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Abstract. In 2009, the International Soil Moisture Net-
work (ISMN) was initiated as a community effort, funded by
the European Space Agency, to serve as a centralised data
hosting facility for globally available in situ soil moisture
measurements (Dorigo et al., 2011b, a). The ISMN brings
together in situ soil moisture measurements collected and
freely shared by a multitude of organisations, harmonises
them in terms of units and sampling rates, applies advanced
quality control, and stores them in a database. Users can
freely retrieve the data from this database through an on-
line web portal (https://ismn.earth/en/, last access: 28 Octo-
ber 2021). Meanwhile, the ISMN has evolved into the pri-
mary in situ soil moisture reference database worldwide, as
evidenced by more than 3000 active users and over 1000 sci-

entific publications referencing the data sets provided by the
network. As of July 2021, the ISMN now contains the data
of 71 networks and 2842 stations located all over the globe,
with a time period spanning from 1952 to the present. The
number of networks and stations covered by the ISMN is still
growing, and approximately 70 % of the data sets contained
in the database continue to be updated on a regular or irreg-
ular basis. The main scope of this paper is to inform readers
about the evolution of the ISMN over the past decade, includ-
ing a description of network and data set updates and quality
control procedures. A comprehensive review of the existing
literature making use of ISMN data is also provided in order
to identify current limitations in functionality and data usage
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and to shape priorities for the next decade of operations of
this unique community-based data repository.

1 Introduction

Ground-based soil moisture measurements of land surface
variables are indispensable in the process of developing, val-
idating, and advancing spatially contiguous data sets derived
from satellites or models (Loew et al., 2017; Gruber et al.,
2020). Although the first systematic measurements of soil
moisture started well before the satellite era in the former So-
viet Union to support agricultural decision-making (Robock
et al., 2000), it was not until the early 2000s that soil mois-
ture monitoring networks started being widely established as
part of hydrological and meteorological observing capacities.
Particularly, the launch of the Soil Moisture Ocean Salin-
ity (SMOS) mission of the European Space Agency (ESA)
in 2009 (Kerr et al., 2016), and the launch of the Soil Mois-
ture Active Passive (SMAP) mission of the National Aero-
nautics and Space Administration (NASA) in 2015 (En-
tekhabi et al., 2010), boosted the establishment of new re-
search networks (Colliander et al., 2017).

While all networks are valuable assets for assessing the
skill of soil moisture products under various conditions and
scales, their usage is hampered by the diversity of sensors,
data formats, quality control, and accessibility mechanisms.
The need to bring together and to harmonise available soil
moisture data was recognised by the international soil mois-
ture community and expedited by the Global Energy and Wa-
ter cycle Exchanges (GEWEX) project of the World Climate
Research Programme (WCRP) with support of the Commit-
tee on Earth Observation Satellites (CEOS), the Global Cli-
mate Observing System (GCOS), and the Group on Earth
Observations (GEO). In the advent of the SMOS mission,
ESA decided to provide the financial impetus to establish a
global reference database of in situ soil moisture measure-
ments for the purpose of satellite product development and
validation. As a result, the International Soil Moisture Net-
work (ISMN) went online in 2010 (Dorigo et al., 2011b, a).

The primary objective of the ISMN is to collect in situ
soil moisture data sets, shared by various data organisations
on a voluntary basis, and make them available in a har-
monised format through a centralised free and open web
portal (https://ismn.earth/en/, last access: 28 October 2021).
While 10 years after its launch the core objective of the
ISMN remains valid, its functionality has expanded since
then. This new functionality includes the integration of ad-
vanced quality control methods (Dorigo et al., 2013; Sect. 3),
the provision of additional metadata and ancillary variables
(e.g. precipitation and soil and air temperature), ongoing au-
tomation, the provision of software code to users, and the
implementation of various tools to promote the information
exchange between users, the ISMN, and the data providers.

Moreover, the ISMN has substantially grown in terms of net-
works, stations, and data sets.

Data from the ISMN has supported hundreds of scientific
papers on soil moisture, satellite product, and land surface
model validation in particular (e.g. Al-Yaari et al., 2019b;
Brocca et al., 2014a; Beck et al., 2021). Several opera-
tional data producing services routinely access the ISMN
data for repeated quality assurance, including the ESA’s Cli-
mate Change Initiative (Dorigo et al., 2017), the Copernicus
Global Land Service (Bauer-Marschallinger et al., 2018), and
the Copernicus Climate Change Service (C3S; Dorigo et al.,
2017). Other domains have also exploited the ISMN data,
e.g. in meteorology, drought monitoring, or land–atmosphere
coupling (Sect. 4).

Despite the valuable contribution of the ISMN to satel-
lite and climate communities, multiple challenges have yet
to be mastered, including the heterogeneous availability in
space and time (Dorigo et al., 2015), scale differences be-
tween in situ measurements and satellite or model sampling
(Gruber et al., 2013), full characterisation and traceability
of uncertainties, and differences in spatiotemporal support
of the observations caused by different measurement tech-
niques and landscape heterogeneity (Ochsner et al., 2013).
New scientific avenues to improve the spatial coverage could
be the inclusion of soil moisture data sets from low-cost sen-
sors collected by citizens (Sect. 5.1.4. For climate applica-
tions, stable long-term reference data are required, calling for
the coordinated establishment and maintenance of Fiducial
Reference Measurement (FRM) stations, as outlined by the
GEO/CEOS Quality Assurance framework for Earth Obser-
vation (QA4EO) (GCOS, 2016; Montzka et al., 2020; Gruber
et al., 2020).

The scope of this paper is to inform readers about the evo-
lution of the ISMN over the past decade, including a descrip-
tion of network and data set updates, new quality control pro-
cedures, and new functionality of the data portal. We also
review scientific literature making use of ISMN data to as-
sess the achievements facilitated by the ISMN and to identify
current limitations in data availability and functionality and
challenges in data provision and use. Based on this review,
prerequisites and priorities needed to ensure another decade
of this unique community-based data repository are defined.

2 The ISMN data hosting facility

Although the ISMN may be considered a mere data reposi-
tory, there is much more to it. Its core functionality includes
collecting data from participating data providing networks,
harmonising them in terms of units, sampling rates, naming,
and metadata, performing automated quality control, storing
the data and metadata in a searchable database, and making
them available through a web interface. And, from a system
perspective, it entails even more, e.g. communication with
(potential) data providers and users (Fig. B1).
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Figure 1. Locations of ISMN networks and sites plotted with the ISMN package described in the code and data availability section (status in
July 2021).

2.1 Data and metadata summary

As of July 2021, the ISMN contains 71 networks providing
access to a total of 2842 stations, approximately 10 000 soil
moisture data sets, and an additional 10 000 data sets of
other meteorological variables (collocated with the soil mois-
ture measurements). Although the ISMN is a global net-
work, most networks and stations are located in North Amer-
ica (15), Europe (28), Australia (3), and Asia (19; Fig. 1).
New networks are continuously being added, while many
existing networks are still being upgraded with additional
stations, soil moisture sensors, and meteorological variables.
The diversity of networks is large, ranging from networks
with a single station to networks comprising more than 400
stations covering different landscape types as well as periods.
The distribution of stations per Köppen–Geiger climate class
is given in Fig. 2.

Most of the networks originate from scientific initiatives in
various disciplines (e.g. remote sensing, soil sciences, agri-
culture, and meteorology), and only a few are run by oper-
ational entities like national weather or environmental ser-
vices. Consequently, a lack of sustainable project funding has
forced several scientific networks to close after some time.
As a result, 18 out of the 71 networks contained in the ISMN
have become inactive and will no longer provide data set up-
dates (Fig. 3). Data go back as far as 1952, but none of the

data sets spans the entire∼ 70 year period. The longest avail-
able time series (∼ 40 years) is provided by the RUSWET-
AGRO network in the former Soviet Union, while the longest
operating network still active is SNOTEL in the USA.

Most networks provide data set updates at yearly or ir-
regular intervals. Data sets from six networks (ARM, COS-
MOS, FMI, SCAN, SNOTEL, U.S. Climate Reference Net-
work (USCRN), and WegenerNet), comprising approxi-
mately 900 stations, are updated in near-real time (NRT; sta-
tus in July 2021), which is currently defined as once per
day. While the earliest networks were sampled manually at
weekly, fortnightly, or even monthly intervals, most current
networks take their measurements using electronic devices
at daily, hourly, or even more frequent sampling rates. For
more details on the networks, see Sect. A, Dorigo et al.
(2011b, 2013), or the individual references herein.

The variables contained in the ISMN (Tables 1 and 2)
originate from networks that were built for various purposes,
which consequently do not all contribute the same informa-
tion. Since the ISMN was initially founded as a validation
database for satellite (surface) soil moisture data, each sta-
tion in the database provides soil moisture for the upper soil
layer (≤ 0.10 m depth). Soil moisture data sets in the ISMN
can go as deep as 2 m, but generally with a decreasing num-
ber of measurements locations with depth (Table C1). Some
stations deploy more than one sensor at a certain depth, ei-
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Figure 2. Distribution of ISMN sites per Köppen–Geiger climate classification. Only categories with > 20 sites are considered (status in
June 2021).

Table 1. Overview of all available temporally dynamic variables stored in the ISMN database. ∗ Note that, for precipitation and air tempera-
ture, the measurement height above the ground surface is indicated.

Variable Abbreviation Units Measurement Variable No. of
name depth∗ (m) with time series

depth? (stations)

Soil moisture sm m3 m−3 0.00–2.10 Y 10 610 (2822)
Soil suction su kPa 0.04–0.75 Y 73 (18)
Soil temperature ts ◦C 0.00–2.03 Y 8113 (1629)
Air temperature ta ◦C 2.00–12.00 Y 1292 (1234)
Surface temperature tsf ◦C 0.00–0.00 N 126 (126)
Precipitation p mm 0.00–2.00 N 759 (700)
Snow depth sd mm 0.00 N 562 (555)
Snow water equivalent sweq mm 0.00 N 507 (427)

Table 2. Overview of all available temporally static variables stored in the ISMN database.

