the spatial extent of their 1 km
resolution disaggregated SM output. Readers are reminded that
DISPATCHveg–ext is an extension of the DISPATCHclassic

algorithm to include vegetated areas (disaggregation is
undertaken in all zones in the LST- feature space, including
zone D). Figure 4 illustrates the visual comparison of 1 km
resolution disaggregated SM images obtained after running
DISPATCHclassic and DISPATCHveg–ext algorithms on DOY
112 for 2018 over the H18V04 MODIS tile. Note that there
are multiple void regions in the output of DISPATCHclassic

disaggregated SM. These void regions appear in the output
images when the corresponding input pixels belong to zone D
(densely vegetated areas). The DISPATCHclassic disaggregation

algorithm does not give disaggregated SM values over those
areas. On the other hand, DISPATCHveg–ext disaggregated
image fills the void region attributed to vegetation cover by
using TVDI in DISPATCH algorithm. The void regions are
still visible in the output of DISPATCHveg–ext image. Note that
SMAP does not retrieve SM at high altitude which is covered
by snow such as alps and pyrenees (O’Neill et al., 2018). Due to
this, there is no SM retrieval in this region and the regions
remains void. The void regions in high altitude are consistently
observed across DISPATCHclassic, DISPATCHveg–ext, and
NDVI images.

Different cloud cover thresholds (10, 30, 50 and 70%) are also
used separately in DISPATCHveg–ext and DISPATCHclassic

algorithms to examine the effect on the spatial coverage of
valid pixels. Such a comparison is made on a yearly basis
(2017) over distinct spatial extents: the MODIS tiles H17V04
and H18V04 and the 50 km by 50 km REMEDHUS, ICOS, and
dryland study areas. From Table 1 it is observed that there is an
overall increase in the percentage of valid pixels in
DISPATCHveg–ext disaggregated SM. The increase is about
3–6% in semi-arid areas and 6–9% in the temperate area as
compared to DISPATCHclassic, for different cloud-free threshold
values. The increase in coverage is more evident in temperate sites
because agricultural areas generally have a larger NDVI than
semi-arid/dryland areas. For the MODIS tile extent, the relative
increase in coverage over vegetated areas (from 58 to 86%
depending on the cloud cover threshold) is very significant.
The threshold values of cloud cover have a rather small effect

FIGURE 4 | Images over the MODIS tile H18V04 of 1 km resolution disaggregated SM derived from DISPATCHclassic (left top) and DISPATCHveg–ext (right top)
and NDVI (left bottom) on DOY 112, 2018.
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at the 50 km by 50 km scale for both DISPATCH algorithms.
However, a significant improvement can be seen over the entire
MODIS tile extent.

Statistical results of correlation (R), slope of the linear
regression (Slope), mean bias (MB), and root mean square
difference (RMSD) between disaggregated and in situ SM with
DISPATCHclassic and DISPATCHveg–ext algorithm are calculated
separately and presented in Table 2. The overall temporal
correlation of DISPATCHveg–ext SM is in the range of
0.40–0.70, compared to 0.37–0.70 for the DISPATCHclassic

case. The slight increase in the temporal correlation over

vegetated areas is mainly attributed to the increase in the
spatio-temporal coverage of DISPATCHveg–ext SM data set
associated with the inclusion of vegetated areas. The MB and
RMSD values remain approximately the same for both
algorithms, with a maximum difference of 0.02 m3/m3. This
indicates that the inclusion of vegetated areas in DISPATCH
algorithm using the TVDI approach does not degrade the
disaggregation performance. It is also observed that the slope
of the linear regression between disaggregated and in situ SM is
more stable for the new algorithm because of the modified
calculation of temperature endmembers.

TABLE 1 | Percentage of valid pixels within the 1 km resolution disaggregated SM images using DISPATCHclassic and DISPATCHveg–ext algorithm for i) the entire MODIS tile
extent H18V04, ii) the union of both semi-arid areas and iii) the temperate study area separately, for different cloud cover thresholds in 2017.

Cloud cover
threshold

MODIS tile extent (H18V04) Both semi-arid study areas Temperate study area

DISPATCHclassic DISPATCHveg–ext DISPATCHclassic DISPATCHveg–ext DISPATCHclassic DISPATCHveg–ext

% % % % % % %

70 12 19 39 40 36 38
50 11 18 37 38 33 36
30 10 16 34 36 31 33
10 7 13 28 29 28 30
All 10.00 16.50 34.50 35.75 32.00 34.25

TABLE 2 | Statistical results in terms of correlation (R), slope of the linear regression (Slope), mean bias (MB), RMSD between 1 km resolution disaggregated and in situ SM
for (NDVI-based) DISPATCHclassic and DISPATCHveg–ext algorithm.

Network Site Year DISPATCHclassic DISPATCHveg–ext (NDVI)

NR R (–) Slope
(–)

MB
(m3/m3)

RMSD
(m3/m3)

NR R (–) Slope
(–)

MB
(m3/m3)

RMSD
(m3/m3)

ICOS Auradé 2017 139 0.35 0.51 0.08 0.11 148 0.40 0.52 0.08 0.10
2018 131 0.33 0.57 0.10 0.15 141 0.36 0.54 0.10 0.14

Lamasquère 2017 140 0.37 0.76 0.04 0.09 150 0.40 0.69 0.04 0.08
2018 124 0.42 0.57 0.06 0.10 140 0.43 0.50 0.07 0.10
All 134 0.37 0.60 0.07 0.11 145 0.40 0.56 0.07 0.11

Dryland BA 2019 55 0.65 0.73 0 0.04 56 0.65 0.65 0 0.04
GA 56 0.59 0.78 0 0.06 56 0.62 0.75 0.01 0.05
HA1 53 0.78 1.28 0.03 0.07 53 0.77 1.07 0.02 0.05
HA2 53 0.81 1.04 0.07 0.08 53 0.79 0.84 0.05 0.06
PM 54 0.66 0.96 0.01 0.05 54 0.68 0.89 0.01 0.04

All 54 0.70 0.96 0.02 0.06 54 0.70 0.84 0.02 0.05
RHEMEDUS K13 2017 145 0.39 0.40 0.12 0.13 157 0.44 0.40 0.11 0.13

K10 146 0.42 1.41 −0.02 0.07 160 0.43 1.28 −0.02 0.07
M05 147 0.67 1.10 0.01 0.05 161 0.70 1.06 0 0.05
N09 147 0.46 0.47 0.09 0.10 161 0.50 0.48 0.08 0.10
I06 166 0.57 3.88 −0.08 0.11 176 0.59 3.61 −0.08 0.10
M09 148 0.35 0.47 0.06 0.08 162 0.41 0.51 0.06 0.08
F06 166 0.45 0.45 0.07 0.10 176 0.51 0.47 0.06 0.09
H13 168 0.78 1.89 0.01 0.07 180 0.79 1.75 0.02 0.06
L03 165 0.65 2.07 −0.01 0.06 179 0.67 1.88 −0.01 0.05
O07 147 0.54 0.92 −0.04 0.06 161 0.62 0.94 −0.03 0.05
K04 165 0.78 3.32 −0.07 0.08 179 0.77 2.95 −0.07 0.08
L07 146 0.37 0.39 0.10 0.12 160 0.45 0.41 0.10 0.11
F11 165 0.76 1.48 −0.04 0.07 177 0.77 1.37 −0.04 0.06

All 155 0.55 1.40 0.02 0.09 168 0.59 1.32 0.01 0.08

NR, Number of retrieval.
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3.2 Improving the Robustness of DISPATCH
Over Vegetated Pixels
The robustness of the DISPATCHveg–ext algorithm over vegetated
areas is further tested by using NDVI and EVI vegetation indices
as input. The analysis is done by comparing the NDVI-based
DISPATCHveg–ext (Table 2) and EVI-based DISPATCHveg–ext

(Table 3) performance in terms of correlation (R), slope of the
linear regression (Slope), mean bias (MB) and RMSD between
disaggregated and in situ SM. The overall (all sites) temporal

correlation of disaggregated SM vs. in situ SM ranges from 0.41 to
0.73 as compared to 0.40–0.70 for the EVI and NDVI case,
respectively.

The inclusion of EVI improves the performance of the
DISPATCH algorithm over the temperate and semi-arid
study areas. Note that the overall percentage increase—as
compared to the NDVI-based DISPATCH SM—in temporal
correlation for the ICOS network (agricultural land) is 7% and
for REMEDHUS and dryland networks is 1 and 4%. The
increase in temporal correlation of disaggregated SM using
EVI over agricultural areas is attributed to the sensitivity of
EVI to fvg over densely vegetated areas, which fosters the
accuracy of the trapezoid approach. It is also observed that
semi-arid areas exhibit a small increase in temporal
correlation. One may hypothesize that the use of EVI in
place of NDVI reduces the effect of the variability of soil
color and of atmospheric noise. The mean bias (MB) and
RMSD between disaggregated and in situ SM mostly remain
the same for both algorithms, which indicates that the
inclusion of EVI in place of NDVI in the DISPATCH
algorithm does not degrade the performance of DISPATCH
algorithm. Rather, the use of EVI improves the performance of
the DISPATCH algorithm for different climatic conditions
such as temperate and semi-arid areas and different land cover
types such as agricultural and dryland areas.

3.3 Reducing the Impact of Clouds on
DISPATCH Dataset by Using Sentinel-3 LST
Data
Cloud cover strongly limits the availability of optical/thermal
data. The non-availability of optical/thermal data at HR is the
main reason for voids in DISPATCH disaggregated SM products.
The cloud cover generally differs according to the time of day.
Hence, in spite of having the same spatial and temporal
resolution, MODIS LST and Sentinel-3 LST data sets may be
affected by clouds differently. The cloud mask applied to the
MODIS LST images extracts the LST pixels with quality control
(QC) equal to 0 or 17, which corresponds to an uncertainty in
LST lower than 1 K and a maximum emissivity error equal to 0.01
and 0.02, respectively. The cloud mask applied to the Sentinel-3

TABLE 3 | Statistical results in terms of correlation (R), slope of the linear
regression (Slope), mean bias (MB) and RMSD between EVI-based
DISPATCHveg–ext 1 km resolution satellite product and in situ SM.

Network Site Year DISPATCHveg–ext (EVI)

NR R
(–)

Slope
(–)

MB
(m3/
m3)

RMSD
(m3/m3)

ICOS Auradé 2017 148 0.42 0.54 0.08 0.10
2018 141 0.39 0.58 0.08 0.10

Lamasquère 2017 150 0.40 0.67 0.04 0.08
2018 140 0.43 0.54 0.06 0.10
All 145 0.41 0.58 0.07 0.11

Dryland BA 2019 56 0.71 0.66 0.01 0.04
GA 56 0.64 0.74 0.01 0.05
HA1 53 0.80 0.98 0.02 0.05
HA2 53 0.80 0.78 0.05 0.06
PM 54 0.68 0.82 0 0.04

All 54 0.73 0.80 0.02 0.05
RHEMEDUS K13 2017 157 0.43 0.39 0.11 0.12

K10 160 0.43 1.27 −0.02 0.06
M05 161 0.71 1.04 0 0.04
N09 161 0.50 0.48 0.08 0.10
I06 176 0.59 3.51 −0.08 0.10
M09 162 0.41 0.50 0.06 0.08
F06 176 0.53 0.47 0.06 0.09
H13 180 0.79 1.72 0.02 0.06
L03 179 0.68 1.84 −0.01 0.05
O07 161 0.63 0.93 −0.03 0.05
K04 179 0.77 2.87 −0.07 0.08
L07 160 0.46 0.42 0.10 0.11
F11 177 0.77 1.35 −0.04 0.06

All 168 0.59 1.29 0.01 0.08

NR, Number of retrieval.

FIGURE 5 | DISPATCHveg–ext 1 km resolution SM images for MODIS (left) and Sentinel-3 (right) LST input data on DOY 204, 2018.
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LST images extracts the LST pixels with a QC equal to 0, which
corresponds to an uncertainty in LST lower than 1 K. The
Sentinel-3 LST QC does not include other criteria of data
quality (Ghent, 2017). Note that in this study, only the valid
SMAP pixels (with valid SMAP SM retrievals) were considered in
the computation of gap percentages within the disaggregated
images so that the computed data gaps correspond to the actual
cloud cover on optical images, plus the SMAP pixels with a cloud
cover larger than a threshold value of 50% over which
disaggregation is not applied.

Figure 5 shows a qualitative analysis between MODIS-based
(left) and Sentinel-3-based (right) DISPATCHveg–ext

disaggregated SM images on DOY 204 for 2018 over the
MODIS tile H18V04. A large data gap can be seen in the
MODIS-based disaggregated SM image due to cloud cover.
Most of these voids are filled by using Sentinel-3 LST in the
disaggregation of SM products, thereby significantly
increasing the spatial coverage of disaggregated SM. In our
study, the cloud cover percentage is analyzed by calculating the
valid pixels in the 1 km resolution disaggregated SM images
using Sentinel-3 LST and MODIS LST as an input. Such an
analysis is undertaken for data in 2018 over two distinct
extents: the MODIS tile H18V04 and ICOS study area. It is
observed that there is an increase in the number of valid pixels
from 21% in MODIS LST disaggregated SM to 65% in Sentinel-
3 LST disaggregated SM for MODIS tile H18V04 for 2018.
Similarly, there is an increase in the number of valid pixels
from 40% in MODIS LST disaggregated SM to 92% in Sentinel-
3 LST disaggregated SM for ICOS study areas for 2018. We
assume that the reason for the increase in spatial coverage is
the overpass time of Sentinel-3 (9:30 am), which is earlier than
MODIS Terra (10:30 am).

Further quantitative analysis is done in order to analyze the
performance of disaggregated SM using Sentinel-3 instead of
MODIS LST. Figure 6 shows a scatterplot between disaggregated
SM products using Sentinel-3 LST and MODIS LST as an input
for Auradé (ICOS), BA (dryland) and L03 (REMEDHUS) sites
separately. Both datasets are significantly correlated with an
average overall correlation coefficient of about 0.7. The mean
bias (MB) is very small (0.01 m3/m3) between both products,
given that they both rely on the same LR SMAP observations. It is
observed that the range of SM values is similar in both products so
that the main difference remains the spatial coverage, which is
significantly larger for Sentinel-3 LST data.

3.4 Accuracy of DISPATCH Relative to
Copernicus Sentinel-1 and SMAP/S1 SM
Data
Sentinel-1 radar data are not affected by clouds. The objective
here is to compare the DISPATCHveg–ext and Copernicus
Sentinel-1 and SMAP/S1 1 km resolution SM data sets in
terms of 1) the number of valid pixels and 2) their accuracy at
all the validation sites of the three study areas.

FIGURE 6 | Scatterplot between Sentinel-3 and MODIS-based 1 km
resolution disaggregated SM at Auradé (ICOS) site, 2018 (A); BA (dryland)
site, 2019 (B) and L03 (REMEDHUS) site, 2017 (C).
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Figure 7 compares DISPATCHveg–ext disaggregated SM,
Copernicus SM, and SMAP/S1 SM data on DOY 202, 2018
over the MODIS tile H18V04. It is clear from the visual
comparison that, on one hand DISPATCH and Copernicus
data have their spatial coverage limited due to cloud cover and
Sentinel-1 field of view, respectively. On the other hand, the
spatial coverage of SMAP/Sentinel-1 L2 product, which combines
both SMAP and Sentinel-1 data, is determined by the field of view
overlap at the concurrent overpass time of Sentinel-1 and SMAP.
Tables 3–5 report the number of DISPATCH, Copernicus and
SMAP/S1 observations concurrent with the in situ SM

measurements collected at each monitoring station. The
number of valid retrievals for DISPATCHveg-ext is 22% (50%)
larger for the temperate study area and 57% (72%) larger for both
semi-arid study areas as compared to Copernicus (and SMAP/S1)
products, respectively.

Table 4 presents the correlation (R), slope of the linear
regression (Slope), mean bias (MB) and RMSD between
Copernicus Sentinel-1-based SM and in situ SM. It is
reminded that for statistical comparison, Copernicus Sentinel-
1 SM (%) is converted into volumetric SM (m3/m3) from Eq. 5.
Statistical results in Tables 3 and 4 used to quantitatively assess

FIGURE 7 | SM images at 1 km resolution from DISPATCHveg–ext (A), Copernicus Sentinel-1 (B), SMAP/S1 (C) on DOY 204, 2018.

TABLE 4 | Statistical results in terms of correlation (R), slope of the linear
regression (Slope), mean bias (MB) and RMSD between Copernicus Sentinel-1
1 km resolution satellite product and in situ SM.

Network Site Year Copernicus Sentinel-1

NR R (–) Slope
(–)

MB
(m3/
m3)

RMSD
(m3/
m3)

ICOS Auradé 2017 155 0.28 0.60 0.04 0.11
2018 134 0.27 0.45 0 0.11

Lamasquère 2017 108 0.35 0.86 0.02 0.10
2018 79 0.31 0.44 −0.01 0.09
All 119 0.30 0.59 0.01 0.10

Dryland BA 2019 40 0.54 0.48 −0.08 0.11
GA 40 0.32 0.33 −0.04 0.09
HA1 40 −0.03 −0.02 −0.10 0.13
HA2 40 0.18 0.16 0.06 0.08
PM 39 0.50 0.43 −0.04 0.06

All 40 0.30 0.28 −0.04 0.09
RHEMEDUS K13 2017 117 0.23 0.31 0.04 0.10

K10 115 0.40 1.37 −0.09 0.12
M05 114 0.34 0.57 −0.05 0.09
N09 115 0.51 0.69 0.01 0.07
I06 61 0.14 0.80 −0.11 0.13
M09 115 0.30 0.52 −0.04 0.09
F06 61 0.32 0.33 −0.01 0.09
H13 61 0.69 1.43 −0.02 0.07
L03 113 0.33 0.96 −0.07 0.10
O07 114 0.46 1.04 −0.10 0.12
K04 115 0.37 1.86 −0.13 0.15
L07 115 0.25 0.37 −0.03 0.09
F11 61 0.65 1.42 −0.09 0.12

All 98 0.38 0.90 −0.05 0.10

NR, Number of retrieval.

TABLE 5 | Statistical results in terms of correlation (R), slope of the linear
regression (Slope), mean bias (MB) and RMSD between SMAP/S1 1 km
resolution satellite product and in situ SM.

Network Site Year SMAP/S1

NR R
(–)

Slope
(–)

MB
(m3/
m3)

RMSD
(m3/m3)

ICOS Auradé 2017 104 0.22 0.21 0.05 0.08
2018 101 0.37 0.54 0.02 0.09

Lamasquère 2017 89 0.37 0.47 0.05 0.07
2018 86 0.51 0.63 0.07 0.10
All 95 0.37 0.47 0.05 0.09

Dryland BA 2019 32 0.82 0.77 −0.01 0.04
GA 32 0.69 0.68 −0.03 0.06
HA1 32 0.76 0.81 −0.07 0.09
HA2 32 0.75 0.61 −0.04 0.05
PM 31 0.70 0.72 −0.04 0.06

All 32 0.74 0.72 −0.04 0.06
RHEMEDUS K13 2017 107 0.53 0.42 0.09 0.11

K10 106 0.51 1.01 −0.05 0.07
M05 109 0.64 0.74 0 0.04
N09 105 0.47 0.34 0.09 0.11
I06 109 0.54 2.25 −0.08 0.09
M09 73 0.57 0.62 0.04 0.06
F06 74 0.70 0.46 0.06 0.08
H13 72 0.74 0.90 0.03 0.05
L03 108 0.67 1.48 −0.01 0.05
O07 99 0.63 0.75 −0.02 0.04
K04 109 0.51 1.83 −0.09 0.11
L07 107 0.63 0.67 0.06 0.08
F11 75 0.76 1.47 −0.06 0.08

All 96 0.61 0.99 0.01 0.08

NR, Number of retrieval.
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the performance of DISPATCHveg–ext relative to the Copernicus
SM retrieval approach. The correlation between satellite and in
situmeasurement is generally closer to 1 for DISPATCH than for
Copernicus product ranging from 0.39 to 0.80 and from −0.03 to
0.69, respectively. The poorer statistics for the Copernicus
Sentinel-1-based SM can be attributed to two factors. In
temperate regions, the vegetation cover with a leaf area index
larger than 0.6 is likely to drastically reduce the sensitivity of
C-band backscatter to SM. In semi-arid regions, the effective soil
roughness seen by active sensors has been shown to increase in
dry conditions due to volume scattering (Escorihuela and
Quintana-Seguí, 2016; Ojha et al., 2020), thus artificially
increasing the Sentinel-1-retrieved SM. As an illustration of

both possible effects, Figure 8 presents a scatterplot of
DISPATCHveg–ext vs. in situ SM and of Copernicus vs. in situ
SM for Auradé (ICOS), HA1 (dryland) and L03 (REMEDHUS)
sites separately. In particular, the bi-modal behavior of the
Sentinel-1-retrieved SM can be attributed to volume scattering
in very dry conditions. It can be the reason for the negative
correlation and slope of Copernicus Sentinel-1 based SM for HA1
site. The limitation of the bi-modal behavior of Copernicus
Sentinel-1 based SM for dryland areas is overcome by
DISPATCHveg–ext algorithm and exhibits a better
representation of SM at 1 km resolution.

The performance of optical-based (DISPATCH) and radar-
based (SMAP/S1) SMAP disaggregated SM products is assessed

FIGURE 8 | Scatterplot of Copernicus Sentinel-1 vs. in situ SM (left) and DISPATCHveg–ext vs. in situ SM (right) for Auradé (ICOS) site, 2018 (A,B); HA1 (dryland)
site, 2019 (C,D) and L03 (REMEDHUS) site, 2017 (E,F).
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by the statistical comparison presented in Tables 3 and 5. The
correlation between satellite and in situ measurements is in the
range of 0.39–0.80 and 0.22–0.82 for DISPATCH and SMAP-S1
product, respectively. The overall statistical difference between
SMAP/S1 and DISPATCH 1 km disaggregated products is
relatively small for all three study areas. DISPATCH and
SMAP/S1 perform well over the dryland semi-arid sites with a
mean correlation larger than 0.7 with however, a significant
negative bias (−0.04 m3/m3) on SMAP/S1. The statistical metrics
for SMAP/S1 are slightly poorer as compared to DISPATCH in the
temperate study area. This could be explained by a lower sensitivity
to SM of SMAP/S1 product over vegetated areas where the
vegetation water content is greater than 3 kg/m2 (Das et al.,
2019). Nonetheless, the performance of both disaggregated
products over all three study areas remains rather similar and
the main advantage of DISPATCH compared to the official SMAP
product is the larger spatio-temporal coverage. SMAP/S1 1 km
product is limited by the temporal frequency of Sentinel-1 with an
interval of 6 days in Europe.

4 CONCLUSION

DISPATCH is a well-known optical/thermal-based disaggregation
method of passive microwave-derived SM data. It is usually
implemented using MODIS LST/NDVI and SMOS/SMAP SM
data to provide 1 km resolution disaggregated SM images. The
application of DISPATCH to large areas at high frequency is
however limited by 1) the loss of sensitivity of LST to the surface
SM over densely vegetated areas and 2) the unavailability of optical
data under cloud cover. To improve the spatio-temporal coverage of
1 km resolution DISPATCH SM data, a new algorithm named
DISPATCHveg–ext algorithm is proposed. DISPATCHveg–ext differs
from DISPATCHclassic in mainly one aspect: the use of TVDI in the
DISPATCH downscaling relationship to apply the disaggregation to
densely vegetated areas. Moreover, DISPATCHveg–ext is tested using
Sentinel-3 LST instead of MODIS LST as input, in order to assess the
impact of the thermal observation time on the output data gaps due to
cloud cover. This approach is evaluated by comparing the
disaggregated SM with in situ measurements over a temperate
and two semi-arid regions.

First, the comparison is done between DISPATCHclassic and
DISPATCHveg–ext disaggregated SM at 1 km resolution. Visual
analysis indicates a significant increase in the spatial coverage of
DISPATCHveg–ext disaggregated SM images due to the inclusion
of densely vegetated areas. In addition, the temporal correlation
between satellite and in situ SM is increased by 9% and the RMSD
is decreased by 6% in the temperate region. Similarly, for the
semi-arid regions, the temporal correlation is increased by 7–8%
and the RMSD is decreased by 6–18%. Furthermore, the use of
EVI instead of NDVI improves the robustness of the
disaggregated SM over vegetated areas by increasing the
correlation by 7% over the temperate region and by up to 4%
over the semi-arid regions.

Second, the use of Sentinel-3 LST (09:30 am overpass) in place of
MODIS LST (10:30 am and 1:30 pm overpass) to disaggregate SM at
1 km resolution very significantly increases the spatial coverage of

disaggregated SM at 1 km resolution. Both MODIS- and Sentinel-3-
based disaggregated SM data sets are found to be significantly
correlated. However, as a caveat, one should keep in mind that
the overpass time of thermal data is a compromise between 1) the
overall cloud cover, whichmay be less early in themorning but also 2)
the coupling between LST and SM, which is stronger at solar noon.
Instead of polar orbit satellites, geostationnary satellites have been also
used to downscale SMOS SM data (Piles et al., 2016; Tagesson et al.,
2018). The point is that the currently available geostationary thermal
sensors have a spatial resolution of about 2–3 km at nadir,
corresponding to a resolution of 4–5 km at the latitudes of our
study areas. In the future, the possible advent of high-resolution
geostationary thermal infrared satellites will be very useful in
DISPATCH to significantly reduce the gaps in disaggregated SM
images due to cloud cover.

Third, the accuracy of DISPATCHveg–ext is evaluated by
comparison with Copernicus Sentinel-1 SM and SMAP/S1 SM
products separately, which both have the same (1 km) spatial
resolution. DISPATCHveg–ext is generally more accurate than the
Copernicus product and its spatio-temporal coverage is
significantly larger than that of SMAP/S1 product. Such a
comparison opens up a new research towards the
development of synergies between thermal-based
(DISPATCH) and Sentinel-1-based SM (Amazirh et al.,
2019). The high spatio-temporal resolution together with
the all-weather capability of Sentinel-1 data are essential
assets for that purpose. In particular, the SMOS/SMAP SM
can be disaggregated at 100 m resolution using DISPATCH
and Landsat thermal data (Ojha et al., 2019). At such high
spatial resolution however, the revisit time of current thermal
sensors is relatively long (16 days for Landsat). Therefore, the
synergy between DISPATCH and Sentinel-1 data is expected
to be very useful at high spatial resolution, especially before the
advent of future thermal missions like TRISHNA (Lagouarde
et al., 2019) and LSTM (Koetz et al., 2018).
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5.1 Introduction

The DISPATCHveg−ext algorithm developed in the previous chapter is originally applied to
SMOS or SMAP soil moisture (SM) data using the 1 km resolution MODIS optical/thermal
data as ancillary information. In this configuration, DISPATCH thus provides SM data at 1 km
resolution on a daily temporal scale. SM data sets at 1 km resolution can be used for different
applications such as evapotranspiration monitoring, retrieving soil properties, root-zone SM es-
timation, and other hydrological purposes. But a 1 km SM resolution product is not sufficient
for many agricultural applications such as early crop detection, yield estimation, water stress
detection, irrigation scheduling, and fine scale hydrological purposes such as flood forecasting,
drought monitoring, groundwater level assessment. Therefore, SM data are required at a higher
resolution to be useful for a wider variety of applications.

