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Abstract 

Soil moisture is a significant state variable in flood forecasting. Nowadays more and more satellite 

soil moisture products are available, yet their usage in the operational hydrology is still limited. 

This is because the soil moisture state variables in most operational hydrological models (mostly 

conceptual models) are over-simplified – resulting in poor compatibility with the satellite soil 

moisture observations. A case study is provided to discuss this in more detail, with the adoption 

of the XAJ model and the Soil Moisture and Ocean Salinity (SMOS) level-3 soil moisture 

observation to illustrate the relevant issues. It is found that there are three distinct deficiencies 

existed in the XAJ model that could cause the mismatch issues with the SMOS soil moisture 

observation: i) it is based on runoff generation via the field capacity excess mechanism 

(interestingly, such a runoff mechanism is called the saturation excess in XAJ while in fact it is 

clearly a misnomer); ii) evaporation occurs at the potential rate in its upper soil layer until the 

water storage in the upper layer is exhausted, and then the evapotranspiration process from the 

lower layers will commence – leading to an abrupt soil water depletion in the upper soil layer; iii) 

it uses the multi-bucket concept at each soil layer - hence the model has varied soil layers. 

Therefore, it is a huge challenge to make an operational hydrological model compatible with the 

satellite soil moisture data. The paper argues that this is possible and some new ideas have been 

explored and discussed. 

Keywords: Flood forecasting, Operational hydrological modelling, Satellite soil moisture 

observation, SMOS, Xinanjiang (XAJ), NLDAS-2 

 

 



1. Introduction 

Soil moisture is a significant state variable in real-time flood forecasting [Ochsner et al., 2013]. 

Over the past decades, numerous hydrological models have been developed, representing more or 

less accurately the main hydrological processes involved at a catchment scale [Aubert et al., 2003]. 

The challenge in forecasting floods in a reliable way stems mainly from the error accumulation of 

the models, particularly during unusual hydrological events and after a long period of dryness. 

Solutions have thus been introduced to enhance flood forecasting by matching the model with the 

current observations prior to its use in forecasting mode – termed as updating or data assimilation 

[Christian, 1997]. Since hydrological models are highly sensitive to the state change of the soil 

moisture [Aubert et al., 2003], a better soil moisture observation over a catchment should improve 

the forecasting performance via correcting the trajectory of the model [Ottlé and Vidal-Madjar, 

1994]. Nevertheless it is still a challenge to accurately monitor soil moisture that varies both 

spatially and temporally. Conventional in-situ networks are expensive and impractical in large 

areas, and they are still too sparse to represent the spatial soil moisture distribution [Al‐Shrafany 

et al., 2013; Srivastava et al., 2013a; Srivastava et al., 2013b; Walker et al., 2004; Wang and Qu, 

2009]. Model based estimates such as those from land surface models are another source of soil 

moisture data, but  they are uncertain due to imperfect parameterisation, meteorological forcing 

data and time drift problems (e.g., accumulation of errors) [Ridler et al., 2014; Xia et al., 2012].  

Alternatively, modern satellite remote sensing has shown potential for providing soil moisture 

measurements at a large scale [Engman and Chauhan, 1995]. However, with all orbiting sensors, 

only the surface layer soil moisture can be acquired. It has been shown in many studies that the 

soil penetration depth is around 0.1 – 0.2 times the sensor wavelength, where the longest 

wavelength is only about 21 cm (L-band, with a penetrating depth ~ 5 cm ) [Oh, 2000; Ulaby et 



al., 1996]. Conversely operational hydrological models (most often the conceptual hydrological 

models) consider a much deeper surface soil depth (up to 2 m), which also varies across a 

catchment. This unfixed and non-uniform structure of the soil representation is specially designed 

to achieve a better flow prediction result, which has been conducted in many widely used 

hydrological models (e.g., XAJ [Zhao, 1980], VIC [Liang, 1994], PDM [Moore, 2007], ARNO 

[Todini, 1996], etc.).  