Variable name Abbreviation Units Measurement Sensor
depth (m) dependency

Climate classification clcl None None N
Land cover classification lccl None On surface and above N
Soil classification socl None None N
Bulk density bd g cm−3 0.00–1.50 Y
Sand fraction sa % weight 0.00–1.50 Y
Silt fraction si % weight 0.00–1.50 Y
Clay fraction cl % weight 0.00–1.50 Y
Organic carbon oc % weight 0.00–1.00 Y
Saturation sat % vol 0.00–1.00 Y
Field capacity fc % vol 0.00–2.00 Y
Potential plant available water ppaw % vol 0.00–2.00 Y
Permanent wilting point wp % vol 0.00–2.00 Y

https://doi.org/10.5194/hess-25-5749-2021 Hydrol. Earth Syst. Sci., 25, 5749–5804, 2021
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Figure 3. Overview of all available networks, the individual time span of the data availability within the ISMN, their operational status, and
their updating frequency (status in June 2021).

ther as replacement in case of failure of one of the sensors or
to characterise local soil moisture variability. The availabil-
ity of meteorological data, like precipitation and soil and air
temperature, is even more heterogeneous, depending on the
scope of the network or the data sharing policy of the data
providing organisation. It is also quite common that single
time series in the database are composed of the consecutive
measurements of two or more different sensors when a sen-
sor is replaced after failure.

Metadata information can be divided into two categories,
i.e. mandatory metadata, which allow for an unambiguous
identification of each network, station, and measurement in
the ISMN database (Fig. D1), and optional metadata, shared
by data providers to allow more in-depth analysis of their
data sets. To be consistent between sites, the mandatory

variables of climate, land cover, and soil characteristics are
taken from external databases. Climate classification is taken
from the Köppen–Geiger database, with a resolution of 0.1◦

(Peel et al., 2007). Dynamically evolving land cover for the
years 2000, 2005, and 2010 is obtained from ESA’s Climate
Change Initiative (CCI) land cover v1.6.1 with 300 m res-
olution. Soil information is retrieved from the Harmonized
World Soil Database (HWSD v1.1; FAO/IIASA/ISRIC/ISS-
CAS/JRC, 2009) with a 30′′ (1 km) sampling, although the
actual resolution may strongly vary from location to location.

If available, data providers can optionally share their own,
more detailed, characterisations of land cover, soil, and qual-
ity flags with the ISMN. These are stored in addition to the
same variables from external sources. All static variables per
measurement site and depth are listed in Table 2.

Hydrol. Earth Syst. Sci., 25, 5749–5804, 2021 https://doi.org/10.5194/hess-25-5749-2021
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2.2 Data collection and harmonisation

Data collection is done either manually (mostly by email) or
is automated, depending on the degree of automation at the
data provider side. Although standards for in situ soil mois-
ture data collection are available (Colliander et al., 2017;
Montzka et al., 2020), there is no general agreement within
the community, and it is not prescribed for participation in
the ISMN. Thus, the data being contributed to the ISMN are
heterogeneous with regard to units (e.g. volumetric soil mois-
ture, water depth, mass, soil saturation, and plant-available
water), installation depth, integration length, and positioning
of the sensors (vertical and horizontal), the metrical system,
the sampling interval, and the time zones used for the mea-
surement time stamps.

The first harmonisation step for all data and metadata in-
volves the conversion of units to internationally agreed sci-
entific units (e.g. metres and degrees Celsius). Then, follow-
ing the recommendations of the World Meteorological Orga-
nization for weather observation and forecasting (Williams,
2010), all data are resampled to hourly Coordinated Univer-
sal Time (UTC) reference time steps. Data that are avail-
able at higher sampling rates are thinned by selecting the
individual measurements at the hourly UTC reference time
step or the ones that are closest in time within a window of
±0.5 h. If there is no measurement available within this in-
terval, the respective time step is not stored in the database
but can be recreated and filled with a no-data value upon
download. The temporal resampling scheme is valid for all
included dynamic variables, except precipitation. Since pre-
cipitation is a flux and not a state variable, all measurements
within the hourly interval are summed to represent the full
amount of precipitation within the preceding hour (Dorigo
et al., 2011b).

All soil moisture measurements provided to the ISMN are
converted to volumetric soil moisture in cubic metres by
cubic metre (hereafter m3 m−3). Since the majority of net-
works already shares their measurements in volumetric soil
moisture units, often no unit conversion is needed. For the
other (mostly historical) networks, measurements are con-
verted to volumetric units using metadata on soil properties
(in case measurements are provided as saturation level or
plant-available water) and/or the thickness of the soil layer
represented by the measurement (in case measurements are
provided as water height or mass; Dorigo et al., 2011b). Note
that, even if all measurements are harmonised in terms of
units, differences in sampling volumes related to the sensor
design and installation are not accounted for.

The harmonisation of measurement depths is particularly
challenging, as different networks adopt different measure-
ment depths, similar sensors are positioned differently (hori-
zontally vs. vertically), or their measurements represent dif-
ferent observation volumes, which may even differ according
to the soil wetness (as for cosmic-ray probes). Thus, harmon-
ising soil moisture measurements to one or several reference

depths would require either assumptions on the measure-
ments and soil properties or supplemental soil modelling.
Additionally, since there are lots of potential uses for the
data, there is no common agreement on the optimum sam-
pling depths. For example, satellite calibration–validation
generally requires observations of the 0–5 cm layer, while
land surface model evaluation requires reference measure-
ments that are representative for the layers defined in the
model (Dorigo et al., 2011b). Consequently, the ISMN does
not harmonise measurement depths.

After data harmonisation, the data sets are submitted to
extensive quality control procedures (Sect. 3. After qual-
ity control, all data sets of soil moisture and other vari-
ables, metadata information on networks, responsible organ-
isations, sites, sensors, and static soil attributes for each sta-
tion are stored in a relational database.

2.3 Data portal

The ISMN can be accessed at https://ismn.earth/ (last access:
28 October 2021) and consists of a project website contain-
ing, e.g., information about networks, data, quality control,
and partners and a data interface where users can view, query,
and download the data contained in the database.

The data interface displays the location and information
of networks and single stations and allows plotting of the
available data to gain an impression of data availability and
quality. Data can be selected for time period, area, single net-
works, or entire continents. Alternatively, the data download
can be selected via an advanced SQL query, which allows
users to make more specific selections (e.g. for a sensor brand
or a certain depth range).

The selected data are directly extracted from the database,
and downloads are organised per network. For each network,
the download contains (i) the measurements and their quality
flags, (ii) information about the file data organisation, (iii) a
description of the ISMN quality flags, (iv) a metadata file
compliant with ISO 19115 and INSPIRE (Infrastructure for
Spatial Information in the European Community) metadata
standards, and (v) information about static site characteristics
(e.g. land cover, climate class, and soil characteristics).

The extracted data set files are formatted according to ei-
ther the CEOP (Coordinated Energy and Water Cycle Obser-
vations Project; Williams, 2010) standard or a slightly mod-
ified version of the CEOP format which improves data us-
ability (Dorigo et al., 2011b). These standards use the ascii
format, but a NetCDF format is foreseen for the near future.

2.4 Data provider and user involvement

The ISMN is entirely built on the voluntary, free-of-charge
contributions from scientific and operational providers. This
prevents the ISMN from being too prescriptive towards the
data providers in terms of delivery intervals, automation, and
formatting. Hence, a careful balance is needed between in-
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clusiveness, on the one hand, and data quality standards,
on the other. The ISMN facilitates between users and data
providers by reporting data quality issues and user feedback
to the providers every 6 months. This is done by means of
a report on data usage statistics for each individual network,
e.g. on the number of downloads, the usage of their data in
scientific publications, and flagging statistics. Together with
obtaining visibility and citations, obtaining feedback on data
usage and data quality is one of the primary motivations for
data providers to join the ISMN.

More than 3000 active users have registered since 2009
(status in July 2021). Data download is free of charge but user
registration (compliant with the latest European Union Gen-
eral Data Protection Regulation, EU GDPR, privacy stan-
dards) is required to prevent illegal redistribution of the
data or theft of ground equipment and to track (undisclosed)
statistics on data usage that are fed back to the data providers,
e.g. by regular reports.

News feeds on the ISMN web page and a biannual
newsletter inform the users about new networks, new data
sets, data quality issues, important publications, workshops,
and more. In addition, a dedicated forum and classical email
exchange allow users to raise and receive response to issues.
Moreover, open-source software packages are available for
reading and plotting the data (see the data availability sec-
tion).

3 Quality control

3.1 Quality flagging methodology

The wide variety of sensor types and installations, mea-
surement protocols, calibration methods, preprocessing, and
quality control procedures adopted by the data providers re-
sult in data sets with large differences in quality and filtering.
In an attempt to harmonise the reliability of the data from
different networks and sensors and to allow for the mark-
ing of spurious observations in near-real time, the ISMN has
adopted automated quality procedures which are applied to
all observations feeding into the ISMN (Dorigo et al., 2013).
It uses several approaches to detect dubious soil moisture
measurements, which can be subdivided into geophysical dy-
namic range verification, geophysical consistency methods,
and spectrum-based methods (Table 3). While the first cat-
egory of methods applies simple threshold checks directly
to the measurements, the geophysical consistency methods
make use of ancillary data, which are either observed in situ
at the same site or derived from model data (i.e. Global Land
Data Assimilation System (GLDAS)-Noah). The spectrum-
based flags are the result of a series of conditions applied
to the soil moisture measurement time series and their first
and second derivatives. The geophysical consistency and
spectrum-based methods are only applied to the soil mois-

ture observations, while geophysical dynamic range verifica-
tion is applied to all dynamic variables in the database.