Currently, there exist few thermal sensors that collect land surface temperature (LST) data at
high – typically 100 m – resolution, especially Landsat and Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER). Still, the DISPATCH algorithm is commonly applied
to daily global coverage MODIS thermal data, but there is no routine application that can di-
rectly apply the DISPATCH algorithm to the Landsat data to provide SM at 100 m resolution
(Merlin et al., 2009, 2013). In particular, a few challenges need to be addressed before extending
the DISPATCH algorithm to 100 m resolution: 1) Landsat does not provide daily global cover-
age like MODIS data, so a stepwise approach is required to define each Landsat scene separately
over the 1 km disaggregated SMOS/SMAP data, and 2) the contextual nature of DISPATCH
depends on the extreme wet and dry edges within the SMOS/SMAP pixel, and the accuracy of
temperature endmembers is expected to vary with the spatial extent over which the DISPATCH
algorithm is applied and 3) the presence of boxy artifacts that occur due to the combination of
multi-resolution datasets.
The 100 m SM resolution product is evaluated over the R3 irrigated agricultural region for 22 ir-
rigated crop fields. The output product is analyzed on 5cm surface SM during the season of 2016.

Chapter splits into three sections: 1) describing the overall methodology to overcome the issues
mentioned above 2) presenting the practical algorithm to achieve the 100 m resolution from
SMAP, MODIS, and Landsat data introducing an optimal intermediate spatial resolution (ISR)
3) validating the 100 m resolution SM product with available in situ SM measurements.
The 100 m resolution SM data set is evaluated over the R3 irrigated district near Marrakech
(Morocco) for 22 irrigated crop fields.
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5.2 Implementing a new DISPATCH algorithm at 100 m resolution

The methodology applied for the DISPATCH algorithm at 1 km resolution is not fully applicable
at 100 m resolution. The main difference encountered while increasing the spatial resolution to
100 m is : 1) the LST value range increases with spatial resolution as the heterogeneity of the
land surfaces increases, and the temperature endmembers estimation should be adapted to such
conditions, 2) a robust representation of the SEE model is needed to cover at such high resolution
the full range of SM values from residual to saturation. Hereafter, the new algorithm developed
at 100 m resolution will be named DISPATCH100m.

To better estimate wet and dry edges, the algorithm described in Tang et al. (2010) is used to
remove outliers from the LST-fvg graph. First, the algorithm iteratively processes each pixel and
finds the maximum temperature for each fvg interval. Then, the highest temperature of each fvg
interval is linearly approximated to estimate the dry edge. The wet edge is calculated similarly
to the dry edge by removing outliers on the lower end. This method removes the isolated points
with abnormally high/low LST and provides a more robust representation of wet edge and dry
edge.

A visual representation of the calculation of temperature endmembers for the DISPATCHveg−ext

and for the DISPATCH100m algorithm, both applied at 100 m resolution, is shown in Figure 5.1.
For DISPATCHveg−ext, the temperature endmembers are calculated from the maximum and
minimum temperatures within a given SMAP pixel. Note that wet edge and dry edges are com-
puted for each SMOS or SMAP pixel individually. On the one hand, if the DISPATCHveg−ext

algorithm was used to calculate temperature endmembers at 100 m resolution, it is evident from
Figure 5.1 that the dry edge would be overestimated, and wet edge would be underestimated.
On the other hand, the DISPATCH100m algorithm calculates the temperature endmembers by
removing the outliers, and hence the computed temperature endmembers look more accurate for
estimating the wet and dry edges to be used by DISPATCH.

The linear SEE(SM) model was a suitable approximation for DISPATCHclassic when applied
at the 1 km resolution. As we increase the spatial resolution to 100 m, the spatial heterogeneity
will increase, and the linear relationship of SEE with SM will not cover such a large spatial
heterogeneity. So, a non-linear, more physically-based model of SEE is proposed (Komatsu,
2003; Merlin et al., 2016). When replacing the SEE model in DISPATCH, it is crucial to check
the new model’s performance compared to the old model. For this, the correlation coefficient
and slope between high-resolution Landsat-derived SEE and in situ SM are estimated for both
models separately (shown in Figure 5.2). The correlation coefficient and slope of the linear SEE
model are 0.87 and 0.17, and for the non-linear SEE model, it is 0.87 and 0.41, respectively. It is
observed that correlation coefficient is similar in both cases, but the slope significantly decreases
for the linear case. The results are entirely compatible with using a non-linear model for SEE at
100 m resolution.
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Figure 5.1: DISPATCHveg−ext and DISPATCH100m algorithms calculate the wet and dry
edges in Land surfacte temperature-fractional vegetaion feature space for 100 m resolution Land-
sat data.
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Figure 5.2: Landsat-derived SEE as a function of in situ SM superimposed with the SEE(SM) and
SEE(LST) models for both linear and non-linear SEE models derived from DISPATCHclassic

and DISPATCH100m algorithms separately.
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5.3 Practical algorithm to bridge the gap between SMAP and Landsat
resolution

Once the above modifications for the DISPATCH algorithm are in place, may run the new algo-
rithm to disaggregate the low (40 km) resolution SM to high (100 m) resolution SM. However,
the gap between the low and high resolutions becomes enormous, which is expected to deteriorate
the disaggregation output. This is especially true because of the non-linear relationship between
SEE and SM. So to overcome this limitation, a new methodology is introduced based on a two-
step downscaling algorithm (shown in Figure 6.1). The two steps downscaling algorithm are
carried out in different phases. At first, SMOS/SMAP SM at 40 km resolution is disaggregated
to 1 km resolution using MODIS LST/NDVI at 1 km resolution. Then, the 1 km disaggregated
SM product is further aggregated at different intermediate spatial resolutions (ISR) (from 1 km
to 40 km). DISPATCH100m algorithm is next applied to the ISR SM pixel to provide a SM
image disaggregated at 100 m resolution. An intermediate step is added after the aggregation
step to derive several (number N) ISR pixels that partially overlap to reduce the boxy artifact
effects in the 100 m resolution disaggregated image. Various ISR grids are made from the 1
km resolution data by displacing the ISR grid in different directions, where N is decided by the
number of displacements. The DISPATCH algorithm is finally applied using Landsat LST and
NDVI data to each N number ISR SM image separately to provide SM at 100 m resolution. All
the N disaggregated images are averaged and composited to the single image, which is the final
output of the DISPATCH100m process.

It is worth mentioning that the ISR is also useful due to the contextual nature of the LST-fvg
graph. Based on the contextual approach, the DISPATCH algorithm calculates the temperature
endmembers from the LST-fvg graph. Thus, the temperature endmembers depend on surface
heterogeneity present within the corresponding area, which varies with the spatial extent of that
area. Since the spatial extent of the second phase of the disaggregation step is dependent on
the ISR resolution, selecting an optimal ISR is necessary for the accuracy of the disaggregated
SM. To be specific, if we increase the ISR, the heterogeneity of the land surface will increase.
Hence, the calculation of the temperature endmembers will be more accurate when considering
the heterogeneity issue. However, the ISR value is also a compromise with the spatial hetero-
geneity of the meteorological forcing, given that contextual methods assume uniform atmospheric
conditions within the study extent.

To better understand how the LST-fvg graph behaves for different ISR values, Figure 5.4 illus-
trates the results for different ISR values: 1 km, 3 km, 5 km, 10 km, and 30 km. It is seen from
the graph that the range of LST and fvg values increase with the increase in ISR (spatial extent)
because of the increase in spatial variability. The mean LST values for smaller ISR values are
likely to be biased, which would induce biases in SEE/TDVI estimates and subsequently in dis-
aggregated SM values. More uncertainty will be observed in the wet and dry edges if we decrease
the spatial extent. Nevertheless, if we increase the spatial extent too much, the spatial variability
of meteorological conditions may reach the critical level and invalidate the contextual nature of
DISPATCH. The constraints (accuracy of temperature endmembers and the gap between low
and high resolutions) represent an essential rationale for selecting a sequential method between
40 km and 100 m resolutions.
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Figure 5.3: Flowchart of the two-step downscaling approach from 40 km resolution to 1 km
(DISPATCHveg−ext), from 1 km to ISR (aggregation to variable ISR), and from ISR to 100 m
(DISPATCH100m)
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Figure 5.4: The LST-fvg feature space graph is represented for an ISR pixel of 30 km, 10 km, 3
km and 1 km for Landsat LST and fvg data at 100 m resolution.

5.4 Selecting an optimal intermediate spatial resolution and evaluating

DISPATCH at 100 m resolution

A sensitivity analysis is done for different ISR values to understand the importance of ISR in
the DISPATCH algorithm and to assist in selecting an optimal ISR in terms of disaggregation
accuracy at 100 m resolution. Different ISR ranging from 1 km to 30 km (obtained from the
1 km SM product) are separately used as input, and the DISPATCH100m output results are
evaluated to find the optimal ISR. The sensitivity is evaluated with in situ SM of R3 irrigated
areas for 22 parcels on day of year (DOY) 6, 14, 30, 38, 62, and 78 of 2016. The DOY is selected
based on the availability of the in situ SM data and the overpass dates of Landsat. Statistical
analysis is performed (illustrated in Figure 5.5) by considering correlation coefficient (R), the
slope of the linear regression (slope) root mean square difference (RMSD), and absolute mean
bias (Absolute MB) between disaggregated and in situ SM. It is observed that the temporal
variability of R and slope is more prominent for lower ISR, a negative slope is observed for
ISR lower than 5 km, and a positive slope is observed for ISR greater than 10 km. From day-
to-day spatial variability, it is observed that R increases from ISR 1 km to 5 km, and then it
becomes constant until 30 km while the slope decreases with the increase in ISR from 10 to 30 km.

The slope of linear regression is a good indicator of disaggregation efficiency. The reduction in
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Figure 5.5: Correlation coefficient (R), slope of the linear regression (slope), absolute mean bias
(Absolute MB) and root mean square difference (RMSD) between 100 m resolution disaggregated
and in situ SM for a range of ISR values (from 1 km to 30 km) for SMAP (left) and SMOS (right)
data and for each sampling date separately.

the linear regression slope can be explained by the gap between high and low resolutions. As the
gap increases, the disaggregation efficiency decreases. Another key observation from the Figure
5.5 is that MB increases with the increase in ISR, representing the worsening of the disaggrega-
tion performance. These factors prohibit the use of high and low values of ISR in DISPATCH
algorithms. Hence based on this statistical analysis ISR, 10 km shows an optimal ISR for the
downscaling algorithm.

ISR is thus set to 10 km, and the two-step downscaling is performed to disaggregate the 40 km
resolution SMOS/SMAP pixel to 100 m resolution using Landsat optical/thermal data for each
sampling date. The statistical comparison between 100 m resolution disaggregated and in situ
SM is reported in Table 5.1.

The statistical comparison between 100 m disaggregated SM products and in situ SM mea-
surements shows that the DISPATCH100m SM output product is able to capture the spatial
heterogeneity that occurs in agricultural areas, illustrated by the significant spatial correlation
coefficient (0.57 to .87). Statistical analysis in general shows that the DISPATCH-100m algo-
rithm performs better when the sub-pixel variability is larger than 0.06 m3/m3.
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Day of
year

(DOY)
SMAP SMOS

R
(-)

Slope
(-)

Absolute
MB

(m3/m3)

RMSD
(m3/m3)

R
(-)

Slope
(-)

Absolute
MB

(m3/m3)

RMSD
(m3/m3)

6 0.57 0.24 0.05 0.14 - - - -

14 0.87 0.44 0.03 0.06 0.87 0.41 0.05 0.07

30 0.72 0.44 0.14 0.15 0.72 0.12 0.28 0.29

38 0.11 0.07 0.02 0.07 0.11 0.05 0.07 0.09

62 0.16 0.14 0.002 0.31 - - - -

78 0.49 0.40 0.02 0.08 0.49 0.46 0.01 0.08

All 0.55 0.34 0.05 0.09 0.55 0.26 0.10 0.13

Table 5.1: Statistical results in terms of correlation coefficient (R), slope of the linear regression,
absolute mean bias (MB) and root mean square difference (RMSD) between 100 m resolution
disaggregated and in situ SM using an ISR set to 10 km (single grid) and SMAP and SMOS data
as input separately.
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5.5 Conclusion

A stepwise sequential downscaling approach is developed to disaggregate 40 km resolution SMAP/SMOS
SM to 100 m resolution using the DISPATCH algorithm and Landsat LST/NDVI data. At first,
the 40 km resolution SM is disaggregated to 1 km resolution using MODIS LST/NDVI and
DISPATCHveg−ext. Then the 1 km downscaled SM product is aggregated to an ISR. Further,
the aggregated ISR SM is disaggregated to 100 m resolution using Landsat LST/NDVI, and a
new algorithm (DISPATCH100m) adapted to the high variability encountered at 100 m reso-
lution. Especially, the DISPATCH100m algorithm suggests two enhancements to the existing
algorithms so that it can be applicable at high resolution: 1) by using a non-linear SEE as a
function of SM to cover the full range of SM values 2) by improving the estimation of tempera-
ture endmembers for the calculation of wet edge and dry edges by removing outliers in LST data.

By using the distributed in situ SM measurements collected over the R3 perimeter, it was pos-
sible to identify an optimal ISR value, which maximizes the statistical disaggregation results.
The better results are obtained for an ISR set to 10 km and when the spatial variability is larger
significant than 0.06 m3/m3. Since the improved algorithm uses Landsat optical/thermal data
as one of its inputs, the algorithm is prone to loss in spatial extent due to cloud cover and the
long repeat cycle (16 days)of Landsat. Two different and complementary strategies are proposed
to overcome this limitation by building a synergy with radar data (Chapter 6) and developing a
coupled disaggregation-assimilation scheme in a dynamical SM model (Chapter 7).

5.6 Article : Stepwise disaggregation of SMAP soil moisture at 100

m resolution using Landsat-7/8 data and a varying intermediate

resolution

1. Ojha, N., Merlin, O., Molero, B., Suere, C., Olivera-Guerra, L., Ait Hssaine, B., Amazirh,
A., Al Bitar, A., Escorihuela, M.J. and Er-Raki, S., 2019. Stepwise disaggregation of
SMAP soil moisture at 100 m resolution using Landsat-7/8 data and a varying intermediate
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Abstract: Global soil moisture (SM) products are currently available from passive microwave sensors
at typically 40 km spatial resolution. Although recent efforts have been made to produce 1 km
resolution data from the disaggregation of coarse scale observations, the targeted resolution of
available SM data is still far from the requirements of fine-scale hydrological and agricultural studies.
To fill the gap, a new disaggregation scheme of Soil Moisture Active and Passive (SMAP) data is
proposed at 100 m resolution by using the disaggregation based on physical and theoretical scale
change (DISPATCH) algorithm. The main objectives of this paper is (i) to implement DISPATCH
algorithm at 100 m resolution using SMAP SM and Landsat land surface temperature and vegetation
index data and (ii) to investigate the usefulness of an intermediate spatial resolution (ISR) between
the SMAP 36 km resolution and the targeted 100 m resolution. The sequential disaggregation
approach from 36 km to ISR (ranging from 1 km to 30 km) and from ISR to 100 m resolution is
evaluated over 22 irrigated field crops in central Morocco using in-situ SM measurements collected
from January to May 2016. The lowest root mean square difference (RMSD) between the 100 m
resolution disaggregated and in-situ SM is obtained when the ISR is around 10 km. Therefore,
the two-step disaggregation is more efficient than the direct disaggregation from SMAP to 100 m
resolution. Moreover, we propose a moving average window algorithm to increase the accuracy
in the 100 m resolution SM as well as to reduce the low-resolution boxy artifacts on disaggregated
images. The correlation coefficient between 100 m resolution disaggregated and in situ SM ranges
between 0.5–0.9 for four out of the six extensive sampling dates. This methodology relies solely on
remote sensing data and can be easily implemented to monitor SM at a high spatial resolution over
irrigated regions.

Keywords: disaggregation; soil moisture; DISPATCH; Intermediate spatial resolution; SMAP

1. Introduction

Knowledge of soil moisture provides key information about the coupling between the land
surface and atmosphere. By controlling the partitioning of water inputs (precipitation, irrigation) into
evaporation, infiltration, and runoff, the soil water content is related to the crop water consumption [1],
hydrological fluxes [2], weather predictions [3] and climate projections [4].
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L-band (1.4 GHz) microwave radiometry is currently the most adapted remote sensing technique
for the estimation of near-surface soil moisture (SM) from space [5–10]. Microwave observations at
L-band, as compared to higher microwave frequencies, are more sensitive to SM and less sensitive to
the soil surface roughness and vegetation optical depth [11]. In this context, European Space Agency
(ESA) and National Aeronautics and Space Administration (NASA) have launched the SMOS [6,12]
and SMAP [5] satellites in 2009 and 2014, respectively. Both satellites embark an L-band radiometer to
retrieve the 3–5 cm SM with a repeat cycle of less than 3 days globally. The spatial resolution of both
radiometers is approximately 40 km [5,6].

Despite the high radiometric accuracy achieved by L-band radiometers, the data provided globally
have a low spatial resolution, which makes the validation of remote sensing products difficult and
limits their application to large scale studies only [13]. For hydro-agriculture purposes, there is
a crucial need for SM data at a higher spatial resolution [14,15]. Consequently, disaggregation
techniques have been proposed to improve the spatial resolution of the SM data available at a high
temporal frequency [16–22]. Existing downscaling methods for SM can be classified into three major
groups (1) satellite-based methods; (2) methods using Geo-information data and (3) model-based
methods [23,24]. The satellite methods combine the use of radar and optical data to coarse scale
microwave radiometry [24]. Among optical-based methods, many studies have used as fine-scale
information the fractional vegetation cover and land surface temperature (LST) derived from
high-resolution (1 km to 100 m) optical/thermal sensors. The general idea of these methods is
to relate LST to SM via the evapotranspiration process [20,25].

Relying on this principle, the disaggregation based on physical and theoretical scale change
(DISPATCH) method [26,27] estimates the soil evaporative efficiency (SEE defined as the ratio of actual
to potential soil evaporation), and implements a downscaling relationship that links the disaggregated
SM to the low-resolution (LR) observation and the high-resolution (HR) SEE. The optical-derived
SEE is expressed as a linear function of the retrieved soil temperature [28] and the minimum and
maximum soil temperatures observed at HR within the LR pixel [26], according to the so-called
contextual approach [29]. Based on the DISPATCH algorithm, the CATDS Level-4 Disaggregation
(C4DIS) processor [30] was implemented at the Centre Aval de Traitement des Donnees SMOS (CATDS)
as a level 4 product. C4DIS produces 1 km resolution SM data at the quasi-global scale from SMOS
level 3 and Moderate resolution Imaging Spectroradiometer (MODIS) data.

The 1 km resolution SM disaggregated from SMOS produts are currently used in a range
of disciplines including root-zone soil moisture monitoring [31], detecting irrigated areas at the
perimeter scale [32,33], retrieving soil properties from space [34], preventing the spread of desert
locust swarms [35], evapotranspiration monitoring over rainfed areas [36], flood forecasting over large
basins [37], estimating crop yield [38], and the methods to produce them are continuously evolving
and maturing (Merlin et al. 2017). Note that few studies have applied the DISPATCH method to
SMAP SM using MODIS data [39]. However, the 1 km resolution is often insufficient for many other
fine-scale applications and areas where the surface is highly heterogeneous (e.g., [1]). SM data at the
sub-kilometric (typically hectometric) resolution are especially required in agriculture for early crop
detection, irrigation scheduling, water stress and yield monitoring [40] and in fine-scale hydrological
studies for flood risk prevention, drought monitoring and groundwater level assessment [41],
among other potential applications.

In fact, there is still no routine application of DISPATCH to Landsat data, which yet would be
useful to increase the spatial resolution of available SM products up to 100 m [27,42]. One difficulty
is that Landsat data do not provide global coverage at the daily scale (like MODIS data) so that
a sequential approach is needed to “delineate” the 1 km resolution disaggregated SMAP data over each
Landsat scene separately before DISPATCH can be implemented at 100 m resolution. Another difficulty
is the contextual nature of DISPATCH, which relies on the extreme wet and dry conditions present
within the LR pixel to calibrate the SEE model. Especially, the accuracy in temperature endmembers
is expected to vary with the spatial extent over which DISPATCH is applied. A third difficulty is the
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presence of boxy artifacts visible at LR when combining multi-source/multi-resolution remote sensing
data within a disaggregation methodology. Boxy artifacts are common problems with downscaling
methods [26,27,43].

In this context, this paper presents a new methodology to disaggregate optimally the 36 km
resolution SMAP SM to 100 m resolution using Landsat data. The main objective is to assess the
usefulness of an optimal intermediate spatial resolution (ISR) between the SMAP and Landsat
resolutions. In practice, the 1 km resolution SM disaggregated from SMAP data using MODIS data
(similar to C4DIS product for SMAP) is aggregated at ISR ranging from 1 km to 30 km, and DISPATCH
is applied to ISR SM. The novelty of this paper thus lies in: (1) the application of DISPATCH to SMAP
data at 100 m resolution, (2) the use of an ISR between SMAP and Landsat resolutions and (3) the
removal of boxy artifacts on the 100 m resolution disaggregated images using a new technique.

Herein, the stepwise disaggregation approach is tested over an experimental area in central
Morocco, comprised of 22 irrigated field crops over which the 0–5 cm SM has been monitored during
the 2015–2016 season.

2. Materials and Methods

2.1. Study Area

The study focuses on a 30 km by 30 km area of the R3 irrigated zone (31.70N, 7.35W) located 40 km
east of Marrakesh city in the Haouz plain, central Morocco (see Figure 1). To assess the performance of
DISPATCH at the 100 m resolution, a set of 22 irrigated wheat fields, covering 3–4 ha each (Figure 1),
were selected within a 1 km resolution MODIS pixel. SM sampling was undertaken on clear sky
dates with almost simultaneous SMAP/MODIS/Landsat data over the 22 crop fields and repeated
measurements were made along the agricultural season to cover all the phenological stages of wheat.
Climate of the study area is mainly semi-arid with an annual average precipitation of 250 mm [44,45].
The soil texture in the R3 perimeter is mainly clayey. Flood irrigation is the most widely used method
in this district. Wheat is generally sown in November-December and a mean total of 6 irrigations is
applied to wheat crops from February till April, typically every 3 weeks. Harvesting is done in late
May or early June [46,47].

Marrakesh

NDVI 
(-)

30 km

22 experimental
�elds

R3

Figure 1. Location of Marrakesh, the Haouz plain in central Morocco and the 22 experimental crop
fields in the R3 perimeter.

2.2. In-Situ Data

The 0–5 cm SM was measured manually from January to May months during the 2015–2016
agricultural season. The sampling strategy was to use theta probes to collect 10 distinct measurements
for each of the 22 crop fields [48]. In practice, as the 22 parcels were chosen to be aligned and contiguous,
two transects along both sides of the crop fields were walked and 5 theta probes measurements
were taken on each crop side, at least 5 m from the field border. Theta probe measurements were
calibrated using the gravimetric method, based on soil samples collected on each sampling date. In this
study, the field-scale SM corresponds to the mean 0–5 cm calibrated theta probe measurements as in
Amazirh et al. [49]. Among the 7 available sampling dates, only 6 are used herein in order to satisfy the
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following criteria: SM measurements are available on a clear-sky Landsat overpass date, and the time
difference between SMAP and Landsat overpasses is one day at maximum. The clear-sky dates with
quasi-concurrent in-situ sampling and the satellite overpasses of SMAP, SMOS, MODIS and Landsat
were on DOY 6, 14, 30, 38, 62 and 78. The remaining sampling dates are suitable for our study and
help us identify the variability in SM along the growth of crops.

2.3. Remote Sensing Data

2.3.1. SMAP

SMAP was launched by NASA on 31 January 2015. SMAP is the first L-band mission combining
both radar (active) and radiometer (passive) data to provide SM at a range of resolutions from
3 km (active) to 36 km (passive) with a revisit cycle of 2–3 days. But due to the failure of the
SMAP radar, the SM produced from SMAP is currently provided on a ∼36 km and ∼9 km (by using
a re-sampling technique) resolution grid. Note that a product combining SMAP and C-Band Sentinel-1
data has been recently provided by the mission [50]. SMAP has a near-polar sun-synchronous orbit at
an altitude of 658 km with 6:00 a.m./p.m. local time descending/ascending overpass. SMAP works
on multi-polarization with a fixed incidence angle at 40 degrees and a swath of ∼1000 km [5]. In this
paper, the SMAP level-3 (product name SPL3SMP A/D, version 005, Colliander et al. [51]) is used.
The product is provided in HDF format on the version 2 cylindrical EASE grid at 36 km resolution.
Data can be downloaded from https://nsidc.org/data/SPL3SMP/versions/5.

2.3.2. MODIS

MODIS LST and NDVI data are used by the C4DIS processor [30] to provide the 1 km resolution
SM from the disaggregation of SMAP level-3 SM data. LST is extracted from version 5 MOD11A1,
Terra overpass (10:30 a.m.) on ascending node and MYD11A, Aqua overpass (1 p.m.) on descending
node. For each (ascending or descending) SMAP overpass, there are 6 MODIS LST products taken
as input to C4DIS (one day before, same day and one day after SMAP overpass for both Aqua and
Terra platforms). NDVI is extracted from version 5 MOD13, only for Terra overpass with an interval of
16 days [19,52].