Clearly there is a mismatch between the shallow satellite soil depth and the deeper soil layer 

considered in many hydrological models, which has caused a commensurate issue for the full 

utilisation of remotely sensed soil moisture products in operational hydrology. Although many 

studies have been carried out on the evaluation of satellite soil moisture observations for 

hydrological modelling [Al‐Shrafany et al., 2013; Lacava et al., 2012; Srivastava et al., 2013a; 

Srivastava et al., 2013b; Srivastava et al., 2014], with some correlations explored between the 

satellite soil moisture datasets and the hydrological models’ soil moisture state variables, their 

results have limited success and could be improved further. One possible way is by analysing the 

fundamental differences between the hydrological model simulated soil moisture and the satellite 

measured soil moisture, so that the hydrological model itself might need to be modified 

accordingly (e.g., to improve the agility of some model parameters or have a fixed soil layer option) 

to better match the satellite measured soil moisture. Furthermore it is known that most operational 

hydrological models are designed to accurately predict flow, and their soil moisture state variables 

do not act in the same way as in the real world. As a result many conceptual hydrological models 

are not compatible with satellite soil moisture observations. A topical research question is whether 

we can improve the simulation of soil moisture from the current hydrological models, while 

maintaining or even improving the flow simulation performance.  



In this context we first compare the major satellite soil moisture measurement techniques, then 

discuss some physical issues that could cause low effectiveness of the satellite soil moisture data 

in hydrological modelling, illustrate the shortcomings through a case study and make practical 

recommendations that should lead to improved compatibility of the satellite soil moisture products 

in hydrological modelling.  

2. Spectral measurements for soil moisture estimation 

Numerous studies have shown that near surface soil moisture (~ 5 cm) can be measured by many 

techniques including optical, thermal infrared and microwave [Petropoulos et al., 2015; Walker, 

1999]. The major differences among them are the region of electromagnetic spectrum employed, 

the power of the corresponding electromagnetic energy, the signal received by the sensors, and the 

relationship between the retrieved signal and the soil moisture [Walker, 1999; Wang and Qu, 2009]. 

Table 1 lists the advantages and limitations of each technique for surface soil moisture 

measurement and their characteristics.  Only a brief description of them is summarised here and 

interested readers are encouraged to read further details from the references provided. 

- Optical: it measures the reflected radiation of the Sun from the Earth’s surface, known as the 

reflectance [Sadeghi et al., 1984]. Its correlation with the soil moisture has long been 

recognised [Ångström, 1925]. Although there are a large number of optical sensors currently 

serving in orbit, relatively fewer studies have been carried out regarding their application in 

soil moisture assessment [Muller and Decamps, 2001]. This is partially because the optical 

sensors can only detect the reflectance or emittance at the top few millimetres of the Earth 

surface. Compared with the longer microwave wavelength, the optical signal is highly affected 

by cloud contamination and vegetation cover. Furthermore the received soil reflectance is not 



solely affected by the soil moisture, but also influenced by mineral composition, organic matter, 

soil texture and observation conditions, which makes this technique less popular for soil 

moisture estimation [Moran et al., 2004; Musick and Pelletier, 1988].  Therefore the optical 

technique is normally applicable only under restricted conditions for soil moisture 

determination (e.g., with specific soil types, bare soil, and  climate dominated by clear sky) 

[Muller and Decamps, 2001; Wang et al., 2007].  

- Thermal infrared: it measures the Earth radiative temperature, which is then converted to soil 

moisture either singularly or by combination with the vegetation index information obtained 

from the optical wavebands (e.g., Normalised Difference Vegetation Index (NDVI) from the 

MODIS satellite). Since soil water content governs the thermal properties (i.e., the soil thermal 

conductivity and the soil heat capacity) of the soil, it should be expected that regions with 

wetter soil are usually cooler during the day and warmer at night [Griend and Engman, 1985]. 

Driven by this concept a considerable number of studies have shown good accuracy of soil 

moisture measurements by this technique, such as through the simple thermal inertia approach 

[Schmugge, 1978] and the ‘Universal Triangle’ method [Carlson et al., 1994; Gillies et al., 

1997]. While these approaches are powerful and have thorough physical meanings, they are 

still restricted by various factors, similar to those in the optical wavebands. Therefore their 

accuracy varies across time and meteorological conditions (e.g., wind speed, air temperature 

and humidity) [Czajkowski et al., 2000; Smith and Choudhury, 1991] 

- Microwave: its primary theory is based on the large contrast between the dielectric properties 

of water (~80) and dry soil (<5). Therefore when the soil becomes moist, the dielectric constant 

of the soil-water mixture rises, and this emission fluctuation is recorded by microwave sensors 

[Dobson et al., 1985; Njoku and Kong, 1977].  For passive sensors, the retrieved emission from 



the Earth surface is proportional to the product of surface temperature and surface emissivity, 

which is commonly referred to as the microwave brightness temperature [Kerr et al., 2001]. 