Recently, the following refinements of the original flag-
ging procedures, as described and assessed in Dorigo et al.
(2013), were implemented to increase the flagging accuracy:

– The outlier detection method (flag D06) now allows
spikes to last 2 consecutive time steps instead of the
initial 1 h. This occurs when all conditions of Eqs. (4)–
(6) in Dorigo et al. (2013) are met, but the peak value
remains unchanged for an additional hour. The overall
impact is small (flagging numbers increase from 0.31 %
to 0.34 %), but its impact on extreme values can be sig-
nificant.

– Flag D07 (negative breaks or drops) was extended with
an extra possibility, which detects drops from values
greater than 0.05 to exactly 0 m3 m−3 soil moisture as
follows:

xt ≥ 0.05=∧xt+1 = 0. (1)

Since a spurious soil moisture drop is a precondition
for a low plateau (D09; constant low values following
a negative break), the latter is also affected. Adding
the extra drop detection increased flagging numbers
for D07 from 0.03 % to 0.05 % and for D09 from 1.1 %
to 1.4 %.

– In case more than one soil temperature, air temperature,
or precipitation sensor is available at a site, a flag is
raised for the soil moisture measurement if the condi-
tions of flags D01, D02, and D04, respectively, are met
at least for one of these sensors. This has led to a small
overall increase in flags D01, D02, and D04 (< 0.8 %).

All quality control procedures adopted by the ISMN have
been made available under the open-source license agree-
ment (see the data availability section; https://github.com/
TUW-GEO/flagit, last access: 28 October 2021).

We assessed the refined flagging procedures by applying
them to 10 networks with hourly data that include stations
with multiple soil temperature, air temperature, or precipita-
tion sensors. Despite the very low overall impact of the re-
fined flags, for some networks they are substantial (Fig. 4).

Measurements that are detected as erroneous by the qual-
ity control procedures are not deleted from the database but
tagged as such (Table 3). The flag is provided as additional at-
tribute (ISMN quality flag) to the observation upon download
and can take one of the main categories, namely C (exceed-
ing plausible geophysical range), D (questionable/dubious),
M (missing), or G (good). The D flag is raised when either a
geophysical consistency or a spectrum-based check is pos-
itive. An additional number indicates the actual cause for
flagging (Table 3). A soil moisture observation may receive
multiple C- and D-type flags but the good and missing flags
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Figure 4. Additionally flagged observations by the network shown as fraction of total number of observations. Note that, in principle, the
cumulative sum of fractions can be > 1 as the occurrence of each flag ranges between 0 and 1.

are exclusive. Seven networks provide their own soil mois-
ture quality flags, which are added to the ISMN database in
addition to the ISMN flags common to all time series. Exam-
ples are flags for data quality (without further methodologi-
cal description) or simple thresholds. For instance, Real-time
In-Situ Soil Monitoring for Agriculture (RISMA) tags soil
moisture observations for frozen soils when the average tem-
perature of two adjacent soil layers is below 0 ◦C (Pacheco
et al., 2014). By contrast, the ISMN flag D01 (soil temper-
ature < 0 ◦C) only considers the corresponding depth. For
RISMA, the frozen soil flags provided by the network and
those computed by the ISMN (D01; soil temperature < 0 ◦C)
agree for 87.8 %.

3.2 Flagging occurrence

The most commonly raised flag is when one of the an-
cillary temperature observations, i.e. in situ soil tempera-
ture (D01), in situ air temperature (D02), or GLDAS soil
temperature (D03), is < 0 ◦C (Table 3; Fig. 5). Since in
situ temperature measurements are not available for all net-
works, and to keep consistency between networks, flags D01
and D02 are not shown in Fig. 5. The number of observa-
tions flagged as frozen soil are not an indicator of the site in
general but show which networks are located in areas with a
pronounced cold season, e.g. stations from the FMI, RISMA,
MAQU, SCAN, and SNOTEL networks.

The second most common flag is C03 (soil moisture above
the site-specific saturation point), which is computed from
the HWSD soil properties. The site-specific saturation point
is usually lower than the globally adopted, less conservative
threshold of 0.6 m3 m−3 (flag C02) and, thus, raised more of-
ten (Fig. 5). However, the HWSD soil properties are uncer-
tain, and consequently, the C03 flag should be considered as
being indicative rather than as an absolute quality indicator.
Values exceeding the saturation point are often an indication
of calibration biases or atypical site conditions. For example,
the large number of C03 flags obtained for the BIEBRZA-S-
1 network is because it is installed in a temporarily flooded
marshlands with peat porosity exceeding 80 %.

Constant values as a result of saturation plateaus (D10) or
after a negative break (D09) are the most common spectrum-
based flags (Fig. 6). The latter are often a sign of sensor drop
outs and mostly limited to the GROW, ARM, HYDROL-Net
Perugia, and the U.S. Department of Agriculture (USDA)
Agricultural Research Service (ARS) networks. For exam-
ple, Xaver et al. (2020) evaluated the sensors used in the
GROW network and found occasional drops in soil moisture
to zero, which may be the result of corroding contacts. Spikes
and breaks are, by nature, isolated events that do not occur
over an extended period of time and, thus, appear less fre-
quent in the flagging statistics. The relatively large number
of spikes for the network SNOTEL of 0.4 % is due to some
extremely noisy time series.
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Table 3. Occurrence of flags for all variables and measurements contained in the ISMN (status in May 2021). The soil moisture flags are not
exclusive, i.e. an observation can be tagged with multiple flags.

Variable Flag Type Description Occurrence
(%)

Soil moisture C01 Range verification Soil moisture < 0 m3 m−3 0.07
C02 Range verification Soil moisture > 0.60 m3 m−3 1.17
C03 Range verification Soil moisture > saturation point (based on HWSD) 4.00
D01 Geophysical consistency Negative soil temperature (in situ) 6.71
D02 Geophysical consistency Negative air temperature (in situ) 16.15
D03 Geophysical consistency Negative soil temperature (GLDAS) 5.23
D04 Geophysical consistency Rise in soil moisture without precipitation (in situ) 0.27
D05 Geophysical consistency Rise in soil moisture without precipitation (GLDAS) 0.25
D06 Spectrum based Spikes 0.19
D07 Spectrum based Negative breaks (drops) 0.02
D08 Spectrum based Positive breaks (jumps) 0.01
D09 Spectrum based Constant low values following negative break 0.38
D10 Spectrum based Saturated plateaus 1.92

Soil temperature C01 Range verification Soil temperature <−60 ◦C 0.07
C02 Range verification Soil temperature > 60 ◦C 0.17

Soil surface temperature C01 Range verification Soil surface temperature <−60 ◦C 0.01
C02 Range verification Soil surface temperature > 60 ◦C 0.09

Air temperature C01 Range verification Air temperature <−60 ◦C 0.03
C02 Range verification Air temperature > 60 ◦C 0.04

Precipitation C01 Range verification Precipitation < 0 mm h−1 0.08
C02 Range verification Precipitation > 100 mm h−1 0.24

Soil suction C01 Range verification Soil suction < 0 kPa 0.26
C02 Range verification Soil suction > 2500 kPa 0.00

Snow water equivalent C01 Range verification Snow water equivalent < 0 mm 20.37
C02 Range verification Snow water equivalent > 10 000 mm 0.01

Snow depth C01 Range verification Snow depth < 0 mm 19.23
C02 Range verification Snow depth > 10 000 mm 0.00

Figure 5. Fractions of geophysical dynamic range and consistency quality flags per network. Note that, in principle, the cumulative sum of
fractions can be > 1 as the occurrence of each flag ranges between 0 and 1.
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Figure 6. Fractions of spectrum-based quality flags per network. Notice that, in principle, the cumulative sum of fractions can be > 1 as the
occurrence of each flag ranges between 0 and 1.

Table 4. Global validation results of surface soil moisture of ERA and ESA CCI soil moisture against ISMN (masked and unmasked for
quality flags) for the period 2001–2019. The results for ESA CCI were produced with the QA4SM validation service (https://qa4sm.eu/, last
access: 28 October 2021). The results are accessible at https://doi.org/10.5281/zenodo.4288919 (Aberer, 2020a) (absolute values – no flags),
https://doi.org/10.5281/zenodo.4288921 (Aberer, 2020b) (absolute values – with flags), https://doi.org/10.5281/zenodo.4288915 (Aberer,
2020c) (anomalies – no flags), and https://doi.org/10.5281/zenodo.4288913 (Aberer, 2020d) (anomalies – with flags). Note: ubRMSD is the
unbiased root mean squared difference.

Type Mask No. time R Pearson R Spearman ubRMSD
series (x) (x) (x) (x)

ERA5 absolute values None 7822 0.53 0.55 2.06
Flagged values 5878 0.59 0.60 0.08

ERA5 anomalies None 7822 0.44 0.46 1.21
Flagged values 5878 0.48 0.49 0.05

CCI absolute values None 1178 0.46 0.47 2.98
Flagged values 1115 0.46 0.46 0.09

CCI anomalies None 1178 0.34 0.34 1.60
Flagged values 1115 0.36 0.35 0.06

3.3 Effect of flagging on applications

For a selected ISMN site (SCAN and Mayday station),
Dorigo et al. (2013) showed that masking flagged values has
a small but positive impact on the validation of GLDAS-
Noah v1 modelled surface soil moisture and the remotely
sensed VUA-NASA Advanced Microwave Scanning Ra-
diometer for Earth Observing System (AMSR-E) soil mois-
ture product. Here, we performed a more extensive assess-
ment of the impact of excluding automatically detected spuri-
ous observations by the revised flagging methods (Sect. 3.1)
by using ISMN observations available in the period 2001–
2019 to validate both ERA5 top layer (0–0.07 m) water
content (Hersbach et al., 2020) and ESA CCI Soil Mois-
ture (v5.2; Gruber et al., 2019b, 2017; Dorigo et al., 2017).