2.3.3. Landsat

Landsat-7 and Landsat-8 were launched by NASA in April 1999 and February 2013, respectively.
The images were downloaded from the USGS website, which provides surface reflectance and thermal
radiances data in different spectral bands. The revisit time of each sensor is 16 days and there is an
8-day lag between Landsat-7 and Landsat-8 so that the Landsat constellation potentially provides
(in cloud-free conditions) optical/thermal data every 8 days globally. The Landsat-7/8 30 m resolution
reflectance data are aggregated at 100 m resolution and used to derive the fractional vegetation cover.
The Landsat NDVI is calculated as the ratio of the re-sampled near-infrared reflectance to re-sampled
red reflectance difference divided by their sum, and the fractional vegetation ( fv) is estimated as:

fv =
NDVIHR − NDVIs

NDVIv − NDVIs
(1)

where, NDVIHR represents the NDVI at high (100 m) resolution, NDVIs the NDVI at bare soil and
NDVIv the NDVI at full cover vegetation. For this study, NDVIs and NDVIv are set to 0.1 and 0.9,
respectively. Landsat-7 and Landsat-8 provide thermal infrared (TIR) data with a spatial resolution
of 60 m and 100 m, respectively. LST is derived by using the single channel (SC) algorithm [53] from
Landsat-7 band-6 and Landsat-8 band-7 as:

LST = γ

[
1
ε

(
ϕ1.Lsen + ϕ2

)
+ ϕ3

]
+ δ (2)
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where, ε is the surface emissitivity, (γ, δ) are parameters depending on the radiance and brightness
temperature of the Landsat thermal band and ϕ1, ϕ2, ϕ3 are atmospheric variables function of the
atmospheric water vapor content (ω) and derived from radiative transfer simulations using the GAPRI
database [54]. The ω variable is obtained from the MODIS product MOD05.

2.3.4. SRTM

SRTM (Shuttle Radar Topography Mission) 1 arc second global data are used to correct Landsat
LST for topographic effects [27]. Although the study area is rather flat, the topographic correction is
applied by default in DISPATCH. The 30 m resolution SRTM data are aggregated to 100 m resolution,
consistent with the Landsat LST resolution.

2.4. DISPATCH

2.4.1. General Equations

The main equations of the DISPATCH method implemented at both 1 km and 100 m resolutions
are reminded in this subsection. The SM downscaled at HR (refers to either 1 km or 100 m resolution)
is written as:

SMHR = SMLR +

(
δSEE
δSM

)−1

LR
∗
(

SEEHR − SEELR

)
(3)

where, SMHR represents the disaggregated SM at HR, SMLR the SM at LR (refers to either SMAP or
ISR resolution) derived from SMAP data or from their disaggregation to 1 km resolution, SEEHR the

SEE at HR derived from MODIS or Landsat, SEELR the HR SEE aggregated at LR, and
(

δSEE
δSM

)−1

LR
the inverse of the partial derivative of the SEE(SM) model evaluated at LR. SEE is assumed to follow
a linear relationship with the soil temperature [28] and is thus expressed as:

SEEHR =
Ts,dry − Ts,HR

Ts,dry − Ts,wet
(4)

where Ts is the soil surface temperature, Ts,dry and Ts,wet the soil temperature in fully dry (SEE = 0)
and water-saturated (SEE = 1) conditions, respectively. Temperature endmembers Ts,dry and Ts,wet are
calculated from a graph between LST and fv derived at HR from MODIS or Landsat data. The soil
temperature is derived from a linear decomposition of LST into soil and vegetation temperature.
The trapezoidal method [26,55] is used to estimate the vegetation temperature, and the soil temperature
is expressed as the residual term:

Ts,HR =
THR − fv,HR ∗ Tv,HR

1 − fv,HR
(5)

where THR represents the LST at HR, Tv,HR the vegetation temperature at HR and fv,HR the fractional
vegetation cover at HR.

The downscaling relationship of Equation (3) is hence based on two SEE models: SEE as a function
of SM to estimate the first derivative at LR, and SEE as a function of LST (expressed in Equations (4)
and (5)) to estimate the spatial variability of SM at HR.

2.4.2. DISPATCH at 1 km Resolution

Note that C4DIS is labeled as DISPATCHLin (for linear SEE model) in this study to distinguish the
methodologies applied at 1 km and 100 m resolution. The current version of C4DIS/DISPATCHLin
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is based on the various studies that have been done in the past using 1 km resolution MODIS data
(Merlin et al. 2013, 2012b, 2010, 2009, 2008). In DISPATCHLin algorithm, the SEE(SM) model is linear:

SEE =
SM
SMp

(6)

where, SMp is a soil moisture parameter (in soil moisture unit), which depends on soil properties and
atmospheric conditions. It is calibrated at the SMAP pixel scale at the satellite overpass time using
LR SEE and SM estimates (SMp = SMLR

SEELR
). In this case, the derivative in Equation (3) is simply SMp.

The SEE(LST) model implemented in DISPATCHLin is based on Equation (4) using the temperature
endmembers calculated by the simplest extrapolation method within the LST- fv feature space: Ts,dry
and Ts,wet are set to the maximum and minimum soil temperature within a given LR pixel.

This approach is implemented for C4DIS/DISPATCHLin and has provided favorable results at
1 km resolution for arid and semi-arid areas [26,30].

2.4.3. DISPATCH at 100 m Resolution

When applying the DISPATCH methodology at 100 m resolution over extremely heterogeneous
areas like irrigated perimeters, one expects two main differences with the 1 km case. First, the range
of LST values should increase at 100 m resolution, thereby enabling a more accurate definition of
temperature endmembers, if the effect of outliers can be removed [56]. The second difference is that
the full SM range (from the residual SM to the SM at saturation) is likely to be present within each LR
pixel. Such extreme heterogeneity requires a robust representation of the SEE(SM) relationship over
the full SM range. Especially, given that the SEE(SM) is known to be nonlinear [28,57,58], the linear
approximation made in the 1 km case (Equation (6) is no more valid. Both differences between the
100 m and 1 km case involve two changes in the disaggregation algorithm: (i) the SEE model in
Komatsu [57] replaces the linear SEE model, and (ii) the method in Tang et al. [56] is used to robustly
determine the wet and dry edges. For clarity, the implementation of DISPATCH at 100 m resolution is
labeled DISPATCHExp (for nonlinear SEE model).

In DISPATCHExp, the SEE(SM) model is expressed as [57]:

SEE = 1 − exp
(

SM
SMp

)
(7)

where SMp is calculated from LR SM (the 1 km resolution disaggregated SM aggregated at ISR) and
HR (Landsat-derived) SEE aggregated at ISR:

SMp =
SMLR

−ln
(

1 − SEELR

) (8)

Note that the derivative in Equation (3) of the SEE(SM) model of Equation (7) can be computed in
two different ways, as a function of LR SM:

(
δSEE
∂SM

)−1

LR
= SMp ∗ exp

(
SMLR
SMp

)
(9)

or as a function of LR SEE: (
δSEE
δSM

)−1

LR
=

SMp

1 − SEELR
(10)

As both expressions of the derivative are valid, the average of both estimates is implemented in
DISPATCHExp in order to stabilize the slope estimation with respect to uncertainties in both LR SM
and SEE.
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Regarding the SEE(LST) model, the algorithm in Tang et al. [56] automatically calculates the
temperature endmembers by removing outliers. It processes pixels in an iterative manner to calculate
the highest temperature for each fv interval. A linear approximation of highest temperatures is used
to estimate the dry edge. In Tang et al. [56], the wet edge is assumed to be parallel to x-axis with
constant surface temperature. Herein, a slight modification is done to estimate the wet edge similar to
the dry edge (in that case, the wet edge temperature is not kept as a constant) by removing outliers.
This process thus removes specious dry and wet points before determining the dry and wet edges and
their corresponding temperature endmembers.

Figure 2 gives an illustration of the calculation of wet and dry edges from LST- fv graph by using
two different algorithms. For DISPATCHLin, the temperature endmembers (Ts,dry and Ts,wet) are the
minimum and maximum temperature within a given SMAP pixel. Dry and wet edges are calculated
independently for every SMAP pixel in the image. It can be seen that if we apply the same algorithm
for the calculation of temperature endmembers at 100 m resolution, the temperature endmember
calculation may overestimate the dry edge and underestimate the wet edge. When removing the
outliers from the temperature endmember calculation [56], the dry and wet edges follow more closely
the contour of data points, and the estimated temperature endmembers are supposedly more accurate.

outliers

Ts,dry

s,wetT

v,wetT

Tv,dry

Figure 2. Two different algorithms to calculate the wet and dry edges of the LST-fv feature space for
100 m resolution Landsat data on DOY 38.

2.5. Sequential Downscaling

Figure 3 presents a flow chart of the sequential disaggregation in 3 successive steps. SMAP SM is
first disaggregated from 36 km to 1 km resolution using MODIS data and DISPATCHLin algorithm.
Then the 1 km resolution SM is aggregated at ISR. Next, the ISR SM is further disaggregated at 100 m
resolution using Landsat data and DISPATCHExp algorithm.
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Individually 
downscaled

multiple grids

multiple grids

Moving 
average 
window
algorithm

1 km
MODIS LST

1km
MODIS NDVI

Figure 3. Flowchart of the stepwise sequential downscaling approach from 36 km resolution to 1 km
(DISPATCHLin), from 1 km to ISR (aggregation to variable ISR), and from ISR to 100 m (DISPATCHExp).

The reason for the selection of a range of ISRs is associated with the contextual nature of
DISPATCH, which makes the determination of temperature endmembers i.e., Ts,dry and Ts,wet,
and hence the 100 m resolution Landsat-derived SEE, dependent on the spatial extent [59]. In particular,
the larger the spatial extent, the more heterogeneous the surface becomes. Therefore, the accuracy in
temperature endmembers should increase with the spatial extent, as long as the meteorological
forcing data remain relatively uniform (underlying assumption of the contextual analysis).
Therefore, an optimal ISR in terms of SM accuracy at the 100 m resolution appears to be a compromise
between (i) the accuracy in temperature endmembers and (ii) the gap between LR and HR. One major
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objective of this paper is to check the sensitivity of the sequential approach to ISR and to propose
an optimal ISR for routine application.

Figure 4 plots the LST- fv feature space obtained for 100 m resolution Landsat data collected
on DOY 38 and for 4 distinct spatial extents within the study area: 1 km, 3 km, 10 km, and 30 km.
It can be seen that the range of LST and fv values increases with the spatial extent over which the
temperature endmembers are estimated. The mean LST is also larger for the smaller ISR values;
which may induce bias in the disaggregation. If we consider that the temperature endmembers
retrieved from the 10 km pixel resemble the real dry and wet soil temperatures, then more uncertainty
can be seen while decreasing the spatial extent. An inaccurate representation of the wet/dry
and bare/vegetated soil conditions within the spatial extent (ISR pixel) will directly affect the
calculation of temperature endmembers and hence the thermal-derived SEE, and finally downscaling.
Conversely, when extending (too much) the spatial extent, the spatial variability of air temperature
(and wind speed notably) may reach a critical level that invalidates the contextual approach’s
assumption regarding the uniformity of meteorological forcing. In this respect, the LST- fv feature space
plotted in Figure 4 for a spatial extent of 30 km indicates that two trapezoidal shapes appear separately,
which may be a signature of sub-areas having different meteorological forcing. Both constraints
(heterogeneity of surface conditions and homogeneity of meteorological conditions) actually represent
an important rationale for implementing a sequential method with an ISR between the 1 km and
SMAP resolution.

Figure 4. The LST- fv feature space is plotted for 100 m resolution pixels within a 30 km, 10 km, 3 km
and 1 km ISR pixel.

Once the spatial extent of the LST- fv feature space and the algorithm for estimating temperature
endmembers have been defined, one can check the linearity or non-linearity of the SEE(SM) model and
its consistency with the SEE(LST) model. Figure 5 plots Landsat-derived SEE as a function of in-situ SM
for DOY 14. The predictions of the SEE(SM) model of Equation (7) is also plotted, with SMp estimated
by setting in Equation (8) LR SM and LR SEE to the mean in situ SM and the mean Landsat-derived
SEE, respectively. The correlation coefficient and slope between SEE(SM) and SEE(LST) estimates are
0.87 and 0.41 for DISPATCHExp algorithm. For comparison purposes, Figure 5 also plots SEE(SM)
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and SEE(LST) predictions for the DISPATCHLin algorithm. The correlation coefficient and slope
between both models are 0.87 and 0.17 respectively. Even though the correlation coefficient shows
similar values for both DISPATCHLin and DISPATCHExp, the slope is significantly lower than that for
DISPATCHExp. Those results are fully consistent with our approach to make the SEE(SM) non-linear
(using the exponential form of [57]) and to improve the temperature endmembers algorithm [56] of the
SEE(LST) model within the new DISPATCHExp downscaling algorithm.

Figure 5. Landsat-derived SEE as a function of in situ SM superimposed with the SEE(SM) model for
both DISPATCHLin and DISPATCHExp algorithms, for data on DOY 14.

2.6. Inclusion of Multiple ISR Grids

The use of multiple LR grids as input to disaggregation approaches has been proposed in
Hoehn et al. [60] and Merlin et al. [26]. Hoehn et al. [60] compared downscaling results obtained from
single coarse resolution grid (using fixed window) and using multiple overlapping coarse resolution
grids (by shifting windows). Shifting windows using multiple grids showed better performance as
compared to the fixed window case with respect to error and smoothness.

In this paper, we propose to define multiple ISR grids as an input to DISPATCHExp as in
Merlin et al. [26] and Hoehn et al. [60]. However, one difference herein is that the multiple ISR
grids are built from actual observations at the (higher) 1 km resolution and consequently, they are
derived neither from the LR overlapped observations [26], nor from the oversampling of LR (SMAP)
observations [60].

Figure 6 gives an illustration of the moving average window algorithm, over the 1 km resolution
grid of the DISPATCHLin output data. The algorithm successively shifts an ISR grid in both directions
(east-west and north-south) of a predefined constant distance. In the diagram of Figure 6, ISR is set
to 10 km and the distance separating the so generated ISR grids is set to 2 km. Once the multiple
grids have been generated, they are independently used as input to DISPATCHExp. As a first step,
multiple ISR SM grids are thus overlapped with 100 m resolution Landsat data and disaggregated
separately to get multiple 100 m resolution disaggregated SM images. As a second step, the separate
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100 m resolution downscaled SM images are composited (simple average) to produce a single 100 m
resolution SM disaggregated image.

m
3
/m

3
SM

2 km

ISR (10 km)

2 km

ISR (10 km)

Figure 6. Illustration of the moving average window algorithm applied to the 1 km resolution
DISPATCHLin SM with a shift of ISR (set to 10 km in this case) grids in both directions (east-west and
north-south) with a constant spacing of 2 km between ISR grids.

3. Results

This section analyzes the potential of the sequential downscaling approach by investigating (1) the
method calibration (2) the method accuracy for a range of ISR values using the single grid algorithm,
and (3) the usefulness of the multiple grid (compared to the single grid) algorithm.

3.1. Calibration

The calibration of SMp parameter in Equation (8) is undertaken using the DISPATCHLin data
sets derived from SMAP, on each date when Landsat data are available. Figure 7 plots SMp as
a function of ISR for each Landsat overpass date. The mean and standard deviation of retrieved SMp

are computed within the 30 km by 30 km study domain. It can be seen that for all dates, the retrieved
SMp behaves quite similarly with respect to ISR. It sharply increases for an ISR increasing from
1 km to 3–4 km and then keeps a relatively stable value for ISR values ranging between 3–4 km
and 30 km. Note that significant fluctuations of SMp are observed for ISR values larger than 15 km,
due to the bounded extent of the study area i.e., the mean SMp is computed using a single retrieved
value. However, the SMp value after convergence is not fully consistent for different dates. In fact,
the estimation of SMp in Equation (8) mainly depends on LR SM and SEE data, so that any error in
SMAP SM and Landsat-derived SEE estimates leads to temporal variabilities in retrieved SMp.

The standard deviation of the retrieved SMp values within the 30 km by 30 km area is also
plotted as a function of ISR ranging from 1 km to 30 km. It can be seen that the spatial variability
in retrieved SMp significantly decreases in the higher ISR range to reach a minimum for ISR values
larger than 10 km. Note that the standard deviation becomes zero for ISR equal or larger than 15 km
(not shown in the graph) because in such cases, a single ISR pixel is obtained within the whole extent
of the (30 km wide) study area. Figure 8 presents the images of SMp retrieved for ISR equal to
1 km, 3 km, 10 km, and 30 km. The spatial variability of SMp strongly increases when ISR decreases
and tends to 1 km and the average of 1 km resolution SMp is significantly different from the SMp
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retrieved over 10 km ISR pixels. Such behavior is explained by the non-linear impact of LR SEE on
SMp (see Equation (8), and by the non-representativeness of temperature endmembers for ISR lower
than 5 km.

Figure 7. Mean (top) and standard deviation (bottom) of the parameter SMp (Equation (8) plotted as
function of ISR ranging from 1 to 30 km for each Landsat overpass date separately.

m3/m3

SMp

Figure 8. SMp parameter images derived from SMAP data on DOY 38 for ISR equal to 30 km, 10 km,
3 km and 1 km from left to right, respectively

From the results presented in Figures 7 and 8, it can be concluded that (1) the retrieved SMp

is spatially and temporally representative for ISR equal to or larger than 10 km, and (2) significant
spatial/temporal variabilities of SMp (associated with uncertainties in temperature endmembers) and
non linear effects (associated with the non linear SEE(SM) relationship) are obtained for ISR lower than
5 km.

3.2. Evaluation of 100 m Disaggregated SM

The SMp retrieved from Equation (8) is first used to calculate the derivative from the average of
Equations (9) and (10). A range of different ISR values is then chosen to evaluate the sensitivity of
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100 m resolution disaggregated SM to ISR. To do so, the 1 km resolution disaggregated SM (the output
of DISPATCHLin) is aggregated to 1, 2, 3, . . . . . . , and 30 km and in each case, the aggregated ISR SM
together with its associated spatial extent is used as an input to DISPATCHExp. Such a sensitivity
analysis is undertaken for each SMAP overpass date, separately.

The statistical comparison in terms of correlation coefficient (R), slope of the linear regression
(slope), root mean square deviation (RMSD) and absolute mean bias (MB) between DISPATCHExp
disaggregated SM and in-situ SM is illustrated in Figure 9 for ISR ranging from 1 to 30 km for each
sampling date. The temporal variability (standard deviation) of R and of the slope of the linear
regression is relatively large in the lower range of ISR values. The slope gets even negative values for
ISR lower than 5 km on several dates, while the slope is always positive for ISR larger than 10 km.
This result is consistent with the stability of SMp retrievals observed previously for ISR larger than
5 km.

Figure 9. Correlation coefficient (R), slope of the linear regression, absolute mean bias (MB) and root
mean square difference (RMSD) between 100 m resolution disaggregated and in situ SM for a range of
ISR values (from 1 km to 30 km) for each sampling date separately.

When considering the full ISR range (1–30 km), and despite the date-to-date variability, a slight
general increase of R is obtained in the 1–10 km range, whereas it keeps an approximately constant
value for larger ISRs. Regarding the slope of the linear regression, an opposite finding is obtained.
For ISR values larger than 5 km, the slope keeps decreasing with a value at ISR = 30 km mostly very
close to zero. Note that the sudden increase of the slope for ISR = 20 km on DOY 78 is due to the
fact that statistical results are obtained from a single (unrepresentative) ISR pixel that fits into the
30 km by 30 km study area. The decrease of the slope is attributed to the gap between the LR and the
HR, which increases with ISR. In fact, the disaggregation efficiency (as defined in [61]) is expected to
decrease with the LR to HR ratio, due to the decrease of the spatial variability represented at HR by
the LR observation. The slope of the linear regression was actually found to be a good indicator of the
disaggregation efficiency [61], consistent with the results presented in Figure 9. A second important
impact of ISR is the increase of the absolute MB between the 100 m resolution disaggregated and in situ
SM, especially in the 10–30 km range. The worsening of downscaling performances (in terms of the
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slope of the linear regression and MB) in the 10–30 km range is due to the linear approximation of the
downscaling relationship (Equation (3). An optimal ISR is thus found at around 10 km. Optimal results
in terms of RMSD between 100 m resolution and in-situ SM is actually obtained for ISR close to 10 km.
Therefore, ISR set to 10 km throughout the rest of the paper.

For illustration purposes, Figure 10 represents the sequential downscaling of SM from SMAP data
collected on DOY 38: the disaggregation of SMAP SM to 1 km resolution, the aggregation of the 1 km
resolution disaggregated SM to ISR (10 km), and the disaggregation of ISR SM to 100 m resolution. It is
reminded that the extra aggregation step is undertaken (i) to increase the representativeness/accuracy
of the temperature endmembers extrapolated from the LST- fv feature space, (ii) to increase the stability
of the disaggregation calibration (via the SMp retrieval) and (iii) to reduce random uncertainties in the
ISR SM used as input to DISPATCHExp.

SM
m3
/m3

Figure 10. From left to right: images of 36 km resolution SMAP SM, 1 km resolution DISPATCHExp SM,
10 km resolution aggregated DISPATCHExp SM and 100 m resolution disaggregated SM on DOY 38.

As a first evaluation of the disaggregation at 100 m resolution independently from the uncertainty
in SMAP data, DISPATCHExp is run for all sampling dates (DOY 6, 14, 30, 38, 62 and 78) by setting
the ISR observation to a fraction of the mean (daily areal average of) in-situ SM. By considering that
the average of all in-situ SM measurements is representative of the SM over the irrigated area and
that the SM over dry land is about 0, a rough estimate of the LR SM is derived as half the mean in
situ measurements (the fraction of dry land in the 10 km ISR pixel covering the experimental fields
is about 50%). Figure 11 plots the 100 m resolution disaggregated SM versus in situ measurements.
Statistical results in terms of R, slope of the linear regression, absolute MB and RMSD are reported
in Table 1 for synthetic LR. R is in the range 0.6–0.9 for four dates (DOY 6, 14, 30 and 78), while it
is in the range 0.1–0.2 on two dates (DOY 38 and 62). In terms of correlation, better results are
obtained on the sampling dates with a larger spatial variability in SM measurements, and reciprocally,
poorer results are obtained when SM is relatively uniform at the sub-pixel scale. In terms of bias,
however, relatively low absolute MB (lower than 0.03 m3/m3) is obtained except for DOY 6, 62 and
78 with an absolute MB of 0.07, 0.08 and 0.11 m3/m3, respectively. The reason is that the mean in
situ measurements (weighted by the fraction of irrigated land) may not be fully representative of the
real SM at the ISR (10 km) scale, as irrigation is not applied uniformly within the irrigated perimeter.
Nevertheless, the application of DISPATCHExp to synthetic LR (ISR) SM data allows for assessing
the performance of the downscaling methodology independently of SMAP data and DISPATCHLin
algorithm. We conclude that DISPATCHExp is relatively efficient when the sub-pixel variability is
larger than 0.06 m3/m3.

Next, DISPATCHExp is tested using SMAP data (ISR is still set to 10 km in the sequential
downscaling). Figure 12 represents the comparison between DISPATCHExp and in situ SM and
Table 1 for SMAP single grid reports the associated statistical results. It can be seen that results are not
significantly degraded in terms of R compared to the case when using synthetic LR observation
as input to DISPATCHExp (see Table 1). In fact, the sub-pixel variability of SM is represented
by the Landsat-derived SEE in both real and synthetic cases, which explains similar R results.
However, the DISPATCHLin data derived from SMAP data may involve LR differences in terms of MB
and RSMD at 100 m resolution.
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Figure 11. Graph plotting 100 m resolution disaggregated versus in-situ SM with the LR SM set to
a fraction of the mean in-situ SM.

Figure 12. Same as Figure 11 but with LR SM set to the DISPATCHLin SM obtained from SMAP and
aggregated at 10 km resolution (single grid).
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Table 1. Statistical results in terms of correlation coefficient (R), slope of the linear regression, absolute
mean bias (MB) and root mean square difference (RMSD) between 100 m resolution disaggregated and
in-situ SM for Synthetic, SMAP single grid and SMAP multiple grid LR SM cases separately (ISR is set
to 10 km).

Day of Year
(DOY)

Synthetic SMAP Single Grid SMAP Multiple Grid

R
(-)

Slope
(-)

Absolute MB
(m3/m3)

RMSD
(m3/m3)

R
(-)

Slope
(-)

Absolute MB
(m3/m3)

RMSD
(m3/m3)

R
(-)

Slope
(-)

Absolute MB
(m3/m3)

RMSD
(m3/m3)

6 0.59 0.27 0.069 0.15 0.57 0.24 0.05 0.14 0.54 0.23 0.01 0.14
14 0.90 0.55 0.014 0.049 0.87 0.44 0.03 0.06 0.90 0.47 0.03 0.06
30 0.69 0.59 0.006 0.066 0.72 0.44 0.14 0.15 0.70 0.52 0.12 0.14
38 0.10 0.10 0.03 0.08 0.11 0.07 0.02 0.07 0.12 0.08 0.03 0.07
62 0.22 0.35 0.08 0.13 0.16 0.14 0.002 0.31 0.20 0.21 0.07 0.10
78 0.65 1.04 0.11 0.15 0.49 0.40 0.02 0.08 0.54 0.31 0.12 0.14
All 0.53 0.48 0.052 0.104 0.55 0.34 0.05 0.09 0.57 0.35 0.08 0.10

3.3. Reducing Boxy Artifact

As demonstrated and discussed above, setting an ISR between the SMAP and Landsat resolutions
has many advantages in terms of accuracy and robustness of DISPATCHExp. However, one drawback
with an ISR equal to 10 km, is that the ISR grid may be still apparent in the 100 m resolution
disaggregated image. Such effects are called boxy artifacts [62]. To reduce these boxy artifacts
and to potentially increase the accuracy in 100 m disaggregated SM, a Monte-Carlo sampling method
is proposed as an extra step in the pre and post-processing of input/output data of DISPATCHExp.

The preprocessing steps include: (i) selecting 10 km resolution SM pixels such that an equal
number of HR (Landsat) pixels falls within each ISR pixel (ii) shifting the 10 km ISR pixels with
a distance of 2 km in east-west and north-south directions, so as to generate a set of 25 ISR SM
images, (iii) overlapping each image with HR Landsat optical/thermal data, and (iv) disaggregating
individually each ISR image to 100 m resolution. Therefore, a set of 25 possible disaggregated 100 m
SM images is obtained. The post-processing step consists in combining the 25 disaggregated SM
images. The simple averaging is used to produce a single 100 m disaggregated image.