For active sensors, a microwave pulse is first sent and then received. The power of the two 

signals is then compared to determine the backscattering coefficient of the surface, which has 

been proven to be sensitive to soil moisture [Entekhabi et al., 2010]. For both sensor types, the 

measurement efficacy is related to wavelength, where longer wavelengths (> 10cm) penetrate 

deeper into the soil and have more ability to pass through cloud and some vegetation cover 

(such as the Soil Moisture and Ocean Salinity (SMOS) satellite with the L-band wavelength 

(21 cm), which is able to probe about 5 cm into the ground) [Njoku and Kong, 1977]. 

Comparatively, microwave bands have more advantages in soil moisture estimation than other 

spectral bands. With the modern microwave satellites such as the Advanced Microwave 

Scanning Radiometer on Earth Observing System (AMSR-E; from 6.9 to 89.0 GHz; [Njoku et 

al., 2003]) which operated on the AQUA satellite between 2002 and 2011, the SMOS  (1.4 

GHz) launched in 2009 [Kerr et al., 2001] and the Soil Moisture Active/Passive mission 

(SMAP; 1.20-1.41 GHz; [Entekhabi et al., 2010]) which was just launched in early 2015, it is 

anticipated that more advanced soil moisture measurements would be available. Although 

many attempts have been made to link the microwave soil moisture products with in-situ 

networks [Al Bitar et al., 2012; Albergel et al., 2012; Jackson et al., 2012], land surface models 

[Ridler et al., 2014; Ridler et al., 2012] and physical based hydrological models [Laiolo et al., 

2014; Ridler et al., 2014], there is still a lack of sufficient research on their application in 

operational hydrological modelling.  

Clearly there have been tremendous efforts and funds spent by many organisations to build up the 

global satellite soil moisture datasets for broad applications. However, utilisation of these products 



in hydrology is still in a state of infancy, especially in real-time flood forecasting. Therefore the 

following case study is employed to explore in more detail the potential problems that could cause 

this phenomenon.  

3. Case study – data and methodology 

In this section, an example is provided to discuss the existing mismatches, through a comparison 

between a widely used conceptual hydrological model - XAJ [Zhao, 1980] and a satellite soil 

moisture observation system (i.e., SMOS).  

3.1 Study area and datasets 

The Vermilion River at Pontiac, (1500 km2) is a medium sized catchment, which is located in 

central Illinois, USA (40.878°N, 88.636°W). It has a hot summer continental climate [Peel et al., 

2007], and is covered primarily by cropland [Bartholomé and Belward, 2005; Hansen, 1998] on 

Mollisols [Webb et al., 2000]. Average annual rainfall is 867 mm. The layout of the Pontiac 

catchment is shown in Fig. 1 along with the location of its flow gauge, NLDAS-2 grids (a total of 

20 grids) and distribution of the river networks.  

The NLDAS-2 [Mitchell et al., 2004] precipitation (P) [Daly et al., 1994] and potential 

evapotranspiration (PET) at 0.125o spatial resolution and daily temporal resolution (converted 

from hourly resolution) are selected as the data input to the XAJ model. Both PET and P datasets 

have been transformed into one catchment-scale dataset using the weighted average method to 

operate the lumped XAJ model. Readers are referred to [Xia et al., 2012; Zhuo et al., 2015b] for a 

full description of the NLDAS-2 data products. The USGS daily flow data from January 2010 to 

April 2011 have been selected as the XAJ calibration dataset and the period of May 2011 to 



December 2011 is employed for validation. The SMOS level-3 soil moisture dataset used in this 

study is from the SMOS Barcelona Expert Centre (SMOS-BEC) [BEC-SMOS, 2013], covering the 

period between January 2010 and December 2013. The retrieved soil moisture dataset has been 

converted into a catchment-scale dataset by the weighted average method. 