While the impact of flagging is positive for temporal agree-
ment (R Pearson and R Spearman) between the ISMN and
ERA5, the effect is negligible for ESA CCI (Table 4). On
the other hand, the ISMN flagging reduces the unbiased root
mean squared difference (ubRMSD) for both comparisons.
The benefit of excluding spurious values is also obvious in
Fig. F1a, where points are located below the 1 : 1 line. Again,
the benefit is less clear for ESA CCI (Fig. F1c). Although
validations of a satellite and a model-based are not directly
comparable, one reason for the different impact is that the
ESA CCI retrievals were already flagged in the production
process for values outside valid geophysical range, incon-
sistencies, dense vegetation, freezing, and snow cover, while
this is not the case for the ERA5 model data. Consequently,
a positive effect of the ISMN flags is more effective for data
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sets that were not a priori masked than for data sets that were
already filtered for spurious observations.

3.4 Other quality indicators

The automated quality control algorithms offer insight into
the quality of the respective measurement time series but
not necessarily of the usability of the data sets for specific
applications. Gruber et al. (2013) adopted a triple colloca-
tion approach (TCA) to characterise the representativeness
errors of ISMN data for coarse-scale (∼ 25 km) use. TCA
is a statistical analysis using a combination of three data
sets with independent error structures to estimate the ran-
dom error variance in each of these data sets. Here, we ap-
ply the TCA to estimate the representativeness errors of the
ISMN data of all networks with sufficient sampling in the
period 2001–2019 for application at the coarse scale. ESA
CCI SM passive soil moisture (v5.2; Gruber et al., 2019b;
Dorigo et al., 2017) and top-layer ERA5 volumetric soil wa-
ter content (Hersbach et al., 2020) are used to complement
the triplets. Spatial collocation is carried out using a nearest-
neighbour method, with a maximum distance of 30 km, while
the temporal collocation uses a maximum time difference of
1:20 h between the triplets. An exception was solely made
for the PBO_H2O network because its observations are pro-
vided daily at 12:00 UTC, while ESA CCI SM is given at
00:00 UTC daily. All measurements that cover, at least partly,
the 0.00–0.07 m depth interval are used. Systematic differ-
ences between the data sets, i.e. multiplicative and additive
biases, are removed by scaling ERA5 and ERA CCI SM soil
moisture data sets to the in situ data prior to the TCA.

The results for different networks are quite diverse (Fig. 7).
For example, the spread of errors is relatively large for
ORACLE but small for others (e.g. African Monsoon
Multidisciplinary Analysis – Coupling the Tropical Atmo-
sphere and the Hydrological Cycle (AMMA-CATCH) or
Sungkyunkwan University (SKKU)). The median errors per
network vary between 0.03 and 0.05 m3 m−3, with some out-
liers in both directions. Note that the triple collocation analy-
sis estimates the combined representativeness and sensor er-
rors, although the latter are assumed to be small compared to
the natural spatiotemporal variability (Gruber et al., 2013).

There is a clear trend of decreasing mean errors with in-
creasing sensor depths (Fig. 8a), which is likely due to a re-
duction in high-frequency signals and sensor perturbations
with depth. Note that this decreasing trend is observed de-
spite the increasing discrepancy in depth support between the
ISMN data and the two surface soil moisture data sets (ERA5
and ESA CCI SM). Thus, theoretically, in situ representative-
ness errors are expected to be even lower than computed. A
potential explanation for the slight increase in the median er-
ror for the deepest layer (100–255 cm) may be small sample
size and the poor soil parameterisation of the land surface
model at this depth. Similar patterns were observed by Gru-
ber et al. (2013).

Table 5. Overview of purposes for which ISMN data are used in
scientific studies (status in July 2021; n= 317).

Purpose %

Satellite validation 55.7
Model development and validation 16.2
Meteorological applications 7.5
Drought monitoring 3.8
Other applications 16.8

Concerning the sensors used, there is a large spread in
computed representativeness errors for time domain reflec-
tometry (TDR) and capacitance sensors. While the costly hy-
grometric sensors have the lowest mean error, the mean error
of resistance probes is the highest (Fig. 8b). Since cosmic-ray
and Global Navigation Satellite System (GNSS)/GPS reflec-
tometry sensors integrate over larger horizontal and vertical
domains, one would expect lower representativeness errors
for these sensors compared to the point observations. How-
ever, this is not confirmed by our triple collocation results.
Possibly, the advantage of the larger spatial support of these
systems is counteracted by their lower signal-to-noise ratio.
Error information at the site, sensor, or data set level is cur-
rently not routinely available for the stations in the ISMN but
would be required for a proper weighting of individual sta-
tions in large-scale validations (Gruber et al., 2018, 2019b).

4 Impact of the ISMN on Earth system sciences

4.1 User uptake

As mentioned earlier, over 3000 users have registered to the
ISMN, while 20–30 new users register each month. Most
users are based in the USA, China, India, and Europe (Fig. 9).
When asked for the intended use of the data, the four main
GEO benefit areas are water, disaster, agriculture, and cli-
mate sectors, all with a similar share between 16 % and 30 %.
Most users come from research organisations (41 %), higher
or secondary education (32 %), and non-profit organisations
(19 %). Only few users come from public bodies (6 %) or
private companies (2 %).

The large uptake of the ISMN for soil moisture studies is
particularly due to the simplicity of accessing and using mul-
tiple data sets from a wide variety of networks. Initially, the
ISMN was established to facilitate the calibration and vali-
dation of SMOS-based soil moisture products (Dorigo et al.,
2011b) and, still, satellite soil moisture calibration, valida-
tion, and algorithm improvement are the primary applica-
tions served by the ISMN (Table 5). In the following, we dis-
cuss the major purposes the ISMN has been used for, based
on a comprehensive review of all studies that used and cited
the ISMN in peer-reviewed scientific publications.
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Figure 7. Representativeness errors of ISMN networks calculated with triple collocation analysis using top-layer ERA5 volumetric soil water
and the ESA CCI SM v05.2 passive product. Values in parentheses show the average number of triplets per time series and the total number
of sensors, respectively, for each network. Following Dorigo et al. (2010), we only used triplets with a Spearman correlation > 0.2 between
each respective data set pair in the calculation.

Figure 8. Representativeness errors for different sensor depths (a) and sensor types (b) derived with triple collocation. Summary of triple
collocation characterisation of random errors per sensor type. Values in parentheses show the total number of sensors for each depth interval
and type, respectively.
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Figure 9. Number of users per country (status in July 2021).

4.2 Satellite product evaluation and development

4.2.1 Scientific studies

Soil moisture measurements from the ISMN have been
widely used as reference data sets for the development and
evaluation of satellite soil moisture products, which are
mostly global coarse-scale surface soil moisture products
(Table E1; n= 212). Although initially the goal was to sup-
port algorithm development and validation of the SMOS
satellite, which was indeed the case for 85 studies, many
other satellite missions profited from the ISMN data, most
notably SMAP (n= 52), Advanced Scatterometer (ASCAT;
n= 50), AMSR-E (n= 46), and ESA CCI (n= 34). Fortu-
itously, the data have also been discovered for the evalua-
tion of soil moisture products from less used sensors, includ-
ing the Chinese Feng-Yun 3B, HY-2, and Gaofen-1 satel-
lites (Parinussa et al., 2014a, 2018; Zhao et al., 2014; Xing
et al., 2017), Meteosat Second Generation (MSG) Spinning
Enhanced Visible and Infrared Imager (SEVIRI; Leng et al.,
2015, 2017), MODIS (Gumbricht et al., 2017; Gumbricht,
2018), Aquarius (González-Zamora et al., 2016), and Land-
sat (Zhao et al., 2017; Pradhan, 2019).

Recently, the ISMN was recognised as validation source
for testing algorithms to derive soil moisture from Global
Navigation Satellite Systems (GNSS; e.g. Kim and Lakshmi,
2018; Chew and Small, 2020). Similarly, there is an increas-
ing trend in the use of ISMN data for the validation of novel
high-resolution satellite soil moisture products, which ei-
ther downscale coarse-resolution products through the use of
other finer-resolution satellite or ancillary data (e.g. Sheng
et al., 2019; Helgert and Khodayar, 2020) or directly derive
soil moisture from high-resolution synthetic aperture satel-
lites like Sentinel-1 (e.g. Rodionova, 2019b; Foucras et al.,
2020). It should be noted that the ISMN and its contributing
networks are mostly designed for analysing time series, thus
lacking reference data to assess spatial patterns in the data,
particularly in high-resolution products (de Jeu and Dorigo,
2016).

Soil moisture measurements from the ISMN have been
used as a training set for various data-driven approaches. In
situ observations were ingested into machine learning frame-
works together with several ancillary predictor variables, ei-
ther to simulate soil moisture at a very high spatial reso-
lution (Zappa et al., 2019) or to create long-term records
(O and Orth, 2021). Greifeneder et al. (2021) developed a
machine learning approach to estimate surface soil moisture
from Landsat optical and thermal and Sentinel-1 SAR im-
agery in the Google Earth Engine, using ISMN soil moisture
as target variable. Large-scale monitoring networks are nec-
essary to build reliable models for spatially wide analysis,
while dense networks are ideal for accurate localised models
(Senanayake et al., 2019; Abbaszadeh et al., 2019).