The multiple-grid procedure illustrated in Figure 6 is applied over our 30 km by 30 km study area
for SMAP data and for each date separately. Figure 13 presents the 100 m resolution SM disaggregated
images by applying the single grid and multiple grid algorithms for each date separately. It can be seen
on DOY 6, 38 and 78 that the boxy artifacts at 10 km resolution present on the image obtained using
the single grid algorithm have completely disappeared in the multiple grids application. Note that
the boxy artifacts are not visible for the other dates due to strips (data gaps) present in the Landsat
7 images. The moving window algorithm also smoothens the disaggregated image at the image
borders. Especially, the errors that generally occur at the corners of the image due to sudden changes
in temperature endmembers and coarse scale SM are reduced. The composited image is of better
quality by reducing the random errors associated with the uncertainty in LR observations and the
disaggregation methodology (involving non-linear relationships between SEE and SM), which make
the disaggregated image more realistic than using the single grid algorithm.

Table 2 reports the standard deviation of 100 m resolution disaggregated SM within each image
for the single and multiple grid algorithms, separately. The standard deviation is systematically lower
when applying multiple grids for all the dates. It means that the multiple grid application significantly
reduces the variabilities attributed to random uncertainties in DISPATCHExp input data. A quantitative
comparison between 100 m disaggregated SM and in situ measurements is also proposed in Table 1
for SMAP multiple grid. By comparing the statistical results from the single grid and multiple
grid (Table 1) algorithm, it can be seen that both the R and slope of the linear regression between
100 m resolution disaggregated and in situ SM are generally increased by applying multiple grids.
Therefore, the proposed moving window method not only provides continuous SM images but also
increases the efficiency of the disaggregation approach at 100 m resolution.
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SM

Figure 13. 100 m resolution disaggregated SMAP SM images when using an ISR set to 10 km for single
grid (top) and moving average window (bottom) algorithm for each Landsat overpass date separately.

Table 2. Standard deviation of 100 m resolution disaggregated SM within each DISPATCHExp image
for the single grid and multiple grid algorithm.

Day of Year (DOY) Single Grid (m3/m3) Multiple Grid (m3/m3)

6 0.135 0.115
14 0.075 0.069
30 0.075 0.068
38 0.058 0.055
62 0.096 0.092
78 0.094 0.052
All 0.089 0.075

4. Discussion

High spatial resolution soil moisture data are fundamental for hydro-agricultural purposes as
well as for other kind of applications. The DISPATCH method sequentially applied to SMAP data at
1 km resolution (using MODIS) and at 100 m resolution (using Landsat) has potential for providing
such data. However, the performance of the approach may depend on the surface and atmospheric
conditions. In addition, the temporal resolution of 100 m resolution DISPATCH data is currently
limited by (i) the repeat cycle (16 days) of Landsat and (ii) the cloud free conditions required to
use optical/thermal data. This section thus discusses the applicability and expected performance of
DISPATCH in a context wider than our semi-arid irrigated study area.

The disaggregation of coarse scale soil moisture data is still a relatively recent research avenue [24],
and consequently, few studies have compared the performance of existing methods. Sabaghy et al. [23]
undertook the first comprehensive and systematic comparison study of several radar-based and
optical/thermal-based SM downscaling methods. The SM downscaled from SMOS and SMAP
data were evaluated against in situ as well as airborne SM estimates using the AACES data set in
Southeastern Australia. DISPATCH was among the most efficient downscaling methods, especially when
evaluating the spatial representation at 1 km resolution. The results presented in this paper are consistent
with Sabaghy et al. [23] and previous validation exercises of DISPATCH. However, several intrinsic
limitations common to optical/thermal-based downscaling approaches needs to be acknowledged, while
several weaknesses specific to DISPATCH could be addressed in the future.

In this study, the mean RMSD (about 0.10 m3/m3) between disaggregated SMAP and in situ SM
is relatively large and need to be interpreted in terms of bias and precision and to be compared with
the spatio-temporal variability of SM existing within the study area. First, the mean RMSD is mostly
explained by daily biases (mean bias of about 0.08 m3/m3) while the slope of the linear regression
between disaggregated and in-situ SM is systematically and significantly positive. Second, the spatial
variability of SM at 100 m resolution is extreme over the irrigated area with surface conditions ranging
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from bone dry to soil fully saturated. Over the sampled area, the minimum and maximum measured SM
value was 0.03 to 0.45 m3/m3, respectively. In such highly heterogeneous areas, relatively large errors in
SM estimates are thus expected. It is however reminded that the disaggregation error should be smaller
than the actual SM variability, as an indicator of the relevance of such disaggregated SM data [63].

It is reminded that the DISPATCH methodology relies on the relationship between moisture
and the LST. LST is in fact a signature of the surface energy balance, which is highly linked to the
evaporation flux and the associated soil water availability. NDVI data are used in DISPATCH to
partition the LST into its soil and vegetation components, given that the soil temperature is more
directly linked to the top SM while the vegetation temperature is related to the deeper root zone
SM [26]. Therefore, the application of the DISPATCH method over irrigated regions is fully relevant.
In our study area, flood irrigation consists in applying about 60 mm in several (typically 4) hours
so as to flood the entire field. However, the irrigation water rapidly infiltrates into the soil so that
there is little chance that the Landsat satellite actually “sees” any inundated field (although it may
potentially happen), all the more as the typical frequency of flood irrigations is one every 3 weeks.
The flood irrigation technique is still widely applied in Morocco and in many developing countries
where traditional practices persist. Note that the application of DISPATCH over drip irrigated crops
would require thermal data with a high repeat cycle, consistent with the irrigation frequency for the
drop-by-drop technique.

One major limitation of DISPATCH is the availability of optical/thermal data. DISPATCH has
been tested mostly under arid or semi-arid regions where the cloud cover is rather small. In particular,
the cloud cover of the Haouz plain is about 40% from January to May while its overall yearly
percentage is 30% [64]. The 100 m resolution downscaled SM time series is thus expected to be
much less dense over other regions having a larger cloud cover. In addition, as DISPATCH relies on the
LST-moisture relationship, the performance of downscaling depends on the atmospheric evaporative
demand. Therefore, testing its applicability to different climatic conditions will be needed in the future,
notably by identifying moisture-limited and energy-limited regions.

Other limitations specific to DISPATCH includes the non-linear behavior of the SEE(SM)
relationship and the so-called “boxiness” within the downscaled image. From Figures 11 and 12,
relationships between disaggregated and in-situ SM appear to be non-linear on several dates (DOY
6 notably). This is explained by (i) the non-linear behavior of SEE for a range of SM values and
(ii) the linear approximation of DISPATCH around the LR SM (Equation (3). It seems that using
a non-linear SEE(SM) model in Equation (3) is not sufficient to represent the nonlinear SEE(SM)
relationship when the SM variability is extreme. Future studies will address this issue by, for instance,
correcting the SEE(SM) relationship when the sub-pixel SM variability is larger than a given threshold.
Regarding the “boxiness” within the image, it is a relatively small effect compared to the spatial
variability of SM represented by the DISPATCH method. Quantitatively, the RMSD between the SM
produced from single grid and multiple grid applications is 0.019 m3/m3, while the standard deviation
of disaggregated SM within the study area is 0.089 and 0.075 m3/m3 for the single and multiple grid
case, respectively. In fact, as shown in Figure 13 the single grid application (without removing the
boxiness within the image) already provides 100 m resolution SM images with borders between ISR
pixels very consistent from one ISR pixel to another adjacent ISR pixel. Therefore, the stepwise method
proposed in this paper does transfer in a satisfying manner the SM information from the 36 km SMAP
resolution to the targeted 100 m resolution.

5. Conclusions

A stepwise disaggregation approach of SMAP SM is developed at 100 m resolution using
the DISPATCH methodology and Landsat data. SMAP SM is first disaggregated from 36 km to
1 km resolution using MODIS data and DISPATCHLin algorithm. Then the 1 km resolution SM is
aggregated as ISR. Next, the ISR SM is further disaggregated at 100 m resolution using Landsat
data and DISPATCHExp algorithm. In order to take into account the increase of resolution, the new
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DISPATCHExp algorithm brings several innovations compared to the DISPATCH version currently
implemented at CATDS (DISPATCHLin) in two aspects: (i) the SEE is a non-linear function of SM,
and (ii) the SEE(LST) model is improved by better constraining the determination of temperature
endmembers. The approach is evaluated using in situ measurements collected on the dates with
concurrent SMAP, MODIS, and Landsat overpasses.

ISR is varied between 1 km and 30 km with a 1 km step, and sensitivity of the calibration
parameter (SMp) of DISPATCHExp to ISR is analyzed. The retrieved SMp is spatially and temporally
representative for ISR equal or larger than 10 km, while significant spatial variabilities of SMp

(associated with uncertainties in temperature endmembers) and non-linear effects (associated with
the non-linear SEE(SM) relationship) are obtained for ISR lower than 5 km. Optimal results in
terms of RMSD between 100 m resolution and in situ SM are obtained for ISR close to 10 km.
Therefore, the two-step disaggregation is more efficient than the direct disaggregation from SMAP to
100 m resolution. This is due to the trade-off existing between the performance (increasing with the
ISR and its sub-pixel variability) of the contextual-based DISPATCH method and the statistical match
(decreasing with ISR) between ISR remotely sensed and field-scale SM estimates. The correlation
coefficient between 100 m resolution disaggregated and in situ SM ranges between 0.5–0.9 for four
out of the six sampling dates. Better results are obtained on the sampling dates with a larger spatial
variability in SM measurements, and reciprocally, poorer results are obtained when SM is relatively
uniform at the sub-pixel scale.

Finally, a new method is proposed to reduce boxy artifacts at 10 km resolution in 100 m resolution
disaggregated SM images. The multiple grid application perfectly smoothens the composited 100 m
resolution disaggregated SM image and, in addition, quantitatively improves the efficiency of the
downscaling approach by increasing the correlation coefficient and slope of the linear regression
between 100 m resolution disaggregated and in situ SM.

The DISPATCH-based sequential disaggregation scheme has the advantage of being independent
on ground-based measurements, as all input parameters (i.e., temperature endmembers and
SMp) are calibrated using remote sensing data. However, the unavailability of optical/thermal
(MODIS/Landsat) data in cloudy conditions is still a severe limitation for operational applications.
One key avenue for producing SM data sets at high spatial-temporal resolution could be the synergy
with radar-based approaches [18,24]. Recently, Amazirh et al. [49] calibrated the main parameters of
a radar-based SM retrieval method using a thermal-derived SM proxy. In the same vein, the 100 m
resolution DISPATCHExp SM data sets obtained from SMAP data on MODIS/Landsat clear sky days
could represent a cornerstone in the construction of synergies between passive/active microwave and
optical/thermal data.
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6.1 Introduction

Active microwave sensors or radars are sensitive to soil moisture (SM) (Ulaby et al., 1983; Kor-
nelsen and Coulibaly, 2013). With the recent advent of Sentinel-1 missions, C-band radar data
can be used to invert SM at fine resolution with a potential repeat cycle of 6 days (Zribi and
Dechambre, 2003; Baghdadi et al., 2012; Ouaadi et al., 2020). An essential asset of radar is that
it can provide SM information in all weather conditions. The downside is that the radar data are
influenced by vegetation biomass and structure (Wagner et al., 1999), surface roughness (Mattia
et al., 1997), and topography (van Zyl et al., 1993), making the direct estimation of SM from
the backscattering coefficient a complex process.

Several models have been proposed in the last 30 years to retrieve SM from the backscatter-
ing coefficient. They can be categorized into theoretical (Fung et al., 1992), semi-empirical and
empirical models (Dubois et al., 1995; Oh, 2004; Baghdadi et al., 2016). These models cannot
provide SM over large extents because the water content in soil and vegetation components makes
SM estimation from backscattering coefficients an infeasible process. So this model requires prior
information about the vegetation component and the soil roughness, and hence SM estimation
is limited to specific, well-monitored regions.

An avenue to overcome radar’s limitations related to the uncertainty in model parameters is to
develop a synergy with passive microwave or optical/thermal data. A common synergy between
radar and passive microwave data determines the sub-pixel variability of a passive microwave
pixel at finer resolution using radar pixels. But this method provides SM at low temporal reso-
lution because of the need for quasi-simultaneous overpasses of both (i.e., SMAP and Sentinel-1)
satellites. Another suggested method is to combine the active microwave with optical/thermal
data. To my knowledge, the first study on this subject was published recently by Amazirh
et al. (2018). Despite the limited literature, optical/thermal data have been extensively used to
monitor the evapotranspiration, and the evaporative fraction, which can be more or less directly
related to SM for a large range of land covers.

All the methods mentioned above about the synergy of radar with passive microwave and/or
optical/thermal data have great potential to improve the retrieval of SM in terms of spatial reso-
lution, temporal resolution, and accuracy in various conditions. In this context, a novel method is
devised by generating synergy between passive microwave, active microwave, and optical/thermal
data to deliver SM data at high spatio-temporal resolution with improved accuracy. There is
currently no such multi-satellite synergistic technique available.

To achieve the proposed synergy the radar parameter is calibrated from disaggregated SM at
100 m resolution using the active radiative transfer model. Then the calibrated radar parameter
is then used in the inverse mode of the active radiative transfer model to estimate the SM. The
models, with different vegetation indices, are evaluated over the irrigated and rainfed areas of
Morocco.

6.2 A new radar-DISPATCH coupling method

We propose the synergy based on the calibration at high-resolution of the radar retrieval approach
using the SM images obtained from the disaggregation of SMOS or SMAP SM using DISPATCH.
The advantage of such an approach is that it does not require in situ SM measurements for cal-
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ibrating radar parameters that are difficult to estimate directly (e.g., soil roughness, vegetation
structural characteristics). However, it requires a quasi-simultaneous overpass of SMOS/SMAP,
Landsat, and Sentinel-1 satellites. Once calibrated, the radar model parameter is used in the
inverse mode to estimate the SM on every Sentinel-1 overpass.

For clarity, the coupling of disaggregated SM and radar backscatter coefficient from Sentinel-1 is
described in the successive steps shown in Figure 6.1. At first, the SMAP/SMOS SM at 40 km
resolution is disaggregated to 1 km resolution using optical/thermal data from MODIS. Then,
the 1 km disaggregated SM is aggregated to 10 km. Further, the 10 km resolution SM pixel
is disaggregated to 100 m resolution using Landsat optical/thermal data. The downscaled SM
product at 100 m resolution is next used as a reference dataset for calibrating the radar parame-
ters. Finally, the radar model is used in inverse mode to predict SM on each Sentinel-1 overpass
date. Thus, the estimated SM is at last evaluated with in situ SM on the Sentinel-1 overpass
dates.

In this thesis, the proposed synergy coupling DISPATCH and radar data is investigated using two
different types of active microwave radiative transfer model (RTM): 1) a fully empirical model
(with linear assumption) 2) a semi-empirical model (with non-linear assumption). The models
are expressed for a given polarization pol (pol=VV, HH or VH).

The empirical RTM is expressed as:

σpol,empirical = a ∗ SM + b ∗ V + c (6.1)

where a, b , and c are three coefficients for the empirical RTM to be calibrated and V is the
vegetation descriptors. Three vegetation descriptors are considered: NDVI, polarization ratio
(PR) and coherence (CO).

The semi-empirical RTM is based on Water Cloud model (WCM) of Attema and Ulaby (1978).
The model is expressed as the sum of the contribution from the vegetation and the soil attenuated
by the vegetation effect. The contribution from vegetation can be written as:

σpol,veg = Apol ∗ V1cosθ ∗ (1 − T 2
pol) (6.2)

T 2
pol = e2BpolV2secθ (6.3)

where θ is the incidence angle, T 2
pol is the two-way attenuation, V1 and V2 are the vegeta-

tion parameters and Apol and Bpol are the coefficient parameters which depend on vegetation
characteristics. Here, V1=V2=V where V can be values from either NDVI, PR or CO. The
contribution from soil can be written as:

σpol,soil = aW CM ∗ SM + cW CM (6.4)

where aW CM and cW CM are the calibration coefficients.

Semi-empirical RTM is constructed by combining vegetation contribution and soil contributions,
and hence written as:

σpol,semi−empirical = σpol,veg + T 2σpol,soil (6.5)

σpol,semi−empirical = ApolV cosθ[(1 − e−2BpolV secθ)] + (e−2BpolV secθ)(aW CM ∗ SM + cW CM )] (6.6)
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where, Apolcosθ and Bpolcosθ are calibration coefficients and assumed to be constant over
each experimental site. For consistency with the linear RTM parameterization, the parameter
Apolcosθ and Bpolcosθ are renamed as bW CM and dW CM respectively. So, the semi-empirical
model consists of 4 constant parameters (aW CM , bW CM , cW CM and dW CM ) to be evaluated and
the equation can be rewritten as:

σpol,semi−empirical = bW CM V [(1 − e−dW CM V )] + (e−dW CM V )(aW CM ∗ SM + cW CM ) (6.7)

Both empirical and semi-empirical models are calibrated using the disaggregated SM time se-
ries at 100 m resolution. The calibration parameters for the empirical (linear) RTM model is
estimated from the multi-linear regression by using the ordinary least squares method. For the
semi-empirical RTM, the calibration parameters are estimated from the non-linear least square
model based on the Levenberg-Marquardt algorithm. The algorithm attempts to minimize the
square of error difference between the estimated and the observed. The standard error is also
calculated from the covariance metrics to estimate the uncertainties in the retrieved calibration
parameters.

To derive SM, both RTM models are used in inverse mode, which gives for the empirical RTM:

SMempirical = (σpol − b ∗ V − c)
a

(6.8)

and for the semi-empirical RTM:

SMsemi−empirical = (σpol − bW CM ∗ V ) ∗ edW CM V + bW CM ∗ V − cW CM

aW CM
(6.9)
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Figure 6.1: The schematic diagram for developing a relationship between disaggregation and
calibration scheme combines SMAP/SMOS SM, MODIS/Landsat optical/thermal, and Sentinel-
1 radar data at various spatial resolutions to produce an SM product at the field scale at the
temporal frequency of Sentinel-1.

6.3 Validation

The two (empirical and semi-empirical) radar models, together with the three different vegeta-
tion descriptors used as input (NDVI, PR, and CO), are evaluated in terms of SM estimates over
the irrigated and rainfed experimental sites of Morocco. The radar parameters are estimated
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from in situ and DISPATCH100m SM datasets to assess the calibration strategy separately.

Temporal analysis is first carried out for the six configurations using in situ and DISPATCH 100
m SM datasets as calibration references separately. When in situ SM is used for the calibration,
the PR vegetation descriptor shows better results, with correlation coefficient (R) in the range
0.72-0.82 (empirical) and 0.74-0.80 (semi-empirical). When DISPATCH is used for calculating
calibration parameters, the NDVI vegetation descriptor performs better for both models with R
in the range of 0.76-0.79 (empirical) and 0.77-0.80 (semi-empirical). Hence, parameters calcu-
lated using DISPATCH datasets can be used as reference calibration parameters.

A spatio-temporal analysis is also performed for six configurations using in situ SM and DIS-
PATCH 100 m SM reference datasets over the R3 irrigated area for DOY 14, 30, 38, 62, and
78 of 2016. The estimated SM is evaluated with in situ SM for all given dates separately. The
results reveal that NDVI vegetation descriptor shows an R for DOY 14, 30, and 38 in the range
0.53-0.74 for both models. But the PR vegetation descriptor shows a better performance for
DOY 62 and 78 with an R in the range of 0.15-0.41 (empirical) and 0.09-0.37 (semi-empirical).
The time series of R and slope of linear regression (slope) between the predicted SM and in situ
SM for both empirical and semi-empirical models for both NDVI and PR vegetation descriptors
separately are shown in Figure 6.2. It is observed that R and S behave similarly for both the
vegetation descriptors. R and S increase during the early stage of vegetation growth, and then
both R and S start decreasing when the vegetation is fully developed. When the vegetation index
is above 0.6, then the R decreases for both models. The graph also shows that NDVI performs
better during an early stage of vegetation growth and PR performs better when vegetation is
fully grown. The NDVI is more sensitive than the PR due to the small variabilities of vegetation
cover during the early stage of crops. At the same time, NDVI gets saturated within a given
threshold value. Therefore, the choice of NDVI and PR as vegetation descriptors in the model
compromise precision and accuracy and depends on the crop covers.

Overall, based on the analysis of our datasets, it is observed that a empirical model using PR
as a vegetation descriptor shows a good compromise in terms of robustness all along the season
and has only three parameters to estimate.
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Figure 6.2: Time series of the correlation coefficient and slope of the linear regression between
estimated and in situ SM for both (empirical and semi-empirical) active radiative transfer model
and two vegetation descriptors (NDVI and PR) separately where in situ SM datasets are used
for the calibration.

6.4 Conclusion

This chapter introduces a new method for combining high spatial resolution, multi-resolution
passive microwave, optical/thermal data, and active microwave images. The technique uses dis-
aggregated 100 m resolution SM products (obtained from the synergy of passive microwave and
optical/thermal data) to develop a synergy with C-band radar. A methodology containing three
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steps is proposed to obtain the synergy: 1) SMAP SM at 36 km resolution is disaggregated to
100m resolution with the use of the sequential downscaling algorithm presented in Chapter 5,
2) the 100 m resolution disaggregated SM is used to calibrate the parameter of a radar model,
and 3) the calibrated parameters are used as input to the radar model in the inverse model, to
retrieve SM at the field scale on each Sentinel-1 overpass. The two linear empirical and non-linear
semi-empirical models are used to develop a synergy between the backscattering coefficient of
radar and disaggregated SM at the field scale. Both models are analyzed with three different
vegetation descriptors NDVI, polarization ratio (PR), and coherence (CO) that can better rep-
resent the spatial variability of vegetation. Both in situ SM and DISPATCH100m SM datasets
are used as a reference to calibrate the radar parameters.

Results show better performance for the PR vegetation descriptor when in situ SM is used for
calibration. In contrast, NDVI shows better performance when DISPATCH SM datasets are
used for calibration. It is also found that the NDVI vegetation descriptor performs better during
the early stages of vegetation growth, but the PR vegetation descriptor shows consistent results
all over the agricultural season. In our case, both linear and non-linear models show similar
behaviors, and the complexity of the non-linearity of the RTM model is not justified.

Both models are quite generic and require few parameters to be calibrated for large-scale applica-
tions. One strength and originality of the algorithm is that it does not need ground measurements
for calibration. Moreover, it has a solid potential to provide SM data frequently on the Sentinel-1
overpass dates. However, the algorithm was tested by assuming that the incidence angle and
other parameters are constant. In the future, this approach will be tested for different incidence
angles of Sentinel-1 and various crop types and surface conditions. Further investigation is also
required for the dynamic analysis of calibration parameters using DISPATCH 100m datasets to
be useful for estimating SM over highly anthropized (like agricultural) environments.

6.5 Article : A calibration/disaggregation coupling scheme for retriev-
ing soil moisture at high spatio-temporal resolution: synergy be-

tween SMAP passive microwave, MODIS/Landsat optical/thermal

and Sentinel-1 radar data

1. Ojha, N., Merlin, O., Amazirh, A., Ouaadi, N., Rivalland, V., Jarlan, L., Er-Raki, S. and
Escorihuela, M.J., 2021. A Calibration/Disaggregation Coupling Scheme for Retrieving Soil
Moisture at High Spatio-Temporal Resolution: Synergy between SMAP Passive Microwave,
MODIS/Landsat Optical/Thermal and Sentinel-1 Radar Data. Sensors, 21(21), p.7406
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Abstract: Soil moisture (SM) data are required at high spatio-temporal resolution—typically the
crop field scale every 3–6 days—for agricultural and hydrological purposes. To provide such high-
resolution SM data, many remote sensing methods have been developed from passive microwave,
active microwave and thermal data. Despite the pros and cons of each technique in terms of spatio-
temporal resolution and their sensitivity to perturbing factors such as vegetation cover, soil roughness
and meteorological conditions, there is currently no synergistic approach that takes advantage of
all relevant (passive, active microwave and thermal) remote sensing data. In this context, the
objective of the paper is to develop a new algorithm that combines SMAP L-band passive microwave,
MODIS/Landsat optical/thermal and Sentinel-1 C-band radar data to provide SM data at the field
scale at the observation frequency of Sentinel-1. In practice, it is a three-step procedure in which:
(1) the 36 km resolution SMAP SM data are disaggregated at 100 m resolution using MODIS/Landsat
optical/thermal data on clear sky days, (2) the 100 m resolution disaggregated SM data set is used to
calibrate a radar-based SM retrieval model and (3) the so-calibrated radar model is run at field scale
on each Sentinel-1 overpass. The calibration approach also uses a vegetation descriptor as ancillary
data that is derived either from optical (Sentinel-2) or radar (Sentinel-1) data. Two radar models (an
empirical linear regression model and a non-linear semi-empirical formulation derived from the
water cloud model) are tested using three vegetation descriptors (NDVI, polarization ratio (PR) and
radar coherence (CO)) separately. Both models are applied over three experimental irrigated and
rainfed wheat crop sites in central Morocco. The field-scale temporal correlation between predicted
and in situ SM is in the range of 0.66–0.81 depending on the retrieval configuration. Based on this data
set, the linear radar model using PR as a vegetation descriptor offers a relatively good compromise
between precision and robustness all throughout the agricultural season with only three parameters
to set. The proposed synergistical approach combining multi-resolution/multi-sensor SM-relevant
data offers the advantage of not requiring in situ measurements for calibration.

Keywords: disaggregation; soil moisture; synergy; Sentinel-1; DISPATCH; SMAP; Landsat
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1. Introduction

Soil moisture (SM) controls the energy exchange between the land surface and the
atmosphere, as well as the terrestrial hydrological cycle and ecological environments [1].
Hence, SM information at a fine space-time scale is beneficial for agricultural [2] and other
hydrological applications [3]. In situ measurements can provide SM estimates at a field
scale, but they cannot capture all the spatial variability. The spatial variability of SM
especially occurs due to vegetation, soil roughness, soil texture, terrain, and atmospheric
and anthropogenic (e.g., irrigation) effects, which significantly impact SM [4]. One major
motive for monitoring SM at a fine scale is the management of water resources over irrigated
areas, i.e., the optimization of irrigation in terms of scheduling and dispatching [5,6].
Collecting time and cost are also the main constraints that make in situ SM measurements
impractical for global SM monitoring. Instead, remote sensing offers a good compromise
in the global tracking of SM over an enormous range of spatial and temporal scales.

Nowadays, L-band microwave radiometers are routinely used to provide SM data
on a global basis. Based on L-band radiometry, two satellites are currently in operation:
(1) Soil Moisture and Ocean Salinity (SMOS), launched by ESA in November 2010 [7], and
(2) Soil Moisture Active Passive (SMAP), launched by NASA in January 2015 [8]. Both
satellites provide SM retrievals at about 40 km resolution with a sensing depth of 3 to
5 cm and a global revisit cycle of 3 days. The L-band radiometry is one of the optimal
technologies widely accepted for SM estimation [9]. SMOS/SMAP SM products have
been extensively validated and found suitable for climatology and large-scale hydrology
purposes. Nonetheless, their typical spatial resolution of 40 km is too coarse for most
hydro-agricultural applications [10–12].