3.2 XAJ hydrological model 

The XAJ model, developed in the 1970s, is a well-tested conceptual rainfall-runoff model [Zhao, 

1992; Zhao et al., 1995]. It is the first hydrological model that introduced the multi-bucket concept 

with improved flow modelling result, and its concept has been adopted in many other hydrological 

models such as the PDM, ARNO and VIC models [Beven, 2011]. Therefore the XAJ model is 

selected in this study as a typical conceptual hydrological model. 

XAJ’s main concept is the generation of runoff on repletion of its storage capacity, which means 

that runoff is not generated until the soil water content of its aeration zone reaches field capacity. 

It has been widely applied to numerous catchments around the world [Khan, 1993; Rahman et al., 

2015; Reed et al., 2004; Wang, 1991; Zhao, 1992]. The adopted flowchart of the XAJ model is 

illustrated in Fig. 2. It includes an evapotranspiration unit, a runoff production unit and a runoff 

routing unit. The runoff component is also known as a water balance model which simulates 

lumped values of runoff into surface, interflow and groundwater components according to the free 

water storage. The simulated effective rainfall (runoff) is then routed as river flow through a 

routing module to the catchment outlet. The Muskingum routing method is applied in this study. 

The XAJ model only requires areal mean P and PET data as model inputs and the measured flow 

for model calibration and validation [Peng et al., 2002]. In this study the XAJ model’s 17 

parameters are calibrated using measured flow [Zhao, 1980; Zhao, 1992].  



There are three soil layers (upper, lower and deep) that represent the three evapotranspiration 

components in the XAJ model; and their corresponding soil moisture states are represented by the 

Soil Moisture Deficit (SMD, m). SMD is a significant soil moisture indicator in hydrology, which 

demonstrates the amount of water to be added to a soil profile to bring it to the field capacity 

[Calder et al., 1983; Rushton et al., 2006]. In this study only the upper soil layer’s SMD (referred 

to as SMD hereafter) is used to compare with the SMOS surface soil moisture retrievals. The SMD 

can be calculated using the following equation (Srivastava et al., 2013b):  

SMCFCSMD                                                                                                                      (1) 

where FC is the field capacity, which is considered as the upper limit in hydrological modelling 

for soil water storage; SMC is the soil moisture content. In the XAJ model, FC is not uniform over 

the whole catchment, which is represented by a soil water storage curve. This means that FC varies 

across the catchment. This is also true with the SMD and the SMC which are also nonuniform. 

Therefore Eq. 1 is true at any catchment point. If an integration is applied to all the three variables 

over the whole catchment, Eq. 1 is also true in the integrated form with its effective values. 

3.3 SMOS surface soil moisture measurement 

Among all the microwave sensors, SMOS is the first mission dedicated to monitoring direct 

surface soil moisture and sea surface salinity on a global scale [Kerr et al., 2010]. It has been 

providing soil moisture data for almost six years since its launch in 2009. SMOS detects the 

brightness temperature at the frequency of 1.4 GHz (L-band, 21 cm), which is a function of the 

emissivity and hence the near surface soil moisture (approximately 5 cm). The spatial resolution 

is 35-50 km [Kerr et al., 2001; Kerr et al., 2010] with soil moisture retrieval unit in m3/m3. SMOS 

gives a global coverage at the equator crossing times of 6 am at the local solar time (LST) 



(ascending) and 6 pm (LST, descending), with an accuracy of approximately 0.04 m3/m3 [ESA-cci, 

2013; Kerr et al., 2012]. In this study the daily SMOS-BEC [BEC-SMOS, 2013] soil moisture 

product with the EASE grid (Equal Area Scalable Earth grid) is employed, because the EASE grid 

is widely used. In addition only the descending dataset is considered, because it has been found 

that the performance of descending retrievals is much better than ascending values in this 

catchment [Zhuo and Han, 2015; Zhuo et al., 2015a]. Readers are referred to [Kerr et al., 2012] 

for a full description of the retrieving method. 

4. Case study - results and discussion 

The Nash-Sutcliffe Efficiency (NSE) [Nash and Sutcliffe, 1970] is used as an objective function 

for XAJ calibration and validation because it is the most widely applied formula for examining the 

performance of the hydrological models [Krause et al., 2005]. It is calculated as: 
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where Qi is the observed flow, Q̂  is the simulated flow, and O  is the mean value of the observed 

flow. n is the number of data pairs. 