Usage-oriented evaluation studies have focussed on the in-
tercomparison of multiple coarse-scale satellite products, us-
ing the ISMN data as a reference, either to select the best
performing sensor for a specific application or geographic
region (e.g. Beck et al., 2021; Karthikeyan et al., 2017) or to
combine them in an optimal way to build a superior product
(e.g. Liu et al., 2011; Hagan et al., 2020).

Since direct satellite observations of soil moisture are only
possible for the surface layer, most studies concentrate on
the evaluation of surface soil moisture. Yet, various studies
also focus on products derived from surface soil moisture
that represent moisture in deeper (root zone) layers, either
through exponential filtering (e.g. Paulik et al., 2014; Tobin
et al., 2017), empirical models (Pradhan, 2019), or by assim-
ilating them in land surface models (e.g. Pablos et al., 2018;
Blyverket et al., 2019a). Occasionally, the ISMN is used for
the evaluation of other satellite data sets, e.g. soil tempera-
ture data to validate the freeze/thaw state (Rautiainen et al.,
2016; Hu et al., 2019).

4.2.2 ISMN as part of operational services

Because of its operational nature and advanced quality con-
trol procedures, the ISMN has been identified as the primary
reference data source for future operational validation sys-
tems for global satellite-based soil moisture products (Bayat
et al., 2021). But, already today, the ISMN is an integrative
part of several operational satellite soil moisture production
chains.

– In 2005, the Satellite Application Facility on support to
operational Hydrology and water management (H SAF)
started to operationally produce and validate precipita-
tion, soil moisture, and snow products from satellites
operated by EUMETSAT (Rinollo et al., 2013). ISMN
data are used for the calibration and validation of vari-
ous soil moisture products produced in H SAF from the
Metop Advanced Scatterometers, including global cli-
mate data records and near-real time products of surface
soil moisture and a root zone soil moisture product over
Europe.
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– The Climate Change Initiative of the European Space
Agency (ESA CCI) uses data from the ISMN to as-
sess, each year, the quality of new soil moisture cli-
mate data record releases and their improvements with
respect to forerunner versions (Gruber et al., 2019b;
Dorigo et al., 2015). Within ESA CCI, ISMN data were
also used to quantify the spatial representativeness of
ESA CCI satellite and climate model data sets (Nicolai-
Shaw et al., 2015b). The validation is systematically
performed through the use of QA4SM (see below)
and the results and validation settings are published
(e.g. https://doi.org/10.5281/zenodo.4120205; Scanlon,
2020).

– C3S produces authoritative, quality-assured climate
data records of soil moisture and other essential
climate variables (ECVs). The satellite soil mois-
ture products produced within C3S are routinely
updated every 10 d with the latest available satel-
lite observations. C3S uses the ISMN soil mois-
ture data in combination with the metadata provided
to categorise product performance per land cover
and climate type (Scanlon et al., 2019). The valida-
tion is systematically performed through the use of
QA4SM, and the results are transparently published
(e.g. https://doi.org/10.5281/zenodo.4736927; Preimes-
berger, 2021).

– Copernicus Global Land Service (CGLS) produces,
within 1–2 d after satellite overpass, soil moisture
data sets from Sentinel-1 and from a combina-
tion of Sentinel-1 and ASCAT (SCATSAR; Bauer-
Marschallinger et al., 2018, 2019). The latter propagates
the surface observations to deeper layers by means of
the so-called soil water index (SWI). Both products are
provided at 1 km resolution for Europe. ISMN data are
used for validating moisture in surface and deeper soil
layers.

Recently, the Quality Assurance for Soil Mois-
ture (QA4SM) service (https://qa4sm.eu, last access:
28 October 2021) was initiated to bring together validation
methodologies, community protocols, reference data, and
satellite observations to evaluate and intercompare soil
moisture data products in a coherent, standardised, and
transparent way. In situ data sourced from the ISMN are an
integral part of this validation system (Scanlon et al., 2019;
Gruber et al., 2020). The combination of ISMN, QA4SM,
and enhanced quality control protocols and selection proce-
dures to establish a set of fiducial reference measurements is
expected to become the standard for satellite soil moisture
validation in the next few years (Bayat et al., 2021).

4.3 Model development and validation

In situ measurements are the most important reference source
when assessing the performance of land surface models, re-

analyses products, and hydrological models. Although also
satellite observations are a valuable validation source (e.g.
Szczypta et al., 2014), these measure only the upper ∼ 5 cm
of the soil and, hence, do not allow for the validation of
deeper layers. Besides, state-of-the-art reanalysis products
like ERA5 Hersbach et al., 2020 assimilate satellite soil
moisture observations so that, for these products, in situ data
remain the only truly independent validation reference. Since
the sampling rate (hourly) of the ISMN observations is gen-
erally higher, and their spatial support lower than that of most
models (Reichle et al., 2004), model evaluation is, in princi-
ple, not limited by the spatial and temporal resolution of the
in situ data, although representativeness issues often remain.

In particular for global assessments, the availability of
harmonised data over multiple networks makes the ISMN
a preferred reference source over data from individual net-
works (Xia et al., 2019). Table E2 shows that many well-
established, state-of-the-art land surface model and reanal-
ysis products have been evaluated against data from the
ISMN, not only by users of these products (e.g. P. Li et al.,
2020) but also by the developer teams themselves, e.g. Re-
ichle et al. (2017) for MERRA-2, Albergel et al. (2020)
for the Land Data Assimilation System (LDAS)-Monde, and
Balsamo et al. (2015) and Fairbairn et al. (2019) for var-
ious European Centre for Medium-Range Weather Fore-
casts (ECMWF) products.

Also, a suite of new products have been assessed against
the ISMN, including multi-model ensembles (Schellekens
et al., 2017; Cammalleri et al., 2015), data-driven evaporation
models (Martens et al., 2017; Lievens et al., 2017), and statis-
tical infiltration models Pal and Maity (2019). As for remote
sensing products, a trend towards higher-resolution regional
to global model-based products can be observed. Among
others, ISMN data have been used to validate new high-
resolution reanalysis products over the USA (McDonough
et al., 2018) and Europe (Naz et al., 2020). Apart from soil
moisture, soil temperature data have also been drawn from
the ISMN for model validation purposes (e.g. Wang et al.,
2016; Albergel et al., 2015).

Besides the evaluation of hydrological or land surface
model improvements, the ISMN has also frequently served
model development in a more fundamental way. For exam-
ple, Hartmann et al. (2015) developed a large-scale karstic
groundwater recharge model over Europe and the Mediter-
ranean and calibrated and evaluated this model with observa-
tions of actual evapotranspiration from FLUXNET (Baldoc-
chi et al., 2001) and soil water content data from the ISMN.
Martínez-Fernández et al. (2021) used data from the ISMN
to assess the fraction of precipitation that is stored in the soil
profile. Calvet et al. (2016) used soil moisture and temper-
ature data from the SMOSMANIA (soil moisture observing
system – meteorological automatic network integrated appli-
cation) network contained in the ISMN to derive pedotrans-
fer functions for the soil quartz fraction in southern France.
Pal et al. (2016) developed a statistical model to estimate the
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vertical soil moisture profile using SCAN data of the ISMN
as source, while, on a similar note, Shin et al. (2018) devel-
oped a non-parametric evolutionary algorithm to predict soil
moisture dynamics using ISMN data over Oklahoma and Illi-
nois. Similarly, Jalilvand et al. (2018) estimated the drainage
rate from surface soil moisture drydowns from ISMN data. A
bridge between soil moisture and vegetation dynamics was
made by Sawada (2018), who used ISMN data to validate a
new ecohydrological land reanalysis to better simulate the
link between sub-surface soil moisture and vegetation dy-
namics. Finally, Brocca et al. (2015) developed a water bal-
ance approach to estimate rainfall from soil moisture obser-
vations based on reverse modelling and evaluated this at sev-
eral ISMN sites in Europe. Later refinements of this approach
were also evaluated against data from the ISMN (Hoang and
Lu, 2019).

4.4 Meteorological applications

Soil moisture from the ISMN has often been used to validate
the land surface representations of meteorological forecast-
ing models. However, as meteorological forecasts often rely
on the latest generation of land surface models, in practice
there is often no strict distinction between meteorological
and land surface model development as described in the pre-
vious section. Notable examples are the various generations
of the Tiled ECMWF Scheme for Surface Exchanges over
Land (TESSEL) models used both in the Integrated Forecast-
ing Systems and reanalysis products of ECMWF, the devel-
opment of which greatly profited from soil moisture and tem-
perature data from the ISMN (Albergel et al., 2012a, 2015).
Dirmeyer et al. (2016) assessed the skill and soil moisture
memory effects of various weather and climate models with
ISMN data over the USA. Similarly, Angevine et al. (2014)
assessed the soil moisture skill of the Weather Research and
Forecasting Model (WRF; Table E2).

Several studies have used the ISMN data to assess the fore-
cast skill or new implementations of numerical weather pre-
diction models. For example, de Rosnay et al. (2019) and
Rodriguez-Fernandez et al. (2019) used in situ soil mois-
ture observations from several ISMN networks to validate the
impact of assimilating SMOS brightness temperatures and
soil moisture, respectively, to predict soil moisture up to 5 d
ahead. Similarly, Lin and Pu (2019, 2020) used ISMN data
to examine the impact of MAP soil moisture assimilation in
WRF for near-surface, short-range weather forecasts. Bous-
setta et al. (2015) used over 500 ISMN sites to assess the
impact of assimilating surface albedo and vegetation states
from satellite observations on numerical weather prediction.

From a more methodological, land–atmosphere perspec-
tive, Lee (2018) used the ISMN data to study the role of soil
moisture in triggering rainfall over West Africa. Conversely,
S. Zhang et al. (2019) studied the role of rainfall on soil cool-
ing using data from the SMOSMANIA network in southern
France.