Other remote sensing techniques such as radar or thermal imagery can provide SM
information at a much higher spatial resolution than L-band radiometers. For instance,
Landsat-8 thermal and Sentinel-1 C-band radar sensors achieve a spatial resolution of
100 and 20 m, respectively. Based on the assumption that the passive microwave-derived
SM is accurate at low resolution and that relative SM information can be obtained at
higher spatial resolution from radar/thermal sensors, various disaggregation approaches
have been proposed [13,14]. On the one hand, the radar-based disaggregation technique
combines the low-resolution L-band brightness temperature with fine resolution radar
observations. In this vein, the SMAP satellite was originally dedicated to combining an
L-band radiometer and an L-band radar to provide SM at 3 km resolution. However, due
to the SMAP radar failure, currently, the SMAP mission provides SM at 9 km resolution on
a global basis [15] by interpolating the brightness temperature of the L-band radiometer
using the Backus-Gilbert method [16]. Another approach used by the SMAP mission is to
combine the SMAP radiometer with the Sentinel-1 radar to provide SM at 9 and 3 km [17].
However, this approach is limited by the constraint of the need for quasi-simultaneous
overlapping areas of SMAP and Sentinel-1 data.

On the other hand, the optical/thermal-based downscaling method generally re-
lies on the relationship between passive microwave-derived SM and the evaporative
fraction derived from the vegetation index (NDVI)-land surface temperature (LST) fea-
ture space [13,18–20]. The main advantage of optical-based over radar-based downscal-
ing approaches is that the LST is less affected by the soil roughness [21] and vegetation
structure [22] than the radar backscatter coefficient [23–25]. However, optical-based ap-
proaches are limited by (1) the low repeat cycle of currently available high-spatial-resolution
thermal sensors, (2) the gaps in data coverage due to the presence of clouds, and (3) the
underlying requirement of a large atmospheric evaporative demand at the time of thermal
sensor overpass.

Radar data are primarily influenced by surface roughness [26], vegetation cover [27]
and topography [28], making the direct estimation of SM from backscattering coefficients
more difficult than from the SMOS/SMAP L-band brightness temperature. However,
active microwave sensors are sensitive to SM [29,30] and C-band synthetic aperture radars
(SAR) have the capability to provide SM data at high spatial resolution with a global
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time coverage of 6–12 days with Sentinel-1, regardless of cloud coverage [31–33]. Various
soil backscattering models [34], empirical and semi-empirical models [24,35,36] were
developed to simulate the radar backscatter in the forward mode and to estimate SM from
radar data in the retrieval mode. Because of water content in both the soil and vegetation
components, estimating SM from the radar backscattering coefficient is a very complex
task. The Water Cloud Model (WCM) [37] was developed to simulate the backscattering
of the canopy. WCM is a simple mathematical model, and due to its simplicity, it is
widely used in the forward or inverse mode [31,38–41]. The vegetation parameter in
the WCM can be quantified using various vegetation descriptors such as the normalized
difference vegetation index (NDVI), leaf area index (LAI), polarization ratio (PR), and the
interferometric coherence (CO) [42–44].

Despite the pros and cons of the above SM retrieval techniques in terms of spatio-
temporal resolution and their sensitivity to perturbing factors such as vegetation cover, soil
roughness and meteorological conditions, there is currently no synergistic approach that
takes advantage of all relevant remotely sensed data. To overcome the above-discussed
limitations, this study aims to develop a new algorithm to provide SM at high spatio-
temporal resolution without the need for in situ SM measurements for calibration of radar
data. To do this, the new algorithm combines multi-resolution passive microwave, active
microwave and optical/thermal data and an innovative calibration approach. As a first
step, the DISPATCH algorithm is implemented at 100 m resolution to disaggregate the
36 km resolution SMAP SM at 100 m resolution on clear sky days [45]. DISPATCH is one of
the reference disaggregation methods based on optical/thermal data [13,14,46,47]. As a
second step, the 100 m resolution disaggregated SMAP SM data set is used to calibrate—on
clear sky days with quasi-simultaneous overpasses of SMAP, Landsat, and Sentinel-1—
two different C-band radar models: an empirical linear regression and a semi-empirical
non-linear model based on the WCM formulation. In both (linear and non-linear) cases,
three configurations are tested based on different vegetation descriptors in the model: the
NDVI, PR, and CO separately. The different vegetation descriptors are used to evaluate the
performance of each vegetation descriptor within the calibration/validation approach of
the radar-based SM retrieval scheme. As a third and last step, both calibrated radar models
are run in the inverse mode on all Sentinel-1 overpass dates to estimate the fine-scale SM at
the temporal frequency of Sentinel-1.

Note that most past studies that have investigated soil moisture-related remote sens-
ing tools such as SMAP, MODIS, Landsat and Sentinel-1, have compared the relative
performance of individual techniques (e.g., [14,48,49]). Nevertheless, none of them have
combined all the above sensors within a unique and spatially consistent method. To
the knowledge of the authors, this study is the first to make synergistic use of SMAP,
MODIS, Landsat and Sentinel-1 data to produce a single soil moisture data set at high
spatio-temporal resolution. At the same time, recent research progresses present good
direction for downscaling SMAP-like data using ancillary optical/thermal data [50–52].
However, such disaggregation approaches are still generally implemented at the 1 km
resolution using MODIS or Sentinel-3 data [53–56]. Our study fundamentally differs from
those previous approaches in that DISPATCH is implemented at 100 m resolution by using
Landsat data, so that the spatial variability of SM is represented at a much finer scale,
which is now consistent with the typical size of crop fields.

The proposed original disaggregation/calibration method for SM retrieval is tested
over irrigated and rainfed wheat crop sites in the Haouz plain, central Morocco. In
particular, the SM predicted by both models in different configurations are compared over
the study area to analyze which retrieval approach performs better during the different
stages of the agricultural season.
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2. Materials and Methods
2.1. Study Area and In Situ Data

The study area comprises three experimental sites, namely the R3 irrigated zone and
two (Sidi Rahal and Chichaoua) experimental crop fields, all located in the Haouz plain
within a 100 km distance of Marrakesh city (see Figure 1). The Haouz plain has a semi-arid
Mediterranean climate with an average annual precipitation of 250 mm [57,58] and an
average evaporative demand of about 1600 mm/year [59]. The soil texture is clayey for
the R3 irrigated zone, sandy for the Sidi Rahal site, and loamy-clayey for the Chichaoua
site. The land of three experimental sites (R3 irrigated zone, Sidi Rahal and Chichaoua) are
covered by agricultural crops, primarily cultivated with winter wheat.

(a)

(b)

(c)

Figure 1. Location of the study area, including (a) Sidi Rahal, (b) R3 irrigated perimeter, (c) Chichaoua
experimental sites.

The R3 irrigated study zone contains 22 irrigated (flood-irrigated) wheat parcels, with
3–4 ha each. The strategy for soil moisture sampling over R3 is explained in Amazirh et al. [21]
and Ojha et al. [45]. In each of the 22 crop fields, 10 separate theta probe measurements
were undertaken with 5 on a side of the field and 5 on the other side, by making sure
that all measurements were taken sufficiently far (>5 m) from the field border for spatial
representativeness issues. The field-scale in situ soil moisture data used in this paper were
obtained by (1) calibrating the theta probe readings using gravimetric measurements and
(2) averaging the 10 measurements for each field. Regarding the soil texture analysis, the
samples were packed in plastic bags and properly marked for identification and analysis.
A total of 20 g of the mixed soil was sampled for analyzing grain size distribution. These
soil samples were air-dried and sieved into two fractions: (0.05–2 mm) to calculate the
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percentage of sand content. The smaller fraction passed through a (0.05 mm) sieve was
recovered and collected in a vial and then analyzed using pipette [60] and/or granulometry
laser methods to measure coarse loam (20–50 µm), fine loam (2–20 µm) and clay content
(<2 µm). In this study, five sampling days (day of year 14, 30, 38, 62, 78) in 2016 are used
concurrently with Sentinel-1 overpasses.

Sidi Rahal and Chichaoua sites cover an area of 1 and 1.5 ha separately. In situ SM
data were collected in both the sites every 30 min using time domain reflectometry (TDR)
sensors. Sidi Rahal is a rainfed wheat site, and Chichaoua a drip-irrigated wheat site. At
the Chichaoua site, two TDR sensors were mounted with one between and one under the
drippers. The average TDR measured values were calibrated using the gravimetric method.
More detailed information about the in situ data collection is presented in Rafi et al. [58],
Amazirh et al. [21], Ouaadi et al. [61], Ait Hssaine et al. [62]. The SM data collected during
the time period of 2017–2018 were used in this paper. Note that the irrigated crop in
Chichaoua underwent controlled water stress during the 2018 agricultural season [58].

Note that data from Chichaoua and Sidi Rahal sites were used for calibration and
validation in this paper. However, R3 irrigated zone datasets were used only for validation.

2.2. Remote Sensing Data
2.2.1. SMAP

The SMAP satellite was launched on 31 January 2015 by NASA [8]. SMAP is the
first L-band satellite dedicated to provide SM at a resolution ranging from 3 to 36 km
with a 2–3-day revisit cycle by incorporating both radar and radiometer. However, due
to the failure of the SMAP radar, the SM generated by the SMAP processing chains is
now defined at 36 and 9 km (by resampling technique) resolution. SMAP is a near-polar
sun-synchronous orbit at an altitude of 658 km, with a descending/ascending overpass
at 6:00 a.m./p.m. local time. To manage the SMAP radar failure, the SMAP mission has
recently provided a product that combines SMAP and C-band Sentinel-1 radar data to
provide an SM product at 1 km resolution. In this paper, the 36 km resolution SMAP
level-3 version 005 product available on an EASE grid 2 at https://nsidc.org/data/SPL3
SMP/versions/5 for a time period of 2016 to 2018 is used as input to the DISPATCH
disaggregation method to provide SM data at 100 m resolution over the study areas.

2.2.2. MODIS

MODIS version 6 MOD11A1 and MOD13A2 products on ascending mode Terra
overpass (10:30 a.m.) and MODIS version 6 MYD11A1 product on descending mode Aqua
overpass (1 p.m.) were used in this paper. LST and enhanced vegetation index (EVI) data
extracted from MOD11A1/MYD11A1 and MOD13A2 products, respectively, were used as
input to the DISPATCH disaggregation method. In practice, the C4DIS processor is applied
to SMAP level-3 data to disaggregate SM data at 1 km resolution [54,63].

2.2.3. Landsat

In this paper, optical/thermal data from Landsat-7 and Landsat-8, which have an
offset of 8 days, were used as an input to the DISPATCH disaggregation method. The
DISPATCH algorithm is applied to 1 km resolution disaggregated SMAP SM data using
100 m resolution Landsat LST/NDVI data to produce a disaggregated SM data set at 100 m
resolution [45]. Landsat images are downloaded from the USGS website, which provides
thermal radiance and surface reflectance data on a 30 m resolution sampling grid globally.
Surface reflectance is aggregated at 100 m resolution and used to derive NDVI. The Landsat
thermal radiance is used for the LST calculation using a single band algorithm from band-6
and band-10 of Landsat-7 and Landsat-8, respectively. The detailed description of the
Landsat processing [64] is described in Ojha et al. [45].
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2.2.4. Sentinel-1

Sentinel-1 is a C-band SAR mission that consists of two satellites, Sentinel-1 A (S1-A)
launched in April 2014 and Sentinel-2 (S2-B) launched in April 2016. Sentinel-1 is a sun-
synchronous near-polar orbit satellite with a revisit cycle of 12 days. In this paper, the
radar-based SM retrieval models use VV polarization. As stated in Amazirh et al. [21] and
Ouaadi et al. [31], VV polarization is a better indicator of SM than VH for the selected study
area. Note that VH polarization is still used herein to estimate the PR defined as the ratio
of backscattering coefficients in VH and VV polarizations.

In this paper, the Ground Range Detected (GRD) and Single Look Complex (SLC)
products were downloaded from the Copernicus Sentinel hub. GRD products were used
to compute the backscattering coefficient, whereas SLC products were used to calculate
interferometric coherence. Sentinel-1 level-1 GRD products were processed in four steps:
(1) removing thermal noise by removing the additive effect, (2) radiometric calibration to
compute the backscattering coefficient by using sensor calibration parameters, (3) terrain
correction by correcting the backscattering coefficient for the terrain and geometric effects
using SRTM digital elevation model at 30 m resolution, and (4) reducing the speckle effects
by using Lee speckle filter. The SLC products were also used to calculate the coherence
from the SNAP platform in five successive steps: (1) applying an orbit file for a better
estimation of position, (2) applying back-geocoding for co-registration, (3) running the
“coherence module” to estimate coherence, (4) running the “TOPSAR-Deburst” module for
removing the black band in SLC products, and (5) running the “Terrain correction” module
using SRTM DEM.

The incidence angle for the product is 40 degrees for both R3 and Sidi Rahal sites and
35 degrees for the Chichaoua site Amazirh et al. [21], Ouaadi et al. [31]. Note that the 20 m
resolution Sentinel-1 data were finally resampled at the field-crop scale.

2.2.5. Vegetation Descriptors

Vegetation descriptors depict the growth of vegetation, its density, and its impact on
the radar backscatter. The accuracy and sensitivity of vegetation descriptors are essential for
the correct estimation of SM throughout the agricultural season. Three different vegetation
descriptors used as a proxy for vegetation in the linear and non-linear radar models are
described below:

(1) NDVI is derived from Sentinel-2 surface reflectance—ESA launched the Sentinel-
2 optical satellites S2-A and S2-B in 2015 and 2017, respectively. They provide optical
images at 10–60 m resolution with a revisit cycle of 5 days. The Sentinel-2 level-2 product
downloaded from the THEIA platform is used in this paper. Sentinel-2 product is ortho-
rectified and corrected for the atmospheric effect using the MAJA processor [65] for cloud
detection and atmosphere correction. NDVI is calculated from (near-infrared) band 8 and
(red) band 4.

(2) PR is derived from Sentinel-1 data by taking the VH/VV polarization ratio.
(3) CO is calculated from S1A and S1B from two consecutive acquisitions of the same

orbit (i.e., 6 days overpass with S1A and S1B)—the product of one SAR image with its
complex conjugate of the second image from a local neighborhood [66,67].

Note that the vegetation indices NDVI, PR, and CO are resampled at the crop field
scale and re-normalized by their minimum and maximum values obtained during the
entire study period. The normalized NDVI, PR, and CO values thus lie in the range from
0 to 1.

2.3. Remote Sensing Method
2.3.1. DISPATCH

DISPATCH [46,47] is one downscaling reference algorithm that combines L-band
passive microwave with optical/thermal data to provide SM at the optical/thermal spatial
resolution. DISPATCH was initially developed using MODIS data at 1 km resolution. The
algorithm computes the soil evaporative efficiency (SEE) from optical/thermal data. It dis-
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tributes the 1 km disaggregated resolution SM by establishing a relationship between 40 km
resolution SMOS/SMAP SM and 1 km resolution SEE estimates. SEE shows a quasi linear
relationship with the soil temperature [68] retrieved from optical/thermal data. Note that
the DISPATCH approach assumes that the spatial variability of SM does not significantly
change between the SMOS/SMAP and optical/thermal overpasses. The C4DIS proces-
sor based on the DISPATCH algorithm was developed at Centre Aval de Traitement des
Données SMOS (CATDS) to provide SM at 1 km resolution on a global and daily basis.

Recent improvements in the DISPATCH algorithm (named DISPATCHveg−ext) allowed
increasing its applicability domain by including densely vegetated areas and using the
MODIS EVI instead of MODIS NDVI to increase its robustness over vegetated areas [54].
Herein, the DISPATCHveg−ext algorithm is sequentially applied to 36 km resolution SMAP
SM and to the 1 km resolution disaggregated SMAP SM using MODIS and Landsat
LST/NDVI data, respectively. The two-step downscaling algorithm is fully described
in Ojha et al. [45]. In practice, the 36 km resolution SMAP SM is disaggregated at 1 km
resolution. The 1 km disaggregated data set is aggregated at an intermediate spatial
resolution (ISR) of 10 km, and finally, the 10 km ISR data set is further disaggregated
at 100 m resolution. The use of an ISR between the two disaggregation steps provides
an optimal compromise—in terms of disaggregation efficiency at the target resolution—
between scaling effects and the calibration performance of the contextual DISPATCH
approach [45].

The general equation of the DISPATCH algorithm, which is implemented separately
at 1 km and 100 m resolutions, is defined as follows:

SMHR = SMLR +

(
δSEE
δSM

)−1

LR
∗
(

SEEHR − SEELR

)
(1)

where SMLR is SM at low (either SMAP or 10 km) resolution, SEEHR is SEE at high
(either MODIS or Landsat thermal) resolution calculated from MODIS/Landsat, and(

δSEE
δSM

)

LR

−1

is the inverse of the partial derivative of a SEE(SM) model calculated at LR.

SEE is considered as a linear relationship with soil temperature and is written as:

SEEHR =
Ts,max − Ts,HR

Ts,max − Ts,min
(2)

where Ts,HR is the soil temperature at HR, and Ts,max and Ts,max the soil temperature for fully
dry (SEE = 0) and wet conditions (SEE = 1). More details are given in Ojha et al. [45] and
Ojha et al. [54]. Note that the 100 m resolution DISPATCH SM data are finally resampled at
the field crop scale for comparison with Sentinel-1-based estimates.

2.3.2. Active Microwave Radiative Transfer Models

The calibration/disaggregation scheme is tested with two formulations of radiative
transfer model (RTM) for C-band radar data: an empirical multi-linear regression and a
semi-empirical non-linear WCM-based formulation. The multi-linear RTM is expressed as:

σVV,Linear = aML ∗ SM + bML ∗ V + cML (3)

with aML, bML and cML being three coefficients to be calibrated, and V the vegetation
descriptor (NDVI, PR or CO). σVV is the backscattering coefficient calculated from Sentinel-
1 is expressed in decibels (dB).

The non-linear RTM is derived from the WCM model of Attema and Ulaby [37]. The
radar backscatter is written as the sum of the contributions from vegetation and from the
soil attenuated by vegetation. The vegetation contribution is expressed as:

σVV,veg = AVV ∗ V1 cos θ ∗ (1 − T2
VV) (4)
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T2
VV = e−2BVVV2secθ (5)

where θ is the radar incidence angle, T2
VV is the two-way attenuation, V1 and V2 are the

vegetation parameters and AVV and BVV are unknown coefficient parameters that are
dependent on the vegetation characteristics. Here, V1 = V2 = V, where V can be either the
normalized NDVI, normalized PR or normalized CO. In our case, the soil contribution is
expressed as:

σsoil,VV = aWC ∗ SM + cWC (6)

with aWC and cWC being two calibration parameters.
Using Equations (4)–(6), the non-linear RTM becomes:

σVV,Non−linear = AVVVcosθ[(1 − e−2BVVVsecθ)] + (e−2BVVVsecθ)(aWC ∗ SM + cWC) (7)

where AVVcosθ and 2BVVsecθ are assumed to be constant over each experimental site,
and are hence considered as calibration parameters and defined as AVVcosθ = bWC and
2BVVsecθ = dWC. As a result, the non-linear WCM-based RTM has four parameters (aWC,
bWC, cWC and dWC) to be calibrated:

σVV,Non−linear = bWCV[(1 − e−dWCV)] + (e−dWCV)(aWC ∗ SM + cWC) (8)

Note that by neglecting the vegetation impact (V = 0), the non-linear model has the
same expression as the linear one. The dWC parameter represents here a non-linearity index
of the vegetation impact on the radar backscatter. In the same vein, parameters a, b and c
have the same meaning in both linear and non-linear RTM, so that their calibrated values
over the same sites can be compared.

2.3.3. Coupling DISPATCH Data with Sentinel-1-Based SM Retrieval Algorithms

Figure 2 shows the schematic diagrams for the coupling of disaggregated SM with
the SM retrieval algorithms based on the Sentinel-1 backscattering coefficient explained
in three different steps. In the first step, a 100 m resolution SM data set is produced by
disaggregating SMAP SM data at 100 m resolution. The disaggregation procedure consists
of sequentially applying DISPATCH to 36 km resolution SMAP data using MODIS data
and to 1 km resolution disaggregated SM using Landsat data [45]. In the second step, the
previously derived 100 m resolution SM is used as a reference data set to calibrate the
C-band RTM of Equations (3) and (8). In the third step, the so-calibrated RTM are run in the
inverse mode to predict SM on each Sentinel-1 overpass date. The retrieved SM values are
finally evaluated using the in situ SM measurements collected concurrently with Sentinel-1
data. Note that the main advantage of such a disaggregation/calibration coupling scheme
is not requiring in situ data for calibrating radar models. Different configurations of radar
models are tested in terms of the linear/non-linear representation of vegetation effects on
the radar signal and the nature of vegetation descriptors (either NDVI, PR, or CO).

2.3.4. Calibration Parameters

The three calibration parameters (aML, bML and cML) of the linear RTM of Equation (3)
and the four parameters (aWC, bWC, cWC and dWC) of the non-linear RTM of Equation (8)
are calibrated using the 100 m disaggregated SMAP SM data set as a reference. To evaluate
the impact of uncertainties in DISPATCH 100 m resolution data, the calibration procedure
is also undertaken using in situ (instead of DISPATCH) SM. In both (calibration using
DISPATCH or in situ SM) cases, and with both (linear and non-linear) RTM, three model
configurations are investigated by selecting NDVI, PR or CO as the vegetation descriptor
within the radar modeling.
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Figure 2. Schematic diagram of the calibration/disaggregation coupling scheme combining SMAP
passive microwave, MODIS/Landsat optical/thermal and Sentinel-1 radar data at a range of spatial
resolutions to provide an SM product at the field scale at the temporal frequency of Sentinel-1.

The calibration parameters for the linear RTM are estimated from the linear regression
by using the ordinary least square method. The calibration parameter for the non-linear
model is calculated from the non-linear least square method that is based on the Levenberg–
Marquardt algorithm [69]. The optimization algorithm used here minimizes the squared
error difference between the observed and predicted backscatter coefficient. For both linear
and non-linear RTM, the covariance matrix is calculated. The standard error is calculated
from the covariance matrix by the square root of the diagonal. The standard error of each
calibration parameter is calculated to identify the uncertainty of the retrieved calibration
parameters and possible compensation effects between retrieved parameters. Note that the
standard error is systematically presented in terms of percentage relative to the retrieved
parameter value.
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For the calibration of a, b, c and d parameters, long time series of DISPATCH and
Sentinel-1 data are preferred so as to cover a wide range of surface and vegetation con-
ditions. This is the reason why the calibration procedure is undertaken herein only over
Chichaoua and Sidi Rahal sites, where data were collected for more than one year. A
calibration data set is derived for each site separately, while the R3 data set is kept for the
e of the retrieved SM using a fully independent data set. The R3 data set covers only a
few months during the agricultural season and is hence not fully relevant for calibration
purposes. However, the in situ SM data distributed within the 22 crop fields of the R3
perimeter will be used to assess the performance of the approach in space at different times
of the season. In practice, for the R3 application, the parameters used as input to the RTM
are set to the average of the parameters retrieved over Chichaoua and Sidi Rahal sites.

Regarding the calibration strategy of the non-linear RTM, attention should be paid
to the compensation effects between bWC and dWC parameters (not shown). Especially,
when attempting to retrieve aWC, bWC, cWC and dWC parameters simultaneously using
the brute-force method, large relative standard errors were systematically obtained for
both vegetation parameters ( bWC and dWC ), notably when the retrieved dWC was close
to zero (low vegetation impact). This resulted in estimated percentage errors larger than
100%. Therefore, one parameter can be removed from the calibration without changing
the results of the calibrated RTM model. Hence, a slightly different strategy was adopted
by constraining the bWC parameter of the non-linear RTM to be equal to the retrieved
bML value in the linear RTM case. Consequently, the calibration of the RTM consists in
retrieving, aWC, cWC and dWC as free parameters while setting bWC equal to an a priori
value as an additional constraint for solving the ill-posed problem.

3. Results

In this section, the calibration approach is first applied to both (linear and non-linear)
RTM in different configurations: using three vegetation descriptors (NDVI, PR, and CO)
with two (in situ, DISPATCH) reference SM datasets separately. Then the calibrated
parameters are used to estimate SM from Sentinel-1/2 data. Finally, in situ SM collected in
Sidi Rahal, Chichaoua and R3 sites are used to analyze the accuracy of predicted SM.

3.1. Accuracy of DISPATCH SM

The accuracy of DISPATCH 100 m resolution SM is assessed with the in situ SM data set
used in this study. Although, the objective herein is not to provide a full validation of the 100
m resolution disaggregated data set, it is still useful to first assess the uncertainty of this SM
product with a view to better understand its possible impact on the calibration approach.

Figure 3 shows the scatter plots between DISPATCH and in situ SM (Chichaoua, Sidi
Rahal). Chichaoua and Sidi Rahal sites show a correlation coefficient (R) value of 0.81 and
0.49, respectively. The mean bias (MB) at the Sidi Rahal site is relatively large whereas
it is not significant at the Chichaoua site. Such a dry bias at Chichaoua can be due to
uncertainties in SMAP data, in the DISPATCH methodology and/or its ancillary data as
well as possibly the spatial heterogeneity of SM at a scale finer than 100 m. To try and
explain the key reasons for the differences between Sidi Rahal and Chichaoua sites, the bias
between remotely sensed and in situ SM was investigated in the original SMAP, the 1 km
resolution DISPATCH and the 100 m resolution DISPATCH data sets separately. The bias
in the original SMAP (and 1 km DISPATCH in parenthesis) SM is −0.06 (−0.06) m3/m3

and −0.02 (−0.05) m3/m3 at Sidi Rahal and Chichaoua sites, respectively.
Having a negative bias on low-resolution SM data at the Chichoua site is fully expected

as the local irrigation makes the wheat field generally wetter than the surrounding area
covered by the SMAP pixel. However, observing a negative bias in low-resolution SM data
at the Sidi Rahal site (and even more negative than at the Chichaoua site) is unexpected. In
fact, as a dryland site surrounded by irrigated areas in the west/east and bordered by the
Atlas piedmont in the south, the Sidi Rahal site should be one of the driest part within the
SMAP pixel. Therefore, the strong negative bias in 100 m resolution DISPATCH SM at Sidi
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Rahal site is likely to be attributed to a negative bias in SMAP data over that area and/or a
lack of representativeness of in situ measurements in terms of sensing depth (the surface
TDR sensors are located in the 5–10 cm soil layer, whereas SMAP senses, on average, the
3–5 cm soil layer).