4.1 XAJ flow simulation 

The XAJ parameters calibrated in this study are described in Table 2 with the ranges used and the 

optimal values. The time series plots of rainfall and flow during the calibration and validation 

periods are presented in Fig. 3. It is indicated by the hydrographs that the XAJ model matches the 

observed flow relatively well while there is a slight deviation at some points during the calibration 

period, revealing that the model is incapable of perfectly simulating the non-linear behaviour of 



the hydrological processes. This is particularly evident during the recession curves and the low 

flow periods. For the validation period there is an overestimation of the overall flow, which could 

be the result of the approaches used for model parameter identification or the defect of the model 

structure itself. Nevertheless, during most of the monitoring periods the XAJ model produces a 

relatively good performance and both NSE values are sufficiently high (NSE ≥ 0.8) for an 

acceptable hydrological model. In another word, the generated SMD should be a reliable indicator 

of the catchment soil moisture (albeit in an inverse relationship), given the fact that the XAJ model 

is able to simulate the hydrological processes in the catchment, even though the model is calibrated 

using the river flow. Therefore from the point view of hydrological modelling, the generated SMD 

could be regarded as a benchmark to evaluate a soil moisture product before employing it for 

practical usage (e.g., through data assimilation, observed soil moisture could be used to update the 

model’s soil moisture state variable during real-time flood forecasting [Al‐Shrafany et al., 2013; 

Srivastava et al., 2013a; Srivastava et al., 2014]). Details on the XAJ flow simulation in this 

catchment can be found in Zhuo et al. [2015a]. 

4.2 XAJ soil moisture simulation  

The time series of the SMOS soil moisture measurement and the XAJ SMD are illustrated in Fig. 

4. It is clear that there are some interesting phenomena that need to be explored. As seen from Fig. 

4, the XAJ SMD ranges from as low as 0 m (i.e., at field capacity) to the maximum value at 0.047 

m (i.e., total dryness). However, for the SMOS soil moisture the data points are more freely 

dispersed and there is no evident limiting boundary at either end. In addition there are a 

considerable number of days where the soil is completely dry at the maximum value of the SMD, 

which is infrequent in a cropland catchment. Moreover the XAJ simulated soil moisture dries up 

more quickly than the SMOS retrievals (i.e., the XAJ soil moisture stops at 0.047 m SMD, while 



the SMOS observed soil moisture is still in the progress of drying). Once the XAJ soil water gets 

to field capacity (i.e., 0 m SMD), it will not hold any more water. This is because in the XAJ model, 

the excess rainfall (above field capacity) becomes runoff and is therefore excluded from the soil 

water component immediately.  

To further explore the reasons for the aforementioned phenomena, it is necessary to investigate the 

soil water mechanism of the XAJ model. The distribution of the tension water capacity in the XAJ 

model is illustrated in Fig. 5. It is evident that in the real field situation there are four typical states 

of the soil moisture: saturation, field capacity, wilting point and total dryness (Table 3). In reality, 

after a heavy rainfall event, the top layer soil should saturate fairly quickly, and then it can take 

approximately 2-3 days for the excess water to be drained away to reach field capacity [Rubin, 

1966; Veihmeyer and Hendrickson, 1931]. However, in the XAJ model any excess soil water above 

field capacity after a rainfall event (i.e., the shaded area marked with R) will be moved immediately 

to a free water tank (i.e., marked with F), which will then be separated into individual runoff 

components (i.e., immediate surface runoff and gradually released interflow runoff and runoff as 

percolation into groundwater). Clearly there is a gap between the field capacity curve (the upper 

soil moisture limit in the XAJ model) and the saturation curve (as in the SMOS soil moisture 

observation). This runoff mechanism has been widely adopted in many well-known hydrological 

models (such as the PDM model [Moore, 2007] and the HBV model [Lindström et al., 1997]), 

because it is very effective in flow simulation. Another incongruity is that evaporation in the XAJ 

model occurs at the potential rate at its upper soil layer and until the water storage in the upper 

layer is exhausted, the evapotranspiration process from the lower layers will not commence - 

leading to an abrupt soil water depletion as shown in Fig. 4. Clearly, this is not realistic, as in the 

real field situation soil water in the deeper layers has already started to replenish through the 



capillary rise action. Capillary action is dependent on the diameter of the water conduit, and it is 

known that the smaller the conduit diameter the higher the rise would be and vice versa. However 

the water movement rate of capillary action is proportionate to the cross-section area of the conduit 