4.5 Drought monitoring

In a drought monitoring context, ISMN data have frequently
been used in a convergence of evidence approach in com-
bination with other drought-related variables or indicators.
For example, Scaini et al. (2015) compared the variability
in the in situ soil moisture measurements from the ISMN,
SMOS surface soil moisture, and two drought indices based
on climatic information to study droughts in Spain. Mu et al.
(2019) used visible and near-infrared (VNIR) satellite data
and soil moisture distributed by the ISMN to monitor drought
in the southern USA. On a more technical level, Gruber et al.
(2018) assessed the use of spatially sparse ISMN in combi-
nation with a continuous model for operational agricultural
drought monitoring over the USA.

ISMN data have also been used to classify new and more
traditional drought indices, such as the Standardised Precip-
itation (Evaporation) Index and the Palmer drought severity
index (Vicente-Serrano et al., 2012; Krueger et al., 2019).
Sadri et al. (2020) used the ISMN data from the RISMA
network to assess a global near-real time soil moisture in-
dex monitor for food security using SMOS and SMAP data.
Likewise, Fang et al. (2021a) used ISMN data to evaluate
a new drought monitoring approach based on high spatial
resolution soil moisture data from downscaled SMOS and
SMAP data over Australia. Chen et al. (2019) used precip-
itation distributed through the ISMN to evaluate a drought
index derived from Sentinel-2 in Spain. Due to relatively
good coverage over Europe, Cammalleri et al. (2015) used
ISMN data to assess various model soil moisture products
as input to the European Drought Observatory (EDO; http:
//edo.jrc.ec.europa.eu, last access: 28 October 2021). Also,
Mishra et al. (2018) used data from the ISMN to assess
a suite of land surface models used to reconstruct drought
events in India since the mid-1900s.

4.6 Other applications

ISMN data have been used for various other purposes, go-
ing beyond what the ISMN was originally developed for. In
addition to supporting satellite and land surface model soil
moisture product development, the ISMN has played a fun-
damental role in the validation of a wide range of hybrid
observation-based products, including a Soil Moisture Sat-
uration Index (Campo et al., 2011), apparent thermal iner-
tia surface estimates (Notarnicola et al., 2012), an improved
antecedent precipitation index (API) formulation (Ramsauer
et al., 2021), data-driven surface and root zone soil moisture
predictions (Kornelsen and Coulibaly, 2014; Manfreda et al.,
2014; L. Wang et al., 2020; O and Orth, 2021), improved
satellite albedo products (Liu et al., 2014), and estimates of
effective permittivity and brightness temperature of organic
soils (Park et al., 2019).

The ISMN has frequently been used to assess the impact
of assimilating satellite observations into hydrological mod-
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els (Khaki et al., 2019; Nair et al., 2020; Gruber et al., 2015;
Shin et al., 2016; P. Li et al., 2020; Y. Wang et al., 2020), land
surface models (Nair and Indu, 2016; Zhao and Yang, 2018;
Nair et al., 2020), and carbon models (Scholze et al., 2016).
On a more methodological level, Q. Zhang et al. (2019) as-
sessed a new data assimilation scheme against ISMN obser-
vations. Gruber et al. (2018) even assimilated spatially sparse
ISMN observations directly into a spatially continuous land
surface model over the continental USA and tested the pre-
conditions (e.g. requirements for the signal-to-noise ratio and
number of sites) for having a significant positive impact.

The wealth of data covering a wide range of surface and
climate conditions has been frequently exploited to study soil
water dynamics at various spatial and temporal scales and
their (climatic) drivers (Brocca et al., 2014b; Hirschi et al.,
2014; Ojha et al., 2014; Qin et al., 2018; Kumar et al., 2019a;
J. Tian et al., 2019; Nicolai-Shaw et al., 2015b; Dong et al.,
2020; T. Wang et al., 2017; Verrier, 2020; Deng et al., 2020a),
flood dynamics (Esposito et al., 2018), or the impact of soil
moisture on plant growth (Hottenstein et al., 2015).

The ISMN has been used to develop and test new statistical
validation approaches (Zwieback et al., 2013; Gruber et al.,
2016; Afshar et al., 2019). Finally, the standards and quality
control procedures adopted by the ISMN have served as a
guideline for establishing and benchmarking new networks
(Kim et al., 2019; Skierucha et al., 2012b, a; Petropoulos and
McCalmont, 2017), soil moisture metadatabases (Liao et al.,
2019; Xia et al., 2015), or validation services (Kumar et al.,
2012) and to assess or improve alternative sensing techniques
and constellations (Xaver et al., 2020; Kapilaratne and Lu,
2017; Nguyen et al., 2017; Mahecha et al., 2017).

4.7 Added scientific value of ISMN over other data
sources

Although the ISMN has facilitated hundreds of scientific
studies, it is impossible to quantify precisely to what de-
gree the ISMN has contributed to product improvements and
new insights that could not have obtained otherwise. Admit-
tedly, data from several networks are also distributed through
other portals, typically providing access to a single network
(e.g. SNOTEL data through https://www.wcc.nrcs.usda.gov/
snow/, last access: 28 October 2021). The major contribution
of the ISMN to scientific advances is primarily given by the
access to the many networks and data sets that are uniquely
distributed through the ISMN and in the easy access to thou-
sands of harmonised data sets with a single click.

The tracked download statistics reveal that approximately
one-third (34 %) of the studies making use of the ISMN use
multiple networks, the choice of which depends on the scope
of the study, the geographical region, period of interest, and
the year the study was performed (with more networks be-
coming available over time). Examples of such studies using
data from more than 20 different networks are Paulik et al.
(2014) (23 ISMN networks used), Dorigo et al. (2015) (28),

Beck et al. (2021) (27), Grillakis et al. (2021) (27), O and
Orth (2021) (51), van der Schalie et al. (2021) (46), Li et al.
(2021) (20), and Wu et al. (2021) (20).

Although it is impossible to pin down the exact contribu-
tion of the ISMN to process understanding and product im-
provements, it is very likely that, mainly, studies have discov-
ered flaws in satellite products that would not have been de-
tected without the use of the ISMN. The main reason is that
the large number of networks give insight into the product
skill in a large variety of climate zones, land cover types, and
so on, which no single network could have provided. This
allows for the development of, globally, more robust mod-
els and products. Second, the data harmonisation and unified
quality control minimise the chance that differences in skill
potentially observed between locations with different envi-
ronmental characteristics is an artefact of a different treat-
ment of the data.

Several studies were identified that not only used the mul-
titude of ISMN data to expose flaws in existing products but
also to directly improve data products and models, e.g. by
calibrating hydrological model parameters for local site con-
ditions (Beck et al., 2021; Kang et al., 2019; Moradizadeh
and Srivastava, 2021; Grillakis et al., 2021), by merging them
with other observations and models (Gruber et al., 2018; Xu
et al., 2018), or using them as training data in machine learn-
ing approaches (Pan et al., 2017; Eroglu et al., 2019; O and
Orth, 2021; Greifeneder et al., 2021).

5 Challenges and opportunities

5.1 Scientific challenges

5.1.1 Diversity of measurements

The in situ measurements of soil moisture data in the ISMN
have been collected by a large variety of sampling tech-
niques. The early networks contained in the ISMN (e.g.
RUSWET, CHINA, and MONGOLIA) are based on gravi-
metric sampling, which is still considered the most accurate
approach (Romano, 2014). However, it is labour intensive
and invasive and, thus, measurements are infrequent (weekly
or even coarser sampling), taken from a slightly different lo-
cation every time, and may contain systematic errors between
sampling dates.

Nowadays, the most commonly used techniques for sys-
tematic in situ sampling are based on the contrasting di-
electric properties of soil and water and comprise time do-
main reflectometry (TDR) and frequency domain reflectom-
etry (FDR; Robinson et al., 2008), e.g. AMMA-CATCH,
BNZ LTER, CARBOAFRICA, FMI, GTK, HYDROL-
Net Perugia, IPE, LAB-net, ORACLE, OzNet, SAS-
MAS, SWEX_POLAND, Upper Danube Catchment (UDC)
SMOS, WSMN, and UMSOL networks). In particular, ca-
pacitance sensors based on FDR are becoming more and
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more widespread because of their lower cost compared to
TDR sensors, despite their lower accuracy (Romano, 2014;
Brocca et al., 2017). However, great technical improvements
are being achieved with capacitance sensors, thus improving
their reliability. Yet, TDR and FDR techniques only provide
point measurements, i.e. they are representative of small vol-
umes of soil.

Slightly larger soil volumes (diameter of 15 to 60 cm) are
observed with the neutron scattering method, where the den-
sity of thermal neutrons produced by scattering of fast neu-
trons on soil hydrogen can be related can be related to soil
moisture through a calibration curve (Gardner and Kirkham,
1952; Romano, 2014) (e.g. IOWA network). The cosmic-ray
method has been developed based on similar principles of
neutron scattering, (Zreda et al., 2012, 2008). Cosmic-ray
neutron sensors (CRNSs) are located on or above the soil sur-
face and measure and count the number of cosmogenic neu-
trons in air above the land surface and that are in equilibrium
with the soil. CRNS measurements are representative of sig-
nificantly larger volumes compared to neutron probes (i.e. ra-
dius of a few 100 m and depths between 0.12 and 0.70 m, de-
pending on the soil wetness), and thus can be used to bridge
the scales between point observations and coarse resolutions
of satellite observations and models. CRNS measurements,
which are used in the COSMOS network, are sensitive to
vegetation and have relatively high noise levels. To reduce
this noise, the data are resampled to daily mean values.

Also, the measurements of the PBO_H2O network, which
uses global positioning system (GPS) receivers, can be used
to bridge the scales between point and satellite sensors. GPS
sensors, initially used for geophysical and geodetic applica-
tions, have been found to be well suited for measuring soil
moisture (Larson et al., 2008). The GPS signals are represen-
tative for an area of approximately 300 m2 and are L band,
hence making them ideal for comparison against satellite
missions like SMAP and SMOS (Larson et al., 2008).