Figure 3. DISPATCH 100 m resolution disaggregated SM versus in situ measurements at Chichaoua
(top) and Sidi Rahal (bottom) sites.

This brief evaluation of 100 m resolution DISPATCH SM indicates that the accuracy of
the disaggregated dataset can be low due to the presence of bias. However, the disaggre-
gated SMAP data set can capture most of the spatial variability of SM at 100 m resolution
as well as the SM dynamics across the agricultural season from the early stage of the crop
growth to the fully grown vegetation.
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3.2. Evaluation of Calibration Parameters

Table 1 reports the value of calibrated parameters for Chichaoua and Sidi Rahal and
their associated standard error for each (linear and non-linear) RTM, using in situ SM
data sets as reference for the calibration. The calibration parameters (and their associated
standard errors) of both RTM for the three vegetation descriptors (NDVI, PR, and CO)
are compared.

Table 1. Values of the calibration parameters and their standard error for linear and non-linear RTM using NDVI, PR and
CO as vegetation descriptor separately for Chichaoua (left) and Sidi Rahal (right) sites where in situ SM data are used for
the calibration.

Vegetation
Descriptors Chichaoua Sidi Rahal

Linear

Calibration parameter
aML(dB*m3/m3)/bML(dB)/cML(dB)

NDVI 19/−3/−14 20/−0.7/−18

PR 16/−6/−12 20/−4/−16

CO 15/3/−16 17/3/−19

Standard error percentage
stdaML (%)/stdbML (%)/stdcML (%)

NDVI 17/28/2 15/124/3

PR 12/11/3 10/21/3

CO 16/18/3 14/30/3

Non-linear

Calibration parameter
aWC(dB*m3/m3)/bWC(dB)/cWC(dB)/dWC(dB)

NDVI 18/−3/−14/−0.28 19/−0.7/−18/−0.04

PR 11/−6/−11/−0.9 17/−4/−16/−0.4

CO 18/3/−17/0.2 18/3/−19/0.15

Standard error percentage
stdaWC (%)/stdbWC (%)/stdcWC (%)/stddWC (%)

NDVI 13/28/2/21 14/124/3/175

PR 11/11/4/12 11/21/4/26

CO 14/18/3/14 14/30/4/33

Overall, the retrieved parameters are relatively consistent from one configuration
(linear/non-linear RTM and vegetation descriptors) to the other and for both (Chichaoua
and Sidi Rahal) sites. The only significant difference in the results between tested con-
figurations is the change in the sign of the b parameter for the CO vegetation descriptor.
Indeed, the backscattering coefficient is negatively correlated with NDVI and PR and posi-
tively correlated with CO. However, the absolute value is rather similar in all cases, which
confirms that any of the three vegetation descriptors can be used to model the vegetation
effect on a radar signal. Nonetheless, when looking at the standard error percentage on
the retrieved parameters, significant differences appear between parameters and between
configurations. For instance, the c parameter has a very small uncertainty (about 3%) in
all cases. The uncertainty in the retrieved a parameter is relatively larger (about 13% on
average for all cases), but it is quite stable and consistent in all cases. However, larger
errors are obtained for the parameters b and d associated with the vegetation modeling.
The overall uncertainty in b and d parameters is estimated as 39% and 47%, respectively. By
removing the data associated with parameter values close to zero, the overall uncertainty
drops to 21% and 18%, respectively. Interestingly, the relative error in retrieved parameters
slightly varies with the vegetation descriptor used. It is minimum with PR, maximum with
NDVI and intermediate with CO. This is valid for all configurations, including linear/non-
linear RTM and both Chichaoua/Sidi Rahal sites. Similar to Table 1, Table 2 shows the
value of the calibrated parameters but when the DISPATCH 100 m SM dataset is used
as a reference in the calibration. As expected, the error in retrieved parameters increases
when using remotely sensed (DISPATCH) instead of in situ SM data. For instance, the
overall relative error in the c parameter is 9%, compared to 3% when using in situ data
for calibration. By comparing results for the three vegetation descriptors, PR shows the
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best performance with an average standard error (all parameters combined) of 20% and
25% over Chichaoua and 25% and 28% over Sidi Rahal, for the linear and non-linear RTM
respectively. In addition, the retrieved values using DISPATCH data are closer to the in
situ case for the PR configuration compared to NDVI and CO configurations. In particular,
the CO configuration seems to be very sensitive to uncertainties in the reference calibration
data set, resulting in relative errors of a parameter larger than 100% (see Table 2 for the Sidi
Rahal site).

Table 2. Same as Table 1 where DISPATCH SM data are used for the calibration.

Vegetation
Descriptors Chichaoua Sidi Rahal

Linear

Calibration parameter
aML(dB*m3/m3)/bML(dB)/cML(dB)

NDVI 34/−7/−14 26/−4/−12

PR 19/−9/−11 19/−6/−12

CO 23/5/−18 11/4/−16

Standard error percentage
stdaML (%)/stdbML (%)/stdcML (%)

NDVI 27/46/6 38/47/10

PR 29/24/8 41/27/8

CO 28/29/7 121/67/9

Non-linear

Calibration parameter
aWC(dB*m3/m3)/bWC(dB)/cWC(dB)/dWC(dB)

NDVI 20/−7/−13/−0.76 19/−4/−12/−4

PR 10/−9/−10/−2 14/−6/−11/−0.78

CO 25/5/−18/0.27 12/4/−16/0.24

Standard error percentage
stdaWC (%)/stdbWC (%)/stdcWC (%)/stddWC (%)

NDVI 25/46/6/41 41/47/11/54

PR 32/24/12/31 44/27/9/31

CO 29/29/8/30 122/67/9/67

Summarizing the results for two different (in situ, DISPATCH) calibration SM datasets,
all three vegetation descriptors (NDVI, PR, CO) provide useful information about veg-
etation effects, which can be efficiently represented by a linear or a non-linear model.
Nevertheless, the PR configuration shows slightly better results than the NDVI and CO
configurations with smaller estimated uncertainties in the retrieved parameters, and with a
better stability against errors and biases in DISPATCH data. Moreover, the consistency of
parameter values indicates that DISPATCH data can be used for calibrating the RTM mod-
els, despite the errors in the remotely sensed SM that may compensate over relatively long
time series. Finally, the parameter values are rather similar for both linear and non-linear
RTM, so that, from the calibration point of view, both approaches are still relevant.

3.3. Evaluation of SM Estimates

Each calibrated parameter set is fed into the linear and non-linear RTM and the
SM is derived from radar backscatter and vegetation descriptor observations by using
the (linear/non-linear) RTM in the inverse mode: Formally, SM for the linear model is
expressed as:

SMLinear = (σVV − bML ∗ V − cML)/aML (9)

SM for a non-linear model is expressed as:

SMNon−linear = ((σVV − bWC ∗ V) ∗ edWCV + (bWC ∗ V)− cWC)/aWC (10)

The predicted SM is evaluated using in situ measurements collected over the R3
perimeter and at the Sidi Rahal and Chichaoua sites.
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3.3.1. Temporal Analysis

SM is evaluated using two different calibration inputs (1) in situ SM and (2) DISPATCH
SM at 100 m. Figure 4 plots predicted versus in situ SM in the case where in situ SM data
are used to calibrate the RTM for three different vegetation descriptors (NDVI, PR, CO).
For both sites (Chichaoua and Sidi Rahal), PR shows better performance with an R in the
range 0.72–0.82 and 0.74–0.80 for linear and non-linear RTM, respectively. Note that the
slope (S) and the bias for the linear case are equal to 1 and zero, respectively. It is because
the same in situ SM data set is used for the calibration and validation. In general, the
SM results are consistent with the previous study about calibration parameters as the PR
configuration consistently provides a lower uncertainty in model parameters and more
accurate estimates of SM.

Similar to Figure 4, Figure 5 shows the scatter plots between predicted and in situ
SM, where DISPATCH SM data at 100 m resolution are used for calibration. When using
DISPATCH SM data for calibration, the NDVI configuration shows a better performance
for both linear and non-linear RTM models with R in the range 0.76–0.79 and 0.77–0.80 for
both sites (Chichaoua and Sidi Rahal). Statistical results are significantly poorer for the CO
configuration with an R in the range 0.64–0.68 for Chichaoua and Sidi Rahal, respectively.

Note that the MB in retrieved SM is quite large for Sidi Rahal. Such an MB was not
observed when using in situ SM datasets for calibration. The bias is directly attributed
to the dry bias in the SMAP disaggregated SM data sets (similar dry bias observed in the
accuracy assessment of DISPATCH SM datasets). In general, the statistical results using
DISPATCH instead of in situ SM data are degraded, but not in all cases, since with the
NDVI configuration (for linear/non-linear RTM and both sites) the correlation is improved
when using DISPATCH data as a reference data set. This observation is consistent with the
good performance of DISPATCH over the Chichaoua site (see Figure 3). Note that part of
the errors obtained in the comparison between the remotely sensed SM product and the
localized TDR measurements may be attributed to the (not measured) possible variability
of soil moisture within the field. However, given that the agricultural practices (including
irrigation) are homogeneous at the field scale, this effect is assumed to be minor compared
to other error sources.

3.3.2. Spatio-Temporal Analysis

Since the performance of the CO configuration is significantly weaker than both PR
and NDVI configurations in terms of both RTM parameter uncertainties and the accuracy
in predicted SM, only the NDVI and PR cases are implemented in the evaluation of the
approach over the R3 study area. It is reminded that over R3, the linear and non-linear RTM
are run using the parameters estimated as the average of those retrieved over Chichaoua
and Sidi Rahal sites. The objective is to assess the robustness of the calibration strategy in
space at different times of the season.

Figure 6 shows the scatter plots between predicted and in situ SM over R3 for spatio-
temporal analysis, where in situ SM data are used to calibrate the RTM for two different
vegetation descriptors (NDVI, PR). Here, the NDVI configuration shows a larger R for
DOY 14, 30, and 38 in the range 0.53–0.74 by combining the quite similar result for both
linear and non-linear RTM. Instead, the PR configuration shows better performance for
DOY 62 and 78 with an R in the range 0.15–0.41 and 0.09–0.37 for linear and non-linear
RTM, respectively. Note that the relatively poor performance on DOY 78 may be due to the
time difference between SM sampling dates since ground measurements were undertaken
on two successive days with one-half of the monitored crop fields on DOY 78 and the other
half on the day after.
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Figure 4. Scatter plot over Chichaoua (top) and Sidi Rahal (bottom) of predicted versus in situ SM, for linear and non-linear
RTM with NDVI, PR and CO as vegetation descriptors separately where in situ SM data are used for calibration.
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Figure 5. Same as Figure 4 but with DISPATCH SM data used for calibration.
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Figure 6. Scatter plot over the R3 irrigated parameter of predicted versus in situ SM, for linear (left) and non-linear (right)
RTM with NDVI and PR as a vegetation descriptor separately where in situ SM data are used for calibration.

Figure 6. Scatter plot over the R3 irrigated parameter of predicted versus in situ SM, for linear (left) and non-linear (right)
RTM with NDVI and PR as a vegetation descriptor separately where in situ SM data are used for calibration.
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Figure 7 shows the time series of R and S between the predicted and in situ SM for
both linear and non-linear RTM and for NDVI and PR vegetation descriptors separately.
The graphs show that both (linear and non-linear) RTM with NDVI and PR vegetation
descriptors behave similarly. R and S both increase during the early stages of the vegetation
growth and then both decrease when the vegetation is fully developing. As the vegetation
growth increases, the R decreases for both models, especially when the vegetation index
is above 0.6 in-line with the study of Baghdadi et al. [70]. The time series of Figure 7 also
illustrates that the NDVI as a vegetation descriptor shows better performance than the PR
configuration during the early stage of the vegetation growth, but when vegetation is fully
developed, the PR for both linear/non-linear models shows better performance. This is
because NDVI is more sensitive than PR to small variabilities of vegetation cover during
early stages of crops while it becomes saturated above a given threshold of biomass/LAI
that is lower than the saturation threshold or PR [71,72]. The use of NDVI or PR as a
vegetation descriptor is therefore a compromise between precision and accuracy in a range
of crop covers.

Figure 7. Time series of the correlation coefficient and slope of the linear regression between predicted
and in situ SM for both (linear and non-linear) RTM, two vegetation descriptors (NDVI and PR)
separately, and where in situ SM datasets are used for the calibration.
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Figure 8 shows the scatter plot between predicted and in situ SM where DISPATCH
100 m SM data are used for calibration and in situ SM data for validation. On DOY 14,
30, 38, the NDVI configuration still shows a better performance with an R in the range
0.55–0.74 and 0.55–0.70 for linear and non-linear RTM, respectively. For DOY 62 and 78, the
PR configuration better performs for the linear RTM, with an R in the range 0.36–0.50, but
a more inadequate performance in non-linear RTM, whereas the NDVI shows an adequate
configuration for the non-linear RTM, with an R in the range 0.20–0.41. The statistical results
are consistent with the results obtained by using the in situ SM datasets for calibration, but
with a dry bias in predicted SM associated with the dry bias in DISPATCH data over the
Sidi Rahal site.

Table 3 reports the mean (average of all dates) statistical metrics in terms of R, S, MB,
RMSD, and ubRMSD between predicted and in situ SM for both (linear and non-linear)
RTM with their vegetation descriptors (NDVI, PR) and for both calibration strategies (using
in situ and DISPATCH SM data separately for calibration). The overall results confirm the
finding that the use of NDVI or PR as a vegetation descriptor and a linear or non-linear
RTM is a trade-off between precision (as described by R) and accuracy (as described by
S) all along the agricultural season. Based on our data set, the linear RTM using the PR
as a vegetation descriptor offers a relatively good compromise in terms of robustness all
throughout the season and simplicity with only three parameters to estimate.

Table 3. Mean statistical results over 22 parcels of R3 irrigated sites in terms of correlation coefficient (R), slope of the linear
regression (S), mean bias (MB), RMSD, and ubRMSD between predicted and in situ SM, for linear and non-linear RTM
with NDVI and PR as a vegetation descriptor and where in situ (left) and DISPATCH (right) SM datasets are used for
calibration separately.

Calibration In Situ SM Datasets DSIAPTCH SM Datasets

Model R
(-)

Slope
(-)

MB
(m3/m3)

RMSD
(m3/m3)

ubRMSD
(m3/m3)

R
(-)

Slope
(-)

Absolute MB
(m3/m3)

RMSD
(m3/m3)

ubRMSD
(m3/m3)

Linear
NDVI 0.43 0.43 0.01 0.10 0.08 0.54 0.42 0.13 0.15 0.07

PR 0.45 0.48 0.01 0.10 0.08 0.47 0.53 0.10 0.13 0.08

Non-linear
NDVI 0.43 0.43 0.01 0.10 0.08 0.51 0.50 0.11 0.14 0.07

PR 0.43 0.48 0.01 0.10 0.08 0.33 0.40 0.10 0.14 0.09

Note that the in situ-based calibration shows better performance than the DISPATCH-
based calibration. The point is that in situ data are in general extremely sparse and often
simply unavailable so that such calibration cannot be undertaken continuously in space
over a range of vegetation types and soil textures.

3.3.3. Gain in Accuracy at the Fine Scale Compared to SMAP

The proposed calibration-disaggregation coupling scheme applies the downscaling
algorithm DISPATCH twice, uses as input a number of ancillary data sets including MODIS
and Landsat data, and undertakes a calibration of a C-band radiative transfer model using
Sentinel-1 backscatter data. All these successive steps are likely to introduce errors that
may accumulate in cascade from the SMAP (40 km) resolution to the targeted 100 m
resolution. This is all the more critical as DISPATCH introduces uncertainties through the
(uncertain) downscaling relationship and through the errors in its input data. Nevertheless,
downscaling algorithms especially aim to improve the spatial representativeness of SM
estimates, meaning they provide fine scale information that is expected to improve the
accuracy of the disaggregated data at the targeted resolution. In fact, there exists a trade-off
in data disaggregation between the added uncertainty (which decreases data accuracy at
the fine scale) and the improved spatial representativeness (which increases data accuracy
at the fine scale). In our case, the uncertainty assessment is made more complex due to



Sensors 2021, 21, 7406 20 of 26

the additional calibration step, as the disaggregated data set at 100 m resolution is not the
final remote sensing product. It is only used to calibrate a Sentinel-1-based SM retrieval
algorithm. Therefore, the random errors in the 100 m resolution disaggregated SM data are
expected to have (and this assumption is verified in this study) a relatively small impact on
the final Sentinel-1-based SM product.
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Figure 8. Same as Figure 6 but with DISPATCH SM data used for calibration.
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One key issue is hence evaluating the accuracy of the 100 m resolution SM predicted
by the calibration-disaggregation coupling scheme, compared to the original 40 km res-
olution SMAP SM estimate. A solution is to simply compare the performance of both
products at the fine scale using localized in situ measurements [55]. Figure 9 compares the
overall performance at the field scale of SMAP (original data without disaggregation and
without synergy with Sentinel-1), the 1 km DISPATCH SM product and the calibration-
disaggregation coupling scheme over Sidi Rahal and Chichaoua sites separately. In each
case, the comparison between remotely sensed SM and in situ measurements was made
on a point-by-point basis by extracting the pixel overlying the site. For clarity, in all cases,
the remaining bias was removed and SM values below the residual SM (estimated as
0.02 m3/m3) were set to the residual SM. It is visible that the scatter of remotely sensed
SM is generally larger for the calibration-disaggregation coupling scheme, as a result of
the uncertainty added by the disaggregation and calibration steps. The point is that, and it
is the main rationale for developing such a multi-sensor/multi-resolution approach, the
spatial representativeness of the calibrated-disaggregated SM at the field scale is clearly
superior to that of the original SMAP SM. In particular, the predicted range of SM values
is much closer to that of in situ measurements in the calibration-disaggregation case, as
supported by a slope of the linear regression between satellite and in situ SM significantly
closer to 1. Note that the slope of the linear regression is a very relevant metric for evaluat-
ing the spatial representativeness of remote sensing data at a range of spatial scales because
it combines both the correlation and the spatial variability indicators [55]. In all cases (both
sites and linear/non-linear models), the calibrated-disaggregated outperforms the original
SMAP SM estimates in terms of correlation coefficient, slope of the linear regression and
unbiased root mean square error between satellite and in situ SM. Consequently, the added
uncertainty due to the disaggregation and calibration steps is relatively small and still
acceptable at 100 m resolution compared to the huge SM spatial variability over our study
area, which is not represented by SMAP data.

Figure 9. Scatter plots (from left to right) of the original 40 km resolution SMAP SM, the 1 km resolution DISPATCH SM,
the 100 m resolution calibrated-disaggregated SM for the linear model and the 100 m resolution calibrated-disaggregated
SM for the non-linear model versus in situ measurements, for Sidi Rahal (top) and Chichaoua (bottom) sites separately.

4. Conclusions

An original approach is developed to provide SM products at a high spatio-temporal
resolution based on a synergy between multi-resolution passive microwave, active mi-
crowave, and optical/thermal data. It is a three-step procedure in which (1) the 36 km reso-
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lution SMAP SM is disaggregated by DISPATCH at 100 m resolution using MODIS/Landsat
optical/thermal data on clear sky days, (2) the 100 m resolution disaggregated SM data
set is used to calibrate a radar-based SM retrieval model and (3) the so-calibrated radar
model is run at field scale on each Sentinel-1 overpass. The calibration-disaggregation
coupling approach is tested using two radar models (an empirical linear regression model
and a non-linear semi-empirical formulation derived from the water cloud model) and
three different vegetation descriptors (NDVI, PR, and CO). The retrieved SM values are
finally evaluated over three sites (Chichaoua, Sidi Rahal and R3 perimeter) in central
Morocco using the in situ SM measurements collected concurrently with Sentinel-1 data. A
calibration data set is derived for Chichaoua and Sidi Rahal sites separately, where data
were collected for more than one year, while the R3 data set is kept for the evaluation of
the retrieved SM using a fully independent data set.

An evaluation of the retrieved parameters of the linear and non-linear RTM indicates
that all three vegetation descriptors (NDVI, PR, CO) provide useful information about
the vegetation effects on the radar signal, which can be efficiently represented in terms
of model calibration, by a linear or a non-linear RTM. However, the PR configuration
shows slightly better results than the NDVI and CO configurations with smaller estimated
uncertainties in the retrieved parameters, and with a better stability against errors and
biases in DISPATCH SM data.

In terms of predicted SM estimates, the temporal analysis (over Chichaoua and Sidi
Rahal sites) indicates that the PR configuration shows better performance when in situ SM
datasets are used for calibration. In contrast, the NDVI configuration shows slightly better
performance when DISPATCH SM datasets are used for calibration. The spatio-temporal
analysis (over R3 irrigated site) indicates that the NDVI configuration performs better
(when calibration is undertaken using in situ or DISPATCH SM datasets), especially during
the early stages of the agricultural season. However, the PR configuration still provides a
more robust vegetation descriptor all throughout the agricultural season, consistent with
the lower uncertainty in modeled parameters. In terms of linearity of the RTM, results
are found very similar for both linear and non-linear formulations, so that the added
complexity of the non-linear representation is not clearly justified by our data set.

The new calibration/disaggregation coupling scheme presented here does not require
in situ data and has thus a strong potential for providing good quality and frequent SM
data at a field scale over large areas for agricultural purposes. Despite the satisfying results
obtained over the study sites in this paper, the 100 m resolution pixel may be relatively
low compared to the typical size of crop fields in many regions. Two avenues are foreseen
to help increase this resolution. The first avenue would be to consider the higher spatial
resolution of Sentinel-1 data: the RTM parameters obtained at 100 m resolution from
the synergy between DISPATCH and Sentinel-1 data, as presented in this paper, could
be used at 20 m resolution to invert SM from Sentinel-1 at 20 m resolution. The second
avenue would be to prepare for the near future advent of thermal infrared sensors with
improved capacities in terms of spatial and temporal resolutions such as the TRISHNA
mission [73]. In addition, a characterization of the error sources coming from the original
SMAP data and from the DISPATCH methodology is necessary to assess their impact in
the calibration procedure over a wider range of conditions. It is further reminded that both
DISPATCH and Sentinel-1 data have intrinsic limitations, including the impact of cloud
coverage (DISPATCH) and the lack of SM sensitivity over densely vegetated pixels (both
DISPATCH and Sentinel-1). Nonetheless, further validation is needed to cover various
incidence angles of Sentinel-1, crop types, and surface conditions in the future. In addition,
a characterization of the error sources coming from the original SMAP data and from the
DISPATCH methodology is necessary to assess their impact in the calibration procedure
over a wider range of conditions. Furthermore, attention is drawn to one assumption
underlying the temporal calibration strategy of the radar model: parameters were assumed
to be constant in our study. The point is that soil roughness and vegetation parameters
are likely to vary in time as a result of agricultural practices (notably, plowing and crop
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rotation). Therefore, future studies should investigate the dynamical retrieval of model
parameters over periods long enough to allow for an efficient calibration using a sufficient
number of DISPATCH SM estimates concurrently with Sentinel-1 overpasses and, at the
same time, short enough to represent possible changes in model parameters.
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7.1 Introduction

Remote sensing data provide synoptic, spatially integrated, and temporally consistent informa-
tion about the surface state. However, most of the Earth observation satellites use polar orbits
so that the remotely sensed data have a repeat cycle of one day for medium resolution sensors,
but usually one week or more for high-resolution sensors. For instance, the DISPATCH100m

algorithm presented in Chapter 5 runs with Landsat optical/thermal data, with a frequency of
one image every 16 days when using Landsat-8, and one image every eight days when combining
both Landsat-7 and Landsat-8. Another example is given by the radar-based soil moisture (SM)
retrieval approaches, with a potential frequency of SM data of 6 days by combining ascending
and descending orbits and different incidence angles. The revisit time of about one week is still
relatively long for quick processes like evaporation, and for related applications like irrigation
monitoring and scheduling, for which data available every day would be most useful.

To overcome the frequency limitation of currently available remote sensing data, the assimilation
of data in land surface models, which simulates the dynamics of flux and state variables like SM,
is a physically-based, renowned and widely-used tool.

Data assimilation combines observation (in situ or satellite) information and a dynamic model
(represented in a mathematical equation or land surface model) to provide the information with
time continuously. SM is an essential variable in hydrological models. Hence hydrological models
are generally used to integrate SM data within the modeled hydrological processes. However,
hydrological processes are highly variable in 3 dimensions, so a complete assessment of all the
variables in the hydrological model is challenging. For this reason, most of the studies focus on
simpler 1D or 2D SM data assimilation.

The disaggregated SM product at 1 km resolution is sensitive to irrigation but with low spatial-
temporal resolution. In contrast, the hydrological model provides SM on a daily temporal basis
but is insensitive to irrigation. In this context, downscaled SM product at 1 km resolution is
used in the hydrological model to provide SM on a daily temporal basis (Malbeteau et al., 2018)
that is sensitive to irrigation. But the limitation still exists with a low spatial resolution for the
use of irrigation purposes. The hydrological model used similar to (Malbeteau et al., 2018) to
provide SM at the field scale to provide SM at a high spatial-temporal resolution.

This chapter presents an original case study in which the assimilation of remotely sensed data is
undertaken over an irrigated crop where irrigation is unknown. The science question we propose
to address is : Can a high-resolution SM data set be assimilated to compensate for errors in the
model associated with a missing forcing? We set the assimilation configuration so that precipi-
tation is included as input to the model but not irrigation. This issue is particularly relevant on
an operational point of view since the water balance of irrigated crops is essentially dependent
on irrigation, and this man-made flux is commonly (even over modern irrigation areas) unknown
at fine space-time scales, whereas meteorological data are usually available nearby.

The assimilation approach is tested over two experimental fields named Foradada and Agramunt,
located in the Urgell irrigation district in Spain. The Foradada and Agramunt field is 20 ha and
20.5 ha, and they are irrigated under the Segarra Garrigues system, where drip and sprinkler
irrigation is used. The unique property of this area is that dryland areas surround it. So, during
winter, the area is similar to the surrounding area, but when the site is irrigated in summer,
the surrounding area remains dry. The irrigated area is not visible from the 1 km resolution
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DISPATCH SM product (Fontanet et al., 2018). The area is so small that the 1 km resolution
is too coarse and cannot differentiate between the irrigated and dry land areas. To assess the
capability of the DISPATCH100m SM dataset and to detect field-scale irrigation through the
disaggregation-assimilation coupling scheme, the assimilation results are compared to the case
when using the 1 km resolution DISPATCH SM as input to the same assimilation scheme still
implemented at the field scale (either Foradada or Agramunt site).