(i.e., water moves faster in a larger conduit due to higher hydraulic conductivity, and slower in a 

smaller conduit due to lower hydraulic conductivity). If the soil is wet and its pores are mostly 

filled with water, the conduit for the water movement is relatively large (i.e., almost the same size 

as the pores of the soil). Therefore capillary rise is able to move a large quantity of water at a faster 

rate from a lower soil level to a higher soil level (albeit with a limited lower height). As the soil 

dries up, only smaller parts of the pores are filled with water and the conduit used to convey water 

is narrower (i.e., equivalent to a smaller diameter). As a result, capillary action is only able to move 

a small quantity of water at a reduced rate from a lower level to a higher level, but with a much 

larger height (i.e., from the deeper soil). In summary, capillary action is more significant when the 

upper soil layer is wet (not when it is dry), and then its movement rate is less so as the soil dries 

up. Therefore the lower soil moisture limit set in the original XAJ model is wrong and could be 

somewhere above the wilting point (the real lower limit depends on individual catchment 

conditions) as shown in Fig. 5.  

The reason why XAJ can simulate river flow commendably is that it is only interested in river 

discharge at the outlet. Hence the immediate removal of the excess water from the soil component 

to a temporary free water storage will not have significant impact on the flow output. However, 

the XAJ model is not able to generate realistic soil moisture information for the catchment, 

especially in the upper soil layer. This flaw in the model soil moisture representation greatly 

reduces its compatibility with the satellite soil moisture data. In addition, the XAJ soil layers are 

not fixed. Unlike a bucket model with a fixed size, XAJ conceptualises that a catchment should be 



made of a large number of buckets with different sizes in each soil layer. The tension water 

capacity curve presented in Fig. 5 in another aspect indicates the bucket size distribution in a soil 

layer (i.e., bucket sizes can vary from zero (for impervious areas) to the value of the maximum 

tension water capacity of that catchment, WMM). It has been proven that this type of hydrological 

model could perform more accurately in river flow modelling than fixed-depth models in practice 

[Beven, 2011; Zhao et al., 1995]. However, this leads to incompatibility with the satellite soil 

moisture depth (e.g., ~ 2 m against 5 cm). Presumably, these are the reasons why more attention 

to satellite soil moisture data usage has been given in climate and meteorological modelling, which 

employ comprehensive model structures and explicitly physical processes [Drusch, 2007; Reichle 

and Koster, 2005; Reichle et al., 2007]. Although there are some physics-based hydrological 

models that are designed in a similar way, their large data requirements and number of parameters, 

rather complicated model structures and comparatively poor flow modelling outcomes have 

hindered their practical application in real-time flood forecasting [Mendoza et al., 2015; 

Overgaard et al., 2006; Reed et al., 2004].   

5. Discussion and conclusions 

In this paper we argue that the unsuitable mechanisms in a typical conceptual hydrological model 

can hinder its full utilisation of satellite soil moisture products. As in the case study presented here, 

there are three clear incongruities between the XAJ soil moisture state variable and the SMOS soil 

moisture observation. Since availability of global satellite soil moisture products is increasing, the 

aforementioned hydrological model deficiencies can weaken the effectiveness of these soil 

moisture datasets in real-time flood forecasting. Therefore critical amendments to existing 

hydrological models are required to minimise the mismatch between the satellite soil moisture and 



the hydrological model generated soil water information, and to better link the shallow satellite 

soil layer with the deeper and variable soil layers in the hydrological model.  