As shown, all measurement techniques have their strengths
and limitations (Bogena et al., 2015; Dorigo et al., 2011b),
which complicates their combined, bulk use. Depending on
the application and process scales, the user needs to care-
fully consider which networks to use or exclude and how to
interpret the results obtained. A task of the ISMN could be to
translate community-based guidelines (Gruber et al., 2020;
Montzka et al., 2020) to recommendations for the use of in-
dividual data sets.

5.1.2 Spatial and temporal representativeness and
scaling

Soil moisture is highly variable in space as a result of com-
plex interactions between soil characteristics, topography,
vegetation, and meteorological conditions. Depending on the
spatial scale considered, the dominant controlling factor(s)
can be different (Crow et al., 2012; Western et al., 2002).
Hence, validation of satellite-derived products is hindered

by the spatial mismatch between ground observations and
satellite footprints (Gruber et al., 2020; Molero et al., 2018;
Gruber et al., 2013). Ideally, to reduce the representative-
ness error of in situ references, enough stations should be
deployed within a satellite footprint to develop robust areal
soil moisture estimates (Brocca et al., 2007; Famiglietti et al.,
2008; Colliander et al., 2017). However, this is a costly so-
lution, and therefore, only a limited number of sites provide
such a set-up (Crow et al., 2012; Colliander et al., 2017).
In the ISMN, the networks of VDS, BIEBRZA_S-1, RSMN,
UDC_SMOS, LAB-net, FMI, and USDA-ARS have been set
up in this way. When available, in situ stations within the
same satellite pixel should be averaged, either through arith-
metic mean or weighted average. Higher weights should be
given to stations expected to be more representative of the
satellite grid average, e.g. by using Voronoi diagrams (Col-
liander et al., 2017), the inverse footprint method (Nicolai-
Shaw et al., 2015a), the time stability concept (Vachaud et al.,
1985), or landscape properties such as land cover and/or soil
texture (Bircher et al., 2012). Alternatively, triple colloca-
tion analysis can be used to quantify and correct for spa-
tial sampling errors of in situ stations (Miralles et al., 2010;
Gruber et al., 2013). The resulting pixel-scale soil moisture
ground reference, i.e. the averaged value from dense net-
works with several stations per satellite grid or the original
time series in the case of sparse networks with a single sta-
tion per pixel, should undergo a statistical rescaling (Gruber
et al., 2020). Indeed, a direct comparison of in situ and satel-
lite products would be subject to representativeness errors,
which may dominate the total soil moisture retrieval errors
(Chen et al., 2017; Gruber et al., 2013; Molero et al., 2018).
Rescaling accounts for systematic representativeness errors
arising from different spatial resolution and different vertical
measurement support, i.e. penetration depths of microwave
sensors and in situ sensor placement depths (Gruber et al.,
2013, 2020), but does not correct for random representative-
ness errors. One way to address this is the triple collocation
described above. Also, systematic representation errors may
have a time-varying (e.g. seasonal) component, which, un-
less explicitly accounted for, may lead to temporally aliased
results. In any case, even though differences in spatial rep-
resentativeness between ground and satellite measurements
impact the evaluation metrics, single stations are still a valu-
able source for assessing the relative skill of soil moisture
products with a similar footprint (Dong et al., 2020).

Also, temporal representativeness issues may exist, but
due to the hourly sampling of most data sets, the ISMN usu-
ally have a denser sampling than most remote sensing or
model data sets. Thus, for most applications, the ISMN can
be downsampled to the process or observation timescale of
interest. However, some of the older, manually sampled data
sets have sampling intervals of about 2 weeks and, thus, may
miss many higher-frequency wet or dry spells. On a simi-
lar note, data sets with a daily sampling or averaging (e.g.
cosmic-ray or GPS reflectometry observations) may miss
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rainfall peaks and are unsuitable for studying sub-daily vari-
ability.

5.1.3 Integration of low-cost sensors

The development and use of low-cost sensing technologies,
especially in the environmental sciences, have seen a pro-
nounced increase during the last decade. Such a rise is driven
by several factors, e.g. the reduced cost of micro-controllers,
electric components, and sensors (Mao et al., 2019). Even
though a rich variety of low-cost soil moisture sensors based
on different measurement principles has been developed
(Chawla et al., 2019; González-Teruel et al., 2019; Kumar
et al., 2016), capacitance sensors gained the most popularity
because they are relatively inexpensive, easy to operate, and
provide reliable observations (Kojima et al., 2016).

The considerably lower cost of these sensors compared
to traditional probes makes them suitable for high-density
and/or large-scale monitoring of soil moisture. The possibil-
ity to map soil moisture (and other environmental variables)
with an unprecedented spatial coverage can generate new in-
sights into its dynamics and create new opportunities. For
instance, high-density networks of low-cost sensors can be
used to reduce spatial representativeness errors by providing
numerous observations within a satellite footprint (Teuling
et al., 2006). Similarly, one can deploy a temporary low-cost
sensors network to identify the most suitable location(s) for
long-term monitoring. Such locations could then be equipped
with professional sensors, while moving the low-cost net-
work to other sites (Zappa et al., 2019). Another exciting
opportunity offered by low-cost sensors is the deployment
of networks in low-income countries.

The ISMN has integrated low-cost sensor measurements
from the GROW observatory (see Sect. 5.1.4), but a num-
ber of practical challenges arise when integrating such data.
A key aspect to consider is the lifetime. Depending on the
robustness of the sensor (of both electronic components,
such as micro-controllers, and sensor housing), reliable mea-
surements can be recorded for a period ranging from a few
months to years (Xaver et al., 2020) but even be shorter in
extreme environments. Another aspect, particularly affecting
automation, is data storage and transmission. Some low-cost
sensors allow for wireless communication with a main server
(Bogena et al., 2007; Majone et al., 2013), while other sen-
sors have a limited internal storage, and data should be col-
lected persistently over time (e.g. every 80 d; Xaver et al.,
2020). Furthermore, it is necessary to assess their accuracy
and robustness (Castell et al., 2017). Therefore, low-cost sen-
sors should always undergo thorough evaluation to (i) quan-
tify the agreement of low-cost sensor measurements with
gravimetric samples and/or professional probes, ideally con-
sidering a wide range of soil and climatic conditions, (ii) as-
sess the inter-sensor variability, and (iii) test the suitability
for usage in field conditions (Domínguez-Niño et al., 2019;
Kizito et al., 2008; Mittelbach et al., 2012; Adla et al., 2020).

5.1.4 Integration of citizen observations

Citizen science is defined as the involvement of non-experts
in collecting data (Bonney et al., 2009). Crowd-sourced mea-
surements of soil moisture are now possible because of
the development of low-cost sensors (Sect. 5.1.3). Crowd-
sourcing has the potential to overcome some of the most
challenging issues of soil moisture monitoring, such as the
use of many sensors to address scaling issues, and the fact
that the observations can be carried out anywhere, as long as
there are citizens willing to collect the data.

An outstanding example of a citizen science project fo-
cusing on soil moisture is the GROW Observatory (https:
//growobservatory.org/, last access: 28 October 2021), from
which data sets spanning at least a full year of observations
have been added to the ISMN. Within GROW, thousands of
low-cost sensors have been distributed to farmers, gardeners,
and growers across Europe (Kovács et al., 2019). Focus areas
have been identified based on a number of scientific criteria
and the presence of active and engaged communities. Within
each focus area, covering spatial scales from 20 to 200 km,
hundreds of sensors have been distributed. Some sensors
served as back-ups for potential failures, so that malfunction-
ing sensors could be promptly replaced, enabling long-term
continuity of observations. In order to ensure high standards
of the measurements, citizens have been trained in the selec-
tion of the correct locations in which to install sensors and
how to properly install and maintain them through field man-
uals, online courses, meet-ups, and remote support (Kovács
et al., 2019). Overall, more than 6000 sensors were deployed
to provide soil moisture measurements across 13 European
countries, demonstrating that citizen observatories can be in-
tegrated in Earth observation activities and contribute to val-
idation of remotely sensed products (Zappa et al., 2020).

The integration of citizen observations in the ISMN is
challenging for multiple reasons. Crucial is the long-term
engagement of citizens, which needs to be thoroughly ad-
dressed from the early stages of designing a citizen ob-
servatory. It is necessary to create long-lasting communi-
ties that go beyond the duration of the contributory projects
(Grainger, 2017). Successful citizen observatories have been
those where citizens were able to benefit directly from the
data collected by others (Fritz et al., 2017). Additionally, ed-
ucation and resources are essential to boost individual moti-
vation to continuously participate and to sustain membership
renewal as natural participation cycles change (Zappa et al.,
2020). Even if proper training is provided to citizens, uncer-
tainty in the quality of the data is the main limitation for the
use of crowd-sourced observations in science (Lukyanenko
et al., 2020). The reliability of measurements from individ-
ual sensors is unknown because of, e.g., the selection of un-
suitable locations, incorrect sensor installation, and existence
of defective sensors. However, increasing the number of sen-
sors within the same satellite pixel reduces this uncertainty.
Additionally, a visual inspection of the time series and the
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application of automated quality flagging controls, such as
those developed within the ISMN, could be used to mask
suspicious observations (Xaver et al., 2020). Overall, it has
been shown that well-organised citizen science projects can
provide trustworthy contributions to the scientific commu-
nity (Kosmala et al., 2016; Palmer et al., 2017).