7.2 Method

The model and assimilation scheme used are similar to the study of Malbeteau et al. (2018).
However, the application context is quite different from that previous study. Indeed, Malbeteau
et al. (2018) assimilated the 1 km resolution DISPATCH SM in a model implemented at the
same resolution. Therefore, neither the observation nor the model grid size was able to resolve
the field size so that field-scale irrigation events could not be detected. Instead, the irrigation
could be somehow and indirectly quantified by the assimilation update of the root zone SM at
the seasonal time scale. The material used to develop the assimilation scheme is presented in
this section.

7.2.1 Force restore model

Deardorff (1977) established the force and restore model employed in this investigation to esti-
mate surface SM. The model used in this study preserves the physics of the main interactions
between the soil, vegetation, and atmosphere. In addition, the force and restore formulation of
the soil component requires few input parameters. Therefore, it is a good compromise between
the physical representation and its complexity.

In the force and restore model, the relation between SM, evaporation, and precipitation can be
expressed by the following expression:

δθ

δt
= C1

ρw ∗ d
(P − E) − C2

τ
(θ1 − θeq) (7.1)

where, E is the evaporation of the soil surface, P is the precipitation, ρw is the density of the
water, τ is the time constant, d is the normalization depth of 10 cm, C1 and C2 are the force
and restore coefficients; θ1 is the surface SM, and θeq is the SM at the equilibrium between the
gravity and the capillary forces. The first term on the right hand side of the equation represents
the forcing terms, where the coefficient C1 drives the moisture exchange between the surface
and the atmosphere. The other part of the equation is termed restore, representing the vertical
diffusions between the root zone SM and surface layers. The parameter C2 controls it, and it
quantifies the rate at which SM at the root zone and external layer are restored to the SM at
equilibrium. The model is characterized into the surface layer and the root zone layer. In this
model, the surface SM layer is simulated, and the root zone SM layer is taken as a buffer variable
to normalize the bias between the DISPATCH100m SM and force-restore prediction.

7.2.2 Assimilation techniques

Data assimilation is a mathematical field that combines a numerical model (theory) with obser-
vations efficiently. This chapter uses data assimilation to integrate the data from the land surface
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model and the observation (field or remote sensing satellite). Both model and observation are im-
perfect and, when used together, provide a more accurate estimation of products than when used
individually. On the one hand, the model gives SM information on a geographic and temporal
basis, with an inaccuracy, at the model resolution. On the other hand, remote sensing data offers
near-surface SM information at a specific time. Since near-surface SM is highly variable in time
and space, it isn’t easy to encounter such high variability with either of them. So, the simulated
SM from the model is combined with remote sensing observation to improve the accuracy and
the frequency of the estimated SM.

Since we have a dynamic model, we need to find the best estimate for SM from the observation
such that the error between the model and the observation is reduced. Based on this, two
approaches are suggested 1) direct or sequential techniques 2) dynamic or variational techniques
and are discussed in the following subsections.

Sequential assimilation

Sequential assimilation is primarily used in real-time analysis. It analyses the information based
on the knowledge of the initial states and combines the model’s data when the observation (i.e.,
satellite data) information is present and estimates a new value for the assimilation model. Since
estimations are done for the model using current observation data, the assimilated model outputs
real-time information. The estimated value is updated each time the observation information
and the model information are present. Thus, the process of assimilation reduces the error be-
tween the observation and the model. The most commonly used sequential method is optimal
interpolation and Kalman filter.

Kalman filter is a repetitive process that uses a set of mathematical equations to estimate the
accurate values by considering a series of values from the model and observations values that
contain random uncertainty. Kalman filter iteratively analyse the current estimate from the
previous analysed model value and the current observation value (satellite or in situ) by giving
higher weightage/certainty to the observation values.

In this study, we used a simplified one-dimensional Kalman filter expressed as:

Xa = Xb + K(y − Xb) (7.2)

where Xa is the vector to be analyzed, Xb is the background state or model, y is the obser-
vation vector and K is the kalman gain.

This approach can update the estimates daily based on data availability and minimizes the error
between the model and the observation. Moreover, it is a straightforward and computationally
efficient algorithm that can be implemented easily in an assimilation system.

Variational assimilation

Variational assimilation is similar to an ensemble Kalman filter to analyze the information when
the observation and model data are present within a time window. The variational assimilation
technique solves the analytical problem by optimizing a specific criterion (minimizing so-called
cost-function). In variational assimilation, a cost function reduces the error between the observed
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and the model for accurate prediction of the assimilated data. In a variational method, the op-
timal weight (J) is derived by minimizing cost function between the model and the observation
and is expressed as:

J(X) = 1/2(Xa − Xb)T B−1(Xa − Xb) + 1/2y − H(Xa)T R−1(y − H(Xa)) (7.3)

where B and R are the covariance matrices of the background and the observation, and H is
the observation operator that transports the model or the background state into the observation
space. A continuous line is drawn to analyze the model state variable based on the observation
and model information. The assimilated observation is updated based on each observation of the
model and observation.

2D(space and time)variational assimilation was first used by Mahfouf (1991) to analyze the es-
timated output from the 2m observation of SM and from a model. Later on, the 2D variational
assimilation is simplified by Balsamo et al. (2004) to estimate the SM from the model and the
observation by the linear minimization of the optimal weight from equation 7.3 and by assuming
delta J(x)=0. The H matrix is evaluated using the finite difference approach, and the analyzed
state gives a final expression as:

Xa = Xb + K(y − Xb) (7.4)

where
K = (BHT )(HBHT + R)−1 (7.5)

and H is calculated by the ratio of observation error at time t and t-1.

A mixed sequential-variational assimilation

Herein, the 2D variational method is used to analyze the root zone SM from the surface. In fact,
the root zone SM is used as a buffer variable to absorb the meteorological error (and the forcing
error associated with the missing irrigation) and freely adjust the model’s surface prediction.
Variational assimilation is hence used to fit with the slow change in the root zone estimation, but
it will not be helpful for the surface SM for the rapid change in the SM estimation. Instead, the
sequential approach updates the surface SM for each interval when the satellite observation data
is present. The sequential assimilation method can update the rapid change in the irrigation;
the data present from disaggregated SM using DISPATCH algorithm, not in the surface model.
So, the chosen assimilation technique is designed to take advantage of both assimilation methods
(2D variational and sequential) and provides SM daily without losing the information about the
irrigation, which is not present in the model.

7.3 Results

As a first assessment of SM estimates, the DISPATCH 1 km and 100 m SM products are sepa-
rately evaluated with the in situ SM measurements collected over Foradada and Agramunt sites
(shown in Figure 7.1).

We see that the number of observations available is much more significant for DISPATCH 1 km
than for DISPATCH 100 m resolution data set, consistent with the observation frequency much
higher for MODIS than for Landsat. An exciting feature is observed that the 100 m resolution
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Figure 7.1: Scatter plot between DISPATCH and in situ SM for the 1 km (left) and 100 m (right)
resolution satellite data and for Foradada (top) and Agramunt (bottom) sites.

DISPATCH SM shows better performance over the irrigated area with a correlation of 0.70 (0.84)
compared to 0.40 (0.78) for the 1 km resolution DISPATCH SM case for Foradada (Agramunt),
respectively. It is hypothesized that the 100 m resolution of the SM product is enough to catch
the spatial variability of the agricultural land at the field scale. In contrast, the 1 km resolution
SM product is too coarse to discriminate the wetter irrigated field from the dryland surrounding
it.

Note that in the sprinkler irrigated field (Foradada), the 100 m resolution SM product is closer
to in situ SM, whereas the 1 km resolution SM product is very far from in situ SM during the
irrigation period. But in the drip-irrigated field (Agramunt), both 1 km and 100 m resolution
DISPATCH SM products are close to in situ SM, as if the drip irrigation was not detectable from
the remotely sensed near-surface SM data.

The assimilation approach is used to estimate SM at a daily time scale from 1 km and 100 m
resolution DISPATCH SM products separately. The performance of the assimilation approach
is assessed by comparing the time series of in situ SM, open-loop SM (the SM predicted by the
land surface model without assimilation), and the re-analyzed SM for 1 km resolution and 100
m resolution DISPATCH SM products separately (shown in Figure 7.2). It is observed that the
model predictions are closer to the satellite SM after the assimilation so that the re-analyzed
SM is much closer to the in situ SM in the 100 m resolution DISPATCH SM case. Assimilation
improves both 1 km and 100 m SM accuracy from the disaggregated SM product in both cases.
In sprinkler irrigated areas, the predicted 100 m SM product is closer to in situ SM, whereas
the predicted 1 km SM is far from in situ. But in drip-irrigated areas, both predicted 1km and
100 m SM are closer to in situ SM. It is also worth mentioning that the assimilation recipro-
cally improves both remote sensing SM products at observation dates (statistical metrics are
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Figure 7.2: Time series of in situ SM, open loop predicted SM, re-analyzed SM using 1 km
DISPATCH data and re-analyzed SM using 100 m DISPATCH data for Foradada (top) and
Agramunt (bottom) sites.

systematically improved after assimilation). However, assimilation results are not significantly
improved for the 1 km resolution DISPATCH product case. It is suggested that the disparity
between the data resolution and the model grid size makes the assimilation scheme sub-optimal.
This example illustrates very well the usefulness of disaggregation by making the readily available
data compatible with the application scale.

A quantitative evaluation of the re-analyzed SM is provided in Figure 7.3. It is observed that
the re-analyzed 100 m resolution SM product reduces the bias and RMSD as compared to the 1
km resolution re-analyzed SM product and shows an increase in performance with a correlation
of 0.72 and 0.88 for Foradada and Agramunt, respectively.

Overall, results show that both 100 m resolution DISPATCH product and the re-analyzed SM
after the assimilation of the 100 m resolution DISPATCH SM are sensitive to irrigation events
and capture the spatial variability of the agricultural area at the field scale. Moreover, the 100
m resolution SM re-analyzed by the model is is available on a daily temporal scale with an even
improved performance and accuracy compared to DISPATCH product alone.
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Figure 7.3: Scatter plot between re-analyzed and in situ SM for the assimilation of 1 km (left) and
100 m (right) resolution DISPATCH products and for Foradada (top) and Agramunt (bottom)
sites.

7.4 Conclusion

Data assimilation combines observations and a dynamic land surface to provide the information
continuously with time. This study set the assimilation configuration so that precipitation is
included as input to the model but not irrigation, consistent with the general lack of knowl-
edge about irrigation timing and amount at the fine space-time scales. The idea is to assimilate
the 100 m resolution DISPATCH SM in a soil model and assess the disaggregation-assimilation
scheme’s capability to detect irrigation events. The approach is tested over two irrigated crop
fields, in Foradada and Agramunt, irrigated by sprinkler and drip, respectively. The re-analyzed
SM is evaluated against in situ SM measurements. Results are also compared with the assimila-
tion of the 1 km resolution DISPATCH SM to assess the usefulness of the disaggregation to 100 m.

The approach is tested over two semi-arid irrigated areas of Spain, Fordada, and Agramunt. At
first, time-series analysis is done for in situ SM, the model SM product, and the predicted SM
products with 1 km and 100m DISPATCH SM products are analyzed separately.

The assimilation of DISPATCH SM products improves the SM’s dynamics compared to both
the SM observations and the SM predicted by the model in an open loop (without assimilation)
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with a decrease in bias and RMSD, regardless of the spatial resolution (1 km or 100 m) at which
the SM product is available. Statistical results indicate that the re-analyzed SM derived from
the assimilation of 1 km DISPATCH SM is sensitive to rainfall, whereas the re-analyzed SM de-
rived from the assimilation of 100 m DISPATCH SM is sensitive to both rainfall and irrigation.
Overall, the 100 m resolution DISPATCH SM product can catch the spatial variability over the
agricultural area at the field scale.

This disaggregation-assimilation coupling scheme provides SM data at the field scale on a daily
temporal scale. This approach is easy to comprehend, computationally efficient, and can be
applied operationally. Still, it is limited in its applicability due to the lack of thermal remote
sensing data availability. In the near future, the approach should be tested using the SM data
set derived from the synergy between DISPATCH100m and Sentinel-1 radar data, as well as for
different land covers and climatic conditions. In the medium term, this research will benefit from
launching new thermal missions designed to provide data at high spatio-temporal resolution.
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8.1 Summary of the main findings

Soil moisture (SM) data at different spatial and temporal resolutions are helpful for various ap-
plications such as climatology, hydrology, and agricultural purposes. Passive microwave sensors
such as SMOS and SMAP provide global scale 40 km resolution surface (0-5 cm) SM data, which
can be useful for meteorological and climatological applications. However, for many regional
or local applications, SM data would be required at a higher (typically 100 m or finer) spatial
resolution. Optical/thermal and radar sensors can be used as SM proxies to retrieve SM at such
high spatial resolution, but both techniques have limitations. In particular, optical/thermal data
are not available under clouds and under plant canopies, and radar data are sensitive to the soil
roughness and vegetation structure, which are challenging to characterize from space.

The thesis aims to improve SM retrieval at multiple resolutions by developing a synergy between
multi-sensor/multi-wavelength/multi-resolution remote sensing data. The synergistic approach
based on multi-sensor data is a trend nowadays to try and resolve the spatial scale problem
between the scale at which data are available and the application scale, and more generally to
overcome the limitation of spaceborne sensors taken separately. The main goal of this approach
is to combine multiple remote sensing data in order to obtain a better understanding of SM’s
spatial and temporal variability by accounting for the specific impact of soil, vegetation, and
atmospheric conditions on satellite observations derived from various remote sensing techniques.

In practice, the guiding principle of the thesis is to propose a new approach combining active
microwave, passive microwave, and optical/thermal sensors to provide SM data over large areas
at 100 m resolution every day. Our assumption is first to rely on a disaggregation method (DIS-
PATCH) of SMOS/SMAP SM data to meet the spatial resolution achieved by active microwave
sensors. DISPATCH is based on a SM proxy called the soil evaporative efficiency (SEE) derived
at high resolution from the LST and NDVI data (typically MODIS data) collected over partially
vegetated pixels. The disaggregated SM data is then combined with a radar-based SM retrieval
method to exploit the sensing capabilities of the Sentinel-1 radars. Finally, the usefulness of the
assimilation of the satellite-based SM data in a simple soil model is assessed in terms of SM
predictions at the 100 m resolution and daily temporal scale. The chosen study areas covering
semi-arid and temperate sites are presented in Chapter 2, and the DISPATCH method is de-
scribed in Chapter 3, while the new stepwise approach is described in Chapter 4, Chapter 5,
Chapter 6 and Chapter 7.

Chapter 4 describes a new and major improvement of DISPATCH when applied at the MODIS
tile scale at 1 km resolution. This includes the application of the disaggregation method to fully
vegetated pixels and the partial overcoming of the cloud cover limitation. The Temperature
Vegetation Dryness Index (TVDI) is proposed as a surface SM proxy for highly vegetated pixels
by assuming that the surface SM is spatially linked to the root zone SM within a SMOS/SMAP
pixel. With the inclusion of the vegetated regions in the DISPATCH algorithm, the downscaled
SM product increases the covered spatial extent by 58 to 86% over a given MODIS tile. In
addition to this, the Enhanced Vegetation Index (EVI) is used instead of the NDVI to improve
the robustness of DISPATCH over vegetated areas as EVI is supposedly less affected by soil and
atmospheric effects and varies more linearly with vegetation cover. EVI improves DISPATCH’s
robustness in terms of downscaled SM accuracy by 7% in temperate and 1 to 4% in semi-arid
areas.

The Sentinel-3 LST product is tested to overcome the limitation of cloud cover due to ear-
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lier overpass of the satellite compared to MODIS by assuming that cloud cover is statistically
smaller earlier in the morning. In general, the downscaled SM product from the improved version
of the DISPATCH algorithm shows a significantly increased spatial extent and slightly better
performance and accuracy than other SM products (SMAP/Sentinel-1, Copernicus Sentinel-1)
available at 1 km resolution.

Given that the 1 km spatial resolution is still coarse for fine-scale applications -like water manage-
ment over irrigated areas - Chapter 5 is dedicated to develop a strategy for applying DISPATCH
at 100 m resolution. A two-step downscaling algorithm is proposed to provide SM data at 100
m resolution using Landsat’s LST and NDVI data. At first, 40 km resolution SM data from
SMOS/SMAP is disaggregated at 1 km resolution following the approach described in Chap-
ter 4. Then 1 km SM product is aggregated to an intermediate spatial resolution (ISR) of 10
km. Next, the ISR SM data are disaggregated at 100 m resolution using DISPATCH and the
100 m resolution NDVI and LST Landsat data. The ISR is set to 10 km in this case as a good
compromise in terms of the encountered variability within a low resolution pixel (the larger the
ISR, the more SM variability and the more robust DISPATCH is) and the gap between the low
and high resolutions (the larger the gap, the more uncertain the disaggregation result is). The
SM product at 100 m resolution is validated with in situ SM measurements collected over irri-
gated areas in Morocco, showing a daily spatial correlation in the range of 0.5-0.9.

SM products at high spatio-temporal resolution are essential from the agricultural point of view.
Still, the applicability of the 100 m resolution DISPATCH SM for irrigation management is lim-
ited due to the low repeat cycle of high-spatial-resolution thermal sensors (16 days for Landsat)
and cloud coverage. So, to provide SM data at the field scale in all weather conditions, Chap-
ter 6 proposes a synergy of the previous approaches with active microwave (radar) data. An
algorithm is built on a synergy between the downscaled SM product at 100 m resolution and
Sentinel-1 radar backscattering coefficient. In practice, the DISPATCH SM product available on
clear sky days is used to calibrate a radar radiative transfer model in the direct mode. Then the
calibrated radar radiative transfer model is used in the inverse method to estimate SM at the
spatio-temporal resolution of Sentinel-1. This method is expected to reduce the impact of soil
roughness and vegetation effects on the radar backscatter by incorporating independent remotely
sensed data (provided by DISPATCH SM). The algorithm is tested for a constant incidence angle
and VV polarization Sentinel-1 data, and by assuming that surface roughness is constant during
the calibration period. This approach offers SM estimates at the crop field scale every six days.
It is tested over several wheat crops in Morocco under drip and sprinkler irrigation. Results
indicate a positive correlation between satellite and in situ measurements in the range of 0.66 to
0.81. A relatively good performance is obtained for a vegetation index lower than 0.6.

As a final step of this work, an initiative is taken in Chapter 7 to improve the accuracy of
the remotely sensed SM and its temporal frequency by combining this data set with a sim-
ple dynamic soil module extracted from the force-restore formulation of ISBA model. A 2D
sequential-variational assimilation method is used to analyze the soil model predictions and the
observed SM to provide reanalyzed SM data at the daily and crop field scale. The assimilation
exercise is undertaken over irrigated crop fields in Spain, and two different cases are compared
using the 1 km resolution and the 100 m resolution DISPATCH SM data as input. Results show
that the analyzed SM product derived from the assimilation of 1 km resolution DISPATCH SM
is sensitive to rainfall events but not to irrigation. In contrast, the dynamics of the analyzed
SM product derived from the assimilation of 100 m resolution DISPATCH SM is consistent with
irrigation events. Moreover, the analyzed SM data at the Landsat overpass time is more accurate
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than the original 100 m resolution DISPATCH SM data. This approach can be readily applied
over large areas given that all the required input (remote sensing and meteorological) data are
available globally.

8.2 Future researches on soil moisture monitoring and their applications

This thesis has developed multiple algorithms building on synergies between active microwave,
passive microwave, and optical/thermal data to estimate SM at high spatio-temporal resolution.
According to my knowledge, this is the first time such a multi-spectral/multi-sensor synergy has
been exploited, and this across an extensive range of scales from the SMOS/SMAP radiometer
resolution (40 km) to the Sentinel-1 resolution (20 m). However, the methodology still has limita-
tions such as uncertainties in low resolution SMOS/SMAP SM data, uncertainties in DISPATCH
and more generally in downscaling procedures, the low repeat cycle of current high-resolution
thermal sensors, uncertainties in the formulation of the radar radiative transfer, and the lack of
sensitivity of radar data to SM for biomass above a given threshold (for NDVI>0.6, see Chap-
ter 6). Some of those limitations can potentially be lifted by future research and by the launch
of new spaceborne sensors with improved capacities, which will foster the development of a more
precise and robust high-resolution SM product at a global scale (Greifeneder et al., 2021). Mean-
while, another research avenue is using this high-resolution SM data set for thematic applications,
like evapotranspiration and irrigation monitoring, studies on the land surface-atmosphere inter-
actions, etc. The research perspectives that I have identified from my PhD work are listed below:

1) Keep improving downscaling algorithms to reduce uncertainties in downscaled SM data sets

A high resolution SM product has been produced by combining multi-sensor remote sensing data
with different spatial and temporal resolutions, as shown in Chapter 4 and Chapter 5. Since we
rely on SMOS or SMAP SM data, any bias and uncertainty present in the low-resolution SM
data will entirely contribute to errors in the high resolution downscaled SM product. Whereas
many studies have addressed and are still addressing the error characterization of SMOS/SMAP-
derived SM products (Kornelsen and Coulibaly, 2015; Lee et al., 2017; Zwieback et al., 2018; Lee
and Ahn, 2019), the original requirement of an absolute error lower than 0.04 m3/m3 is not
achieved globally. Moreover, part of the uncertainties in the disaggregated SM data at 1 km res-
olution and an expectedly even larger part of the uncertainties in the disaggregated DISPATCH
SM data at 100 m resolution is attributed to the DISPATCH limitations. The former DISPATCH
version was improved during my thesis, especially in terms of spatio-temporal coverage (notably
by the use of TVDI). However, other aspects of DISPATCH should also be investigated. For
instance, the relationship between SEE/TVDI and SM has been assumed to be linear, although
it is known to be nonlinear (Merlin et al., 2013; Song and Zhang, 2021). In addition, the self-
calibration of DISPATCH was done daily according to (Molero et al., 2016), but a recent study
(Stefan et al., 2020) indicated that a yearly calibration of a nonlinear SEE model significantly
outperforms the original configuration. Regarding the sequential application of DISPATCH at 1
km and 100 m resolutions, the use of an ISR set to 10 km needs to be confirmed by other studies
undertaken in various surface conditions.

2) Towards an improved understanding of the radar signal parameterization and a dynamic cal-
ibration of time-varying parameters
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Chapter 6 tested two different formulations of the relationship between the C-band radar backscat-
ter, SM and a vegetation descriptor: a linear multi-linear model and a nonlinear model based on
the Water Cloud Model (WCM) formulation. Contrary to expectations, the linear model provides
results very similar to the WCM over the entire agricultural season. This raises a question about
the understanding of the radar signal and its dependency on vegetation structure and water
content. More research would hence be needed to characterize better the vegetation attenuation
term, which is usually modeled using a (strongly nonlinear) exponential function. This issue is
also naturally related to the vegetation descriptor (NDVI, PR, or CO) choice across various land
covers and biomass values. In addition, the synergy between DISPATCH and radar-based SM
data sets has been tested over wheat crop only, but with different soil types and different irriga-
tion (drip or sprinkler) techniques. Before assessing the usefulness of such a complex approach
over wide areas, the SM retrieval algorithm should be tested over various land covers, including
different crop types and also orchards, as the physics of the radiative transfer is likely to differ
significantly in three dimensional canopies.

Other research avenues concern the radar observing configuration and the time-varying param-
eters of the radar model. In my thesis, it was assumed that the calibration parameters and the
incidence angle were constant. Sentinel-1 has a range of incidence angles. It would be useful to
check the algorithm applicability using different incidence angles and how the retrieved param-
eters differ when changing the incidence angle. It was also assumed that the soil and vegetation
parameters were constant during the entire study period. However, the soil parameters like
roughness and vegetation parameters associated with the vegetation type may change, especially
over agricultural areas with tillage and crop rotations. It will be thus necessary to integrate this
constraint in the radar model. This actually is one strength of the developed disaggregation-
calibration approach that can afford to make the radar parameters time-varying. It is just a
matter of defining shorter calibration periods, provided that the frequency of concurrent thermal
and radar data is sufficient to undertake the calibration with satisfying accuracy in retrieved
parameters.

3) Building on future missions to develop original multi-sensor strategies

Scheduled for launch in 2025, the French-Indian TRISHNA (Thermal infraRed Imaging Satellite
for High-resolution Natural resource Assessment) mission (Lagouarde et al., 2018) will provide
LST data at 50 m spatial resolution with a revisit sub-cycle of 3 days in average. The advent
of spaceborne LST data at such high spatial and temporal resolution will allow great progress
on synergistic studies with other sensors, especially by maximizing the number of concurrent
overpasses. The high temporal frequency of thermal is a major issue, compensate for the data
gaps in current high-resolution LST images due to cloud cover. It is expected that the TRISHNA
data will foster the development of our SM retrieval approach over large areas.

Meanwhile, it is worth mentioning that thermal missions generally use a polar orbit, apart from
a couple of examples. This involves a relatively low temporal resolution (repeat cycle of one
day or more), which implies a large impact of cloud cover on the spatial-temporal coverage of
collected LST images. Instead, geostationary satellites with a measurement frequency of sev-
eral minutes are more likely to provide cloud-free LST data. The use of thermal data from the
geostationary satellites can significantly overcome the limitation of cloud cover. For instance,
Tagesson et al. (2018) and Piles et al. (2016) used SEVERI satellite thermal data to downscale
passive microwave-derived SM data. However, the currently available geostationary thermal sen-
sors have a spatial resolution of 2-3 km at nadir, corresponding to a resolution of 4-5 km at
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the latitude of the study areas of my thesis (see Chapter 2). In the more or less far future,
the launch of geostationary satellites carrying thermal sensors with very high spatial resolution
capabilities will be an asset to use thermal data on a quasi-systematic and more operational basis.

From a radar perspective, the L-band radar satellite named NASA-ISRO Synthetic Aperture
Radar (NISAR) will be launched on 29 th January 2023. This satellite will be very useful as
it will provide a spatial resolution of 3-5 m with a revisit cycle of 12 days with an ascending
and descending overpass. This radar sensor will help implement the algorithm to provide SM
globally. L-band has higher penetration within the vegetation canopy than c-band gives a strong
potential in using NISAR data instead of (or complementarity to) Sentinel-1 data within our
multi-sensor SM retrieval algorithm.

4) Application of high-resolution SM products to environmental and water management studies

Current remote sensing satellites provide coarse resolution SM at a global scale and are useful for
climatic application. There are many other applications where SM is required at high resolution
but limited by the unavailability of SM data at high resolution.