One may argue that the XAJ model already works well in operational flood forecasting with its 

existing inputs, and therefore there is no need to use the satellite data. However, there are many 

cases in which it does not work well enough. For example, if there is missing data concurrent with 

an imminent storm, soil moisture observations such as those from the satellites will be very useful 

for quickly initialising the model’s soil moisture state (i.e., to reduce the need for warming up/ 

spinning up the model), so that the model is ready for flood forecasting. Another case is when 

there is an accumulated error with the model’s evapotranspiration and precipitation estimation 

which can cause time-drift of the model’s soil moisture state. Soil moisture observations in this 

case can help to adjust this time-drift by data assimilation techniques, and in this way the over- 

and under-estimation of the flow peaks could be minimised. A successful hydrological model 

should be able to make full use of the available data, and satellite soil moisture observations do 

provide extra information to compliment the conventional hydrological measurements. It is 

important to recognise the weaknesses in existing models, and encourage the community to 

explore the ways to improve those models’ compatibility with the new measurements. 

One possible solution is that the soil moisture fluctuation in the hydrological model should be 

extended to full saturation. However, this contradicts the original concept of many hydrological 

models (e.g., XAJ, PDM, HBV) where field capacity is set as the upper limit of soil moisture 

content. The current hydrological model works fairly well in practice, and it is uncertain if this 

alteration will reduce the effectiveness of the model in simulating river flows. On the other hand 

such a change may improve the model further. Therefore in the improved method, the soil moisture 

state variable is allowed to rise to the saturation point, but because it is above field capacity, the 



soil particles are not capable of holding the excess water for a very long time. The improved model 

should allow the excess water to be gradually released from the soil to runoff - hence a water 

release curve should be introduced. According to Fig. 2, the water release curve is made of two 

components: RI and RG (i.e., interflow runoff and runoff into groundwater, respectively). A 

straightforward solution is to use the combination of the existing XAJ’s RI and RG release curves 

in the improved modelling scheme, to calculate the water gradually released from the soil column. 

Although the concept is clear, further study about this curve is needed. Regarding the XAJ lower 

soil moisture limit, the original boundary at total dryness should be modified. It is known that in 

the XAJ model, when the second and third layers’ evapotranspiration amounts are calculated, 

reduction ratios are applied (e.g., for the second layer calculation, a ratio of the actual water storage 

to the capacity storage is applied). Similar ratios could also be applied to the updated upper soil 

layer of the XAJ model. Alternatively a minimum water storage in the upper soil layer could be 

set and calibrated based on individual catchment conditions. We hope these proposed ideas could 

solve the soil moisture range problem in the current XAJ model. 

A potential issue related to the spatial difference between the satellite footprint and the catchment 

area may also need consideration. Unlike the other issues discussed, this is beyond the hydrological 

model domain. Ideally it is hoped that the satellite footprint is the same size as the catchment area; 

however, it is not always possible to achieve this with existing sensors. If the satellite footprint is 

smaller than the catchment, then it is not an issue because the aggregation of the satellite pixels 

within the catchment can be matched to the catchment area. On the other hand, if the satellite 

footprint is larger than the catchment area, this could be a problem because if the soil moisture is 

unevenly distributed, the catchment soil moisture could be very different to the average soil 

moisture as measured by the large satellite footprint (for example, if the catchment is located in 



the drier part of the footprint, its soil moisture would be overestimated, whereas the opposite would 

happen for the wetter part of the footprint). Schlosser [1996], Vachaud et al. [1985], and Wagner 

[2008] have explained that in such a condition, the catchment spatial soil moisture patterns persist 

in time. However, a better way to handle this is through spatial downscaling using data fusion 

techniques (e.g., to combine coarse microwave data with fine surface temperature data), which 

should be explored in the future.  

Finally it is worth noting that this study is not about a direct comparison between the model’s soil 

moisture state variable and the satellite soil moisture, because they are different albeit linked. 

Therefore correlation is used instead. Although attempts have been made by many researchers to 

assimilate satellite soil moisture data into hydrological models, they are generally not very 

successful. We believe weaknesses of the existing conceptual hydrological model could be one of 

the reasons. The purpose of this study therefore is to raise the awareness of the shortcomings of 

soil moisture representation in current conceptual hydrological models because such models have 

been developed long before soil moisture remote sensing observations have become widely 

available. Hence prior to assimilating satellite soil moisture data in hydrological modelling, current 

hydrological models need to be improved by overcoming the aforementioned issues to make them 

more compatible with each other. It is hoped that future exploration and collaboration should be 

carried out by the hydro-metrological community so that multi-disciplinary experience and 

knowledge could be accumulated to improve the hydrological processes represented in current 

hydrological models. 
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