The existing numerical weather forecast (NWP) model uses the low resolution SM dataset for
weather forecasts on a global scale. Integrating SM information in NWP models improves the
weather forecast accuracy (Mahfouf, 2010; Carrera et al., 2019; Muñoz-Sabater et al., 2019).
Currently, the approach is being adapted to integrate sub-kilometric resolution data, in order to
keep improving the weather forecast at a regional scale, and to simulate the model output at a
sub-kilometric scale; this requires SM data at high resolution.

SM data at high-resolution would also be helpful in climate research to better understand land-
atmosphere processes (Taylor et al., 2012; Loew et al., 2013; Seneviratne et al., 2013). The
coupling of SM with temperature and evapotranspiration (Lei et al., 2018) shows that SM is an
essential metric in a transitional climatic zone (Hirschi et al., 2014).

The satellite-obtained SM data set is used for various hydrological purposes such as watershed
management (Heimhuber et al., 2017), runoff modeling (Crow et al., 2018), evapotranspiration
estimation (Lievens et al., 2017) etc., but it still generally applies to large river basins. To be
useful for all the above applications at regional scale SM data are required at high resolution.

High resolution SM data at high temporal frequency is beneficial for agricultural purposes such
as crop yield estimation (Holzman et al., 2014), monitoring irrigated areas (Fieuzal et al., 2011),
monitoring irrigation volumes and dates, among others (Malbeteau et al., 2018; Ouaadi et al.,
2020). It also gives valuable information for improving water management on a local and regional
scale, particularly in regions facing water scarcity (Brocca et al., 2018; Zaussinger et al., 2019).

SM at high resolution can also be used for other applications such as identification of epidemic
risk related to weather and environmental conditions (Peters et al., 2014), management of locust
(Escorihuela et al., 2018), an indication of forest recovery after forest fires (Chu and Guo, 2014).
The advent of SM data at improved spatio-temporal resolution is expected to further extend the
application domain of SM information.
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8.1 Résumé des principales conclusions

Les données sur l’humidité du sol (SM) à différentes résolutions spatiales et temporelles sont
utiles pour diverses applications telles que la climatologie, l’hydrologie et l’agriculture. Les cap-
teurs passifs à micro-ondes tels que SMOS et SMAP fournissent des données sur l’humidité du
sol à l’échelle mondiale avec une résolution de 40 km (0-5 cm), ce qui peut être utile pour les
applications météorologiques et climatologiques. Cependant, pour de nombreuses applications
régionales ou locales, des données SM sont nécessaires à une résolution spatiale plus élevée (typi-
quement 100 m ou plus fine). Les capteurs optiques/thermiques et les radars peuvent être utilisés
comme des proxies de la SM pour récupérer la SM à cette haute résolution spatiale, mais les
deux techniques ont des limites. En particulier, les données optiques/thermiques ne sont pas
disponibles sous les nuages et sous les couverts végétaux, et les données radar sont sensibles à
la rugosité du sol et à la structure de la végétation, qui sont difficiles à caractériser depuis l’espace.

La thèse vise à améliorer la récupération de la SM à de multiples résolutions en développant
une synergie entre les données de télédétection multi-capteurs/multi-longueurs d’onde/multi-
résolutions. L’approche synergique basée sur des données multi-capteurs est une tendance ac-
tuelle pour essayer de résoudre le problème d’échelle spatiale entre l’échelle à laquelle les données
sont disponibles et l’échelle d’application, et plus généralement pour surmonter les limitations
des capteurs spatiaux pris séparément. L’objectif principal de cette approche est de combiner
plusieurs données de télédétection afin d’obtenir une meilleure compréhension de la variabilité
spatiale et temporelle du SM en tenant compte de l’impact spécifique des conditions de sol, de
végétation et d’atmosphère sur les observations satellitaires dérivées de diverses techniques de
télédétection.

En pratique, le principe directeur de la thèse est de proposer une nouvelle approche combi-
nant des capteurs actifs micro-ondes, passifs micro-ondes, et optiques/thermiques pour fournir
des données SM sur de larges zones à une résolution de 100 m chaque jour. Notre hypothèse est
d’abord de s’appuyer sur une méthode de désagrégation (DISPATCH) des données SMOS/SMAP
pour atteindre la résolution spatiale obtenue par les capteurs micro-ondes actifs. DISPATCH est
basé sur un proxy SM appelé l’efficacité évaporative du sol (SEE) dérivé à haute résolution des
données LST et NDVI (typiquement des données MODIS) collectées sur des pixels partiellement
végétalisés. Les données désagrégées de SM sont ensuite combinées avec une méthode d’extrac-
tion de SM basée sur un radar afin d’exploiter les capacités de détection des radars Sentinel-1.
Enfin, l’utilité de l’assimilation des données SM satellitaires dans un modèle de sol simple est
évaluée en termes de prédictions SM à une résolution de 100 m et à une échelle temporelle quoti-
dienne. Les zones d’étude choisies, couvrant des sites semi-arides et tempérés, sont présentées au
Chapitre 2. La méthode DISPATCH est décrite au Chapitre 3, tandis que la nouvelle approche
par étapes est décrite aux Chapitres 4, 5, 6 et 7.

Le Chapitre 4 décrit une nouvelle et importante amélioration de DISPATCH lorsqu’elle est ap-
pliquée à l’échelle des tuiles MODIS à une résolution de 1 km. Cela comprend l’application de
la méthode de désagrégation aux pixels entièrement végétalisés et le dépassement partiel de la
limite de la couverture nuageuse. L’indice de température, de végétation et de sécheresse (TVDI)
est proposé comme indicateur de la SM de surface pour les pixels fortement végétalisés, en sup-
posant que la SM de surface est liée spatialement à la SM de la zone racinaire dans un pixel
SMOS/SMAP. Avec l’inclusion des régions végétalisées dans l’algorithme DISPATCH, le produit
SM à échelle réduite augmente l’étendue spatiale couverte de 58 à 86 % sur une tuile MODIS
donnée. En outre, l’indice de végétation amélioré (EVI) est utilisé à la place du NDVI pour
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améliorer la robustesse de DISPATCH sur les zones de végétation, car l’EVI est censé être moins
affecté par les effets du sol et de l’atmosphère et varie plus linéairement avec la couverture végé-
tale. L’EVI améliore la robustesse de DISPATCH en termes de précision de la réduction d’échelle
SM de 7% dans les zones tempérées et de 1 à 4% dans les zones semi-arides.

Le produit LST de Sentinel-3 est testé pour surmonter la limitation de la couverture nuageuse
due au survol plus précoce du satellite par rapport à MODIS en supposant que la couverture
nuageuse est statistiquement plus faible plus tôt dans la matinée. En général, le produit SM
réduit à partir de la version améliorée de l’algorithme DISPATCH montre une étendue spatiale
significativement accrue et des performances et une précision légèrement meilleures que les autres
produits SM (SMAP/Sentinel-1, Copernicus Sentinel-1) disponibles à une résolution de 1 km.

Étant donné que la résolution spatiale de 1 km est encore trop faible pour les applications à
échelle fine, comme la gestion de l’eau dans les zones irriguées, le Chapitre 5 est consacré à l’éla-
boration d’une stratégie d’application de DISPATCH à une résolution de 100 m. Un algorithme
de réduction d’échelle en deux étapes est proposé pour fournir des données SM à une résolution
de 100 m en utilisant les données LST et NDVI de Landsat. Dans un premier temps, les données
SM à résolution de 40 km provenant de SMOS/SMAP sont désagrégées à une résolution de 1
km selon l’approche décrite au Chapitre 4. Ensuite, le produit SM de 1 km est agrégé à une
résolution spatiale intermédiaire (ISR) de 10 km. Ensuite, les données SM ISR sont désagrégées
à une résolution de 100 m en utilisant DISPATCH et les données Landsat NDVI et LST à 100
m de résolution. L’ISR est fixé à 10 km dans ce cas comme un bon compromis en termes de
variabilité rencontrée dans un pixel de basse résolution (plus l’ISR est grand, plus la variabilité
SM est grande et plus DISPATCH est robuste) et l’écart entre les basses et hautes résolutions
(plus l’écart est grand, plus le résultat de la désagrégation est incertain). Le produit SM à une
résolution de 100 m est validé avec des mesures SM in situ collectées sur des zones irriguées au
Maroc, montrant une corrélation spatiale quotidienne dans la gamme de 0,5-0,9.

Les produits SM à haute résolution spatio-temporelle sont essentiels du point de vue agricole.
Pourtant, l’applicabilité de la résolution de 100 m de DISPATCH SM pour la gestion de l’irriga-
tion est limitée en raison du faible cycle de répétition des capteurs thermiques à haute résolution
spatiale (16 jours pour Landsat) et de la couverture nuageuse. Ainsi, pour fournir des données
SM à l’échelle du champ dans toutes les conditions météorologiques, le Chapitre 6 propose une
synergie des approches précédentes avec des données de micro-ondes actives (radar). Un algo-
rithme est construit sur une synergie entre le produit SM réduit à une résolution de 100 m et le
coefficient de rétrodiffusion du radar Sentinel-1. En pratique, le produit SM DISPATCH dispo-
nible les jours de ciel clair est utilisé pour calibrer un modèle de transfert radiatif radar en mode
direct. Ensuite, le modèle de transfert radiatif radar calibré est utilisé dans la méthode inverse
pour estimer le SM à la résolution spatio-temporelle de Sentinel-1. Cette méthode devrait per-
mettre de réduire l’impact de la rugosité du sol et des effets de la végétation sur la rétrodiffusion
radar en intégrant des données de télédétection indépendantes (fournies par DISPATCH SM).
L’algorithme est testé pour un angle d’incidence constant et des données Sentinel-1 à polarisation
VV, et en supposant que la rugosité de surface est constante pendant la période de calibration.
Cette approche offre des estimations SM à l’échelle du champ de culture tous les six jours. Elle est
testée sur plusieurs cultures de blé au Maroc sous irrigation par goutte à goutte et par aspersion.
Les résultats indiquent une corrélation positive entre les mesures satellitaires et in situ de l’ordre
de 0,66 à 0,81. Une performance relativement bonne est obtenue pour un indice de végétation
inférieur à 0,6.
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Comme étape finale de ce travail, une initiative est prise dans le Chapitre 7 pour améliorer la
précision de la SM télédétectée et sa fréquence temporelle en combinant cet ensemble de données
avec un module de sol dynamique simple extrait de la formulation force-restauration du modèle
ISBA. Une méthode d’assimilation séquentielle-variationnelle 2D est utilisée pour analyser les
prédictions du modèle de sol et le SM observé afin de fournir des données SM réanalysées à
l’échelle quotidienne et à l’échelle du champ de culture. L’exercice d’assimilation est entrepris
sur des champs de cultures irriguées en Espagne, et deux cas différents sont comparés en utilisant
les données SM DISPATCH de résolution 1 km et 100 m comme entrée. Les résultats montrent
que le produit SM analysé dérivé de l’assimilation de DISPATCH SM à résolution de 1 km est
sensible aux événements pluvieux mais pas à l’irrigation. En revanche, la dynamique du pro-
duit SM analysé dérivé de l’assimilation de DISPATCH SM avec une résolution de 100 m est
cohérente avec les événements d’irrigation. De plus, les données SM analysées au moment du
passage de Landsat sont plus précises que les données originales DISPATCH SM à 100 m de ré-
solution. Cette approche peut être facilement appliquée à de vastes zones, étant donné que toutes
les données d’entrée requises (télédétection et météorologie) sont disponibles à l’échelle mondiale.

8.2 Recherches futures sur le suivi de l’humidité des sols et ses applica-

tions

Cette thèse a développé de multiples algorithmes s’appuyant sur les synergies entre les don-
nées micro-ondes actives, micro-ondes passives, et optiques/thermiques pour estimer la SM à
haute résolution spatio-temporelle. A ma connaissance, c’est la première fois qu’une telle syner-
gie multi-spectrale/multi-capteur a été exploitée, et ce sur une large gamme d’échelles allant de la
résolution du radiomètre SMOS/SMAP (40 km) à la résolution de Sentinel-1 (20 m). Cependant,
la méthodologie présente encore des limites telles que les incertitudes des données SMOS/SMAP
à faible résolution, les incertitudes de DISPATCH et plus généralement des procédures de réduc-
tion d’échelle, le faible cycle de répétition des capteurs thermiques haute résolution actuels, les
incertitudes dans la formulation du transfert radiatif radar, et le manque de sensibilité des don-
nées radar au SM pour la biomasse au-dessus d’un seuil donné (pour NDVI>0,6, voir Chapitre
6). Certaines de ces limitations peuvent potentiellement être levées par des recherches futures
et par le lancement de nouveaux capteurs spatiaux aux capacités améliorées, ce qui favorisera
le développement d’un produit SM haute résolution plus précis et plus robuste à l’échelle mon-
diale (Greifeneder et al., 2021). Parallèlement, une autre voie de recherche consiste à utiliser cet
ensemble de données SM à haute résolution pour des applications thématiques, comme le suivi
de l’évapotranspiration et de l’irrigation, les études sur les interactions entre la surface terrestre
et l’atmosphère, etc. Les perspectives de recherche que j’ai identifiées à partir de mon travail de
doctorat sont énumérées ci-dessous :

1) Continuer à améliorer les algorithmes de réduction d’échelle afin de réduire les incertitudes
dans les jeux de données SM réduits

Un produit SM haute résolution a été obtenu en combinant des données de télédétection multi-
capteurs avec différentes résolutions spatiales et temporelles, comme le montrent les Chapitres 4
et 5. Puisque nous nous basons sur les données SMOS ou SMAP SM, tout biais et toute incerti-
tude présents dans les données SM à basse résolution contribueront entièrement aux erreurs dans
le produit SM à haute résolution réduit à l’échelle. Alors que de nombreuses études ont abordé et
abordent encore la caractérisation des erreurs des produits SM dérivés de SMOS/SMAP (Kornel-

170
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sen and Coulibaly, 2015; Lee et al., 2017; Zwieback et al., 2018; Lee and Ahn, 2019), l’exigence
initiale d’une erreur absolue inférieure à 0,04 m3/m3 n’est pas atteinte globalement. En outre,
une partie des incertitudes des données SM désagrégées à une résolution de 1 km et une partie
encore plus importante, selon les prévisions, des incertitudes des données SM désagrégées DIS-
PATCH à une résolution de 100 m sont attribuées aux limitations de DISPATCH. L’ancienne
version de DISPATCH a été améliorée au cours de ma thèse, notamment en termes de couverture
spatio-temporelle (notamment par l’utilisation de TVDI). Cependant, d’autres aspects de DIS-
PATCH devraient également être étudiés. Par exemple, la relation entre SEE/TVDI et SM a été
supposée être linéaire, alors qu’elle est connue pour être non linéaire (Merlin et al., 2013; Song
and Zhang, 2021). En outre, l’auto-calibration de DISPATCH a été effectuée quotidiennement
selon (Molero et al., 2016), mais une étude récente (Stefan et al., 2020) a indiqué qu’une calibra-
tion annuelle d’un modèle SEE non linéaire surpasse significativement la configuration originale.
En ce qui concerne l’application séquentielle de DISPATCH à des résolutions de 1 km et 100
m, l’utilisation d’un ESI réglé à 10 km doit être confirmée par d’autres études entreprises dans
diverses conditions de surface.

2) Vers une meilleure compréhension de la paramétrisation du signal radar et une calibration
dynamique des paramètres variant dans le temps

Le Chapitre 6 a testé deux formulations différentes de la relation entre la rétrodiffusion radar en
bande C, le SM et un descripteur de végétation : un modèle linéaire multi-linéaire et un modèle
non-linéaire basé sur la formulation du Water Cloud Model (WCM). Contrairement aux attentes,
le modèle linéaire fournit des résultats très similaires au WCM sur l’ensemble de la saison agricole.
Cela soulève une question sur la compréhension du signal radar et sa dépendance à la structure de
la végétation et au contenu en eau. Des recherches supplémentaires seraient donc nécessaires pour
mieux caractériser le terme d’atténuation de la végétation, qui est généralement modélisé à l’aide
d’une fonction exponentielle (fortement non linéaire). Cette question est aussi naturellement liée
au choix du descripteur de végétation (NDVI, PR ou CO) pour diverses couvertures terrestres
et valeurs de biomasse. En outre, la synergie entre DISPATCH et les ensembles de données SM
basés sur le radar a été testée sur une culture de blé uniquement, mais avec différents types de
sol et différentes techniques d’irrigation (goutte à goutte ou aspersion). Avant d’évaluer l’utilité
d’une approche aussi complexe sur de vastes zones, l’algorithme d’extraction SM devrait être
testé sur diverses couvertures terrestres, y compris différents types de cultures et également des
vergers, car la physique du transfert radiatif est susceptible de différer de manière significative
dans les canopées tridimensionnelles.

D’autres pistes de recherche concernent la configuration d’observation du radar et les paramètres
variables dans le temps du modèle radar. Dans ma thèse, il a été supposé que les paramètres
de calibration et l’angle d’incidence étaient constants. Sentinel-1 possède une gamme d’angles
d’incidence. Il serait utile de vérifier l’applicabilité de l’algorithme en utilisant différents angles
d’incidence et de voir comment les paramètres récupérés diffèrent lorsque l’angle d’incidence
change. On a également supposé que les paramètres du sol et de la végétation étaient constants
pendant toute la période d’étude. Cependant, les paramètres du sol comme la rugosité et les
paramètres de la végétation associés au type de végétation peuvent changer, en particulier sur
les zones agricoles avec le travail du sol et la rotation des cultures. Il sera donc nécessaire d’in-
tégrer cette contrainte dans le modèle radar. C’est en fait l’un des points forts de l’approche de
désagrégation-calibration développée qui peut se permettre de faire varier les paramètres radar
dans le temps. Il s’agit simplement de définir des périodes de calibration plus courtes, à condition
que la fréquence des données thermiques et radar simultanées soit suffisante pour entreprendre
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la calibration avec une précision satisfaisante des paramètres récupérés.

3) S’appuyer sur les missions futures pour développer des stratégies multi-capteurs originales

Prévue pour un lancement en 2025, la mission franco-indienne TRISHNA (Thermal infraRed
Imaging Satellite for High-resolution Natural resource Assessment) (Lagouarde et al., 2018)
fournira des données LST à 50 m de résolution spatiale avec un sous-cycle de revisite de 3
jours en moyenne. L’arrivée de données LST spatiales à si haute résolution spatiale et temporelle
permettra de grands progrès sur les études synergiques avec d’autres capteurs, notamment en
maximisant le nombre de passages simultanés. La fréquence temporelle élevée du thermique est
un enjeu majeur, qui compense les lacunes des données dans les images LST actuelles à haute
résolution dues à la couverture nuageuse. On s’attend à ce que les données TRISHNA favorisent
le développement de notre approche d’extraction SM sur de grandes zones.

En attendant, il convient de mentionner que les missions thermiques utilisent généralement une
orbite polaire, à l’exception de quelques exemples. Cela implique une résolution temporelle re-
lativement faible (cycle de répétition d’un jour ou plus), ce qui implique un impact important
de la couverture nuageuse sur la couverture spatio-temporelle des images LST collectées. Au
contraire, les satellites géostationnaires avec une fréquence de mesure de plusieurs minutes sont
plus susceptibles de fournir des données LST sans nuages. L’utilisation des données thermiques
des satellites géostationnaires permet de surmonter les limites de la couverture nuageuse. Par
exemple, Tagesson et al. (2018) et Piles et al. (2016)) ont utilisé les données thermiques du satel-
lite SEVERI pour réduire l’échelle des données SM dérivées des micro-ondes passives. Cependant,
les capteurs thermiques géostationnaires actuellement disponibles ont une résolution spatiale de
2-3 km au nadir, ce qui correspond à une résolution de 4-5 km à la latitude des zones d’étude de
ma thèse (voir Chapitre 2). Dans un futur plus ou moins lointain, le lancement de satellites géo-
stationnaires embarquant des capteurs thermiques à très haute résolution spatiale sera un atout
pour exploiter les données thermiques de manière quasi-systématique et plus opérationnelle.

Du point de vue du radar, le satellite radar en bande L appelé NASA-ISRO Synthetic Aperture
Radar (NISAR) sera lancé le 29 janvier 2023. Ce satellite sera très utile car il fournira une ré-
solution spatiale de 3-5 m avec un cycle de revisite de 12 jours avec un passage ascendant et
descendant. Ce capteur radar aidera à mettre en œuvre l’algorithme permettant de fournir un
SM à l’échelle mondiale. La bande L a une pénétration plus élevée dans le couvert végétal que la
bande C donne un fort potentiel d’utilisation des données NISAR à la place (ou en complément)
des données Sentinel-1 dans notre algorithme d’extraction SM multi-capteurs.

4) Application des produits SM à haute résolution aux études environnementales et de gestion
de l’eau

Les satellites de télédétection actuels fournissent une SM à résolution grossière à l’échelle mon-
diale et sont utiles pour les applications climatiques. Il existe de nombreuses autres applications
pour lesquelles la SM est nécessaire à haute résolution, mais qui sont limitées par l’indisponibilité
de données SM à haute résolution.

Le modèle actuel de prévision numérique du temps (PNT) utilise les données SM à faible ré-
solution pour les prévisions météorologiques à l’échelle mondiale. L’intégration des informations
SM dans les modèles NWP améliore la précision des prévisions météorologiques (Mahfouf, 2010;
Carrera et al., 2019; Muñoz-Sabater et al., 2019). Actuellement, l’approche est adaptée pour
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intégrer des données à résolution subkilométrique, afin de continuer à améliorer les prévisions
météorologiques à l’échelle régionale, et de simuler la sortie du modèle à une échelle subkilomé-
trique ; cela nécessite des données SM à haute résolution.

Les données SM à haute résolution seraient également utiles dans la recherche climatique pour
mieux comprendre les processus terre-atmosphère (Taylor et al., 2012; Loew et al., 2013; Sene-
viratne et al., 2013). Le couplage du SM avec la température et l’évapotranspiration (Lei et al.,
2018) montre que le SM est une métrique essentielle dans une zone climatique transitoire (Hirschi
et al., 2014).

L’ensemble de données SM obtenues par satellite est utilisé à diverses fins hydrologiques, telles
que la gestion des bassins versants (Heimhuber et al., 2017), la modélisation du ruissellement
(Crow et al., 2018), l’estimation de l’évapotranspiration (Lievens et al., 2017) etc. mais il s’ap-
plique encore généralement aux grands bassins fluviaux. Pour être utiles à toutes les applications
ci-dessus à l’échelle régionale, les données SM sont nécessaires à haute résolution.

Les données SM à haute résolution et à haute fréquence temporelle sont bénéfiques à des fins
agricoles telles que l’estimation du rendement des cultures (Holzman et al., 2014), le suivi des
zones irriguées (Fieuzal et al., 2011), le suivi des volumes et des dates d’irrigation, entre autres
(Malbeteau et al., 2018; Ouaadi et al., 2020). Elle donne également des informations précieuses
pour améliorer la gestion de l’eau à l’échelle locale et régionale, notamment dans les régions
confrontées à une pénurie d’eau (Brocca et al., 2018; Zaussinger et al., 2019).

La SM à haute résolution peut également être utilisée pour d’autres applications telles que l’iden-
tification du risque d’épidémie lié aux conditions météorologiques et environnementales (Peters
et al., 2014), la gestion des criquets (Escorihuela et al., 2018), une indication de la récupération
des forêts après des feux de forêt (Chu and Guo, 2014). L’arrivée de données SM à une meilleure
résolution spatio-temporelle devrait permettre d’étendre encore le domaine d’application des
informations SM.
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I., 2013. Relation between seasonally detrended shortwave infrared reflectance data and land
surface moisture in semi-arid sahel. Remote Sensing 5, 2898–2927.

Ouaadi, N., Jarlan, L., Ezzahar, J., Zribi, M., Khabba, S., Bouras, E., Bousbih, S., Frison, P.L.,
2020. Monitoring of wheat crops using the backscattering coefficient and the interferometric
coherence derived from sentinel-1 in semi-arid areas. Remote Sensing of Environment 251,
112050.

Owen, T., Carlson, T., Gillies, R., 1998. An assessment of satellite remotely-sensed land cover pa-
rameters in quantitatively describing the climatic effect of urbanization. International journal
of remote sensing 19, 1663–1681.

Panciera, R., Walker, J.P., Kalma, J., Kim, E., 2011. A proposed extension to the soil moisture
and ocean salinity level 2 algorithm for mixed forest and moderate vegetation pixels. Remote
Sensing of Environment 115, 3343–3354.

Peischl, S., Walker, J.P., Ye, N., Ryu, D., Kerr, Y., 2014. Sensitivity of multi-parameter soil
moisture retrievals to incidence angle configuration. Remote sensing of environment 143, 64–72.

Peng, J., Loew, A., Merlin, O., Verhoest, N.E., 2017. A review of spatial downscaling of satellite
remotely sensed soil moisture. Reviews of Geophysics 55, 341–366.

Peng, J., Niesel, J., Loew, A., 2015. Evaluation of soil moisture downscaling using a simple
thermal-based proxy–the remedhus network (spain) example. Hydrology and Earth System
Sciences 19, 4765–4782.

185



BIBLIOGRAPHY 186

Peters, J., Conte, A., Van Doninck, J., Verhoest, N.E., De Clercq, E., Goffredo, M., De Baets,
B., Hendrickx, G., Ducheyne, E., 2014. On the relation between soil moisture dynamics and
the geographical distribution of culicoides imicola. Ecohydrology 7, 622–632.

Petropoulos, G.P., Ireland, G., Srivastava, P.K., Ioannou-Katidis, P., 2014. An appraisal of the
accuracy of operational soil moisture estimates from smos miras using validated in situ obser-
vations acquired in a mediterranean environment. International Journal of Remote Sensing
35, 5239–5250.

Piles, M., Petropoulos, G.P., Sánchez, N., González-Zamora, Á., Ireland, G., 2016. Towards
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Viviroli, D., Dürr, H.H., Messerli, B., Meybeck, M., Weingartner, R., 2007. Mountains of the
world, water towers for humanity: Typology, mapping, and global significance. Water resources
research 43.

Viviroli, D., Weingartner, R., 2004. The hydrological significance of mountains: from regional
to global scale. Hydrology and earth system sciences 8, 1017–1030.

188



189 BIBLIOGRAPHY

Vreugdenhil, M., Dorigo, W., Broer, M., Haas, P., Eder, A., Hogan, P., Blöschl, G., Wagner, W.,
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