5.2 Operational challenges

5.2.1 Automation

Part of the contributions to the ISMN (7 networks with
around 900 stations) are inserted into the ISMN in NRT.
This process is fully automated, including data downloaded
from data providers, harmonisation, flagging, insertion into
the database, and updating metadata tables. However, be-
cause of different data recording and handling mechanisms at
the provider side and differences in data sharing mechanisms
and policies, the ISMN is also partially manually operated
and will probably also have to continue in this way in the
future. The differences between the fully automated and the
manual approach are confined to the data download and data
ingestion into the processing chain. Data harmonisation and
quality control are automated for all data sets (see Fig. B1).

A major challenge in the automation process is the enor-
mous heterogeneity of input data formats. Moreover, these
change over time for individual networks, stations, and even
sensors, as sensors may fail or the method for data logging
is changed. Thus, error detection and handling is of utmost
importance, and frequent adaptation of the system is required
to cover changes in input data.

A potential way to promote the automated insertion of new
data is to allow only data that comply with a strict, yet to be
defined, data standard. At the same time, this may be bear the
risk of raising the barrier to contribute to the ISMN too high
for several scientists.

5.2.2 Including new networks

Since data sharing with the ISMN is entirely built upon a vol-
untary basis and data usage is open and free, new networks
may be reluctant to join. The ISMN is in contact with several
network providers who are happy to collaborate but are re-
strained by data sharing policies, which does not allow data
sharing at all or only after a certain time. Furthermore, for
governmentally operated networks it is often not allowed to
share data as open-access or it is unclear who can make these
decisions.

Solving such issues can be supported by collaborative
data-hosting facilities, like the Global Terrestrial Network
– Hydrology (GTN-H; https://www.gtn-h.info/, last access:
28 October 2021), which have a strong connection to gov-
ernmental bodies like the International Centre for Water Re-
sources and Global Change under the auspices of UNESCO,
the United Nations Environment Programme, the Interna-

tional Science Council, and World Meteorological Organi-
zation (WMO).

5.2.3 Appropriate recognition of data providers

Not all users correctly cite the ISMN and the involved net-
works, as stated in the terms and conditions for ISMN data
use (ISMN, 2020). Proper citation of single networks is im-
portant for giving data providers the recognition that is re-
quired to convince funding agencies to continue support-
ing the maintenance and operation of these networks. In the
end, this not only affects the networks themselves but also
the open-access availability of data through the ISMN as a
whole. Some network providers have raised their concerns
in this matter and, hence, continuous efforts are needed to
maintain a strong visibility of network data providers towards
users.

5.2.4 Transparency and traceability

The ISMN data collection is constantly evolving. New data
records are added, and existing ones are extended or, if nec-
essary, reprocessed and corrected. Not only the data but also
the underlying code changes. These updates and any retroac-
tive changes made to the data archive are tracked within the
ISMN but not yet readily passed on to the users. The updates
can lead to differences in analyses on the user side, e.g. when
considering obvious changes such as temporal extensions or
new stations, and lead to non-reproducible results. Therefore,
any update must be traceable and clearly communicated, re-
quiring a system to track and store these changes. Version
tracking and digital object identifiers (DOIs) are ways of
identifying each database access and, therefore, allow trac-
ing back to past states of the ISMN. Such a mechanism is
required to make the ISMN compliant with the FAIR (Find-
ability, Accessibility, Interoperability, and Reusability) data
principles (Wilkinson et al., 2016).

6 Conclusions

In this study, we reviewed the first decade of operations
of the ISMN. Besides satisfactorily fulfilling its initial tar-
get, i.e. supporting satellite soil moisture product validation
and calibration, many additional more or less foreseen uses
have emerged. In addition, an increasing number of services
and product development chains have routinely included the
use of ISMN data in their operational structure. The ISMN
started as research activity funded by ESA, and ever since,
ESA have provided continuous financial support for ongo-
ing research, development, and operations. In spring 2021, a
milestone was achieved when the German Ministry of Trans-
port and Digital Infrastructure announced that it will com-
mit to permanently fund the ISMN operations and develop-
ment from late 2021. The execution will be with the German
Federal Institute of Hydrology (BfG) and the International
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Centre for Water Resources and Global Change (ICWRGC)
based in Koblenz, Germany. At the same time, all network
data sets have always been freely contributed by dedicated
researchers. To guarantee the availability of these resources
for climate and environmental monitoring also for the next
decade, we plead with governments and international bod-
ies for systematic funding of its participating data-providing
networks too.

To maximise geographic coverage and data usage, the pol-
icy of the ISMN has always been to integrate data sets with-
out strict requirements on sensors, sampling protocol, or data
quality. The resulting strongly heterogeneous data set charac-
teristics call for far-reaching quantification and traceability
of errors, from sensor calibration and data download to the
point measurement and the spatiotemporal support of the ap-
plication. Thus, besides expanding its coverage to data-poor
regions and landscapes, the ISMN shall spend the next few
years focusing on developing methodologies to fully charac-
terise the uncertainties and usability associated with the in-
dividual data sets. An important step in this direction will be
made within the ESA-funded Fiducial Reference Measure-
ments for Soil Moisture initiative. With the foreseen devel-
opments, the ISMN will reach a new level of maturity in the
coming decade.

Appendix A: Network overview

A summary of each network is given in Table A1, while more
details are given in the subsequent paragraphs.

Table A1. Main properties of networks and data contained in the ISMN.

Network abbreviation Location No. of Start date End date Status
stations

AACES Australia 49 9 May 2005 24 Sep 2010 Inactive
AMMA-CATCH Benin, Niger, and Mali 7 1 Jan 2006 31 Dec 2018 Running
ARM USA 35 29 Jun 1993 20 May 2021 Running
AWDN USA 50 31 Dec 1997 30 Dec 2010 Running
BIEBRZA_S-1 Poland 30 23 Apr 2015 1 Dec 2018 Running
BNZ LTER Alaska 12 1 Jun 1988 1 Jan 2013 Running
CALABRIA Italy 5 1 Jan 2001 31 Dec 2012 Running
CAMPANIA Italy 2 27 Jul 2000 31 Dec 2012 Inactive
CARBOAFRICA Sudan 1 8 Feb 2002 12 Nov 2020 Running
CHINA China 40 8 Jan 1981 28 Dec 1999 Inactive
COSMOS Worldwide 108 28 Apr 2008 29 Mar 2020 Running
CTP_SMTMN China 57 1 Aug 2010 19 Sep 2016 Running
DAHRA Senegal 1 4 Jul 2002 1 Jan 2016 Running
FLUXNET-AMERIFLUX USA 8 1 Jan 2000 21 Jul 2020 Running
FMI Finland 27 25 Jan 2007 5 Jun 2021 Running
FR_AQUI France 5 1 Jan 2012 1 Jan 2021 Running
GROW Europe 150 8 Feb 2017 8 Oct 2019 Inactive
GTK Finland 7 16 May 2001 29 May 2012 Running
HiWATER_EHWSN China 174 4 May 2012 20 Sep 2012 Inactive
HOAL Austria 33 11 Jul 2013 31 Dec 2020 Running
HOBE Denmark 32 8 Sep 2009 13 Mar 2019 Inactive
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Table A1. Continued.

Network abbreviation Location No. of Start date End date Status
stations

HSC_SEOLMACHEON Korea 1 1 Jan 2008 1 Jan 2009 Inactive
HYDROL-NET_PERUGIA Italy 2 1 Jan 2010 31 Dec 2013 Running
ICN USA 19 3 Jan 1983 21 Nov 2010 Inactive
IIT_KANPUR India 1 16 Jun 2011 22 Nov 2012 Running
IMA_CAN1 Italy 12 23 Aug 2011 3 Dec 2015 Inactive
IOWA USA 6 4 Apr 1972 15 Nov 1994 Inactive
IPE Spain 2 3 Apr 2008 25 Mar 2020 Running
iRON USA 9 21 Aug 2012 1 Jan 2021 Running
KHOREZM Uzbekistan 7 17 Apr 2010 10 Sep 2011 Inactive
KIHS_CMC South Korea 18 20 Mar 2019 10 Dec 2019 Running
KIHS_SMC South Korea 19 21 Mar 2019 5 Dec 2019 Running
LAB-net Chile 4 18 Jul 2014 14 Jul 2020 Running
MAQU China 20 30 Jun 2008 2 Jun 2019 Running
METEROBS Italy 1 23 Oct 2011 9 May 2012 Inactive
MOL-RAO Germany 2 1 Jan 2003 30 Jun 2020 Running
MONGOLIA Mongolia 43 8 Apr 1964 18 Oct 2002 Inactive
MySMNet Malaysia 7 31 May 2014 21 Dec 2015 Running
NAQU China 11 15 Jun 2010 12 Sep 2019 Running
NGARI China 23 21 Jul 2010 10 Sep 2019 Running
NVE Norway 3 1 Jan 2012 31 Dec 2019 Running
ORACLE France 6 18 Oct 1985 9 Sep 2013 Running
OzNet Australia 38 12 Sep 2001 27 Aug 2018 Running
PBO_H2O USA, Africa, and Asia 158 27 Sep 2004 16 Dec 2017 Inactive
PTSMN New Zealand 20 30 Oct 2016 15 Nov 2018 Running
REMEDHUS Spain 24 15 Mar 2005 1 Jan 2021 Running
RISMA Canada 23 24 Apr 2013 25 Mar 2020 Running
RSMN Romania 20 9 Apr 2014 15 Jun 2021 Running
Ru_CFR Russia 2 25 May 2015 13 Dec 2020 Running
RUSWET-AGRO Former Soviet Union 212 8 Apr 1958 28 Jun 2002 Inactive
RUSWET-GRASS Former Soviet Union 121 8 Jun 1952 28 Dec 1985 Inactive
RUSWET-VALDAI Former Soviet Union 3 15 Jan 1960 15 Dec 1990 Inactive
SASMAS Australia 14 31 Dec 2005 31 Dec 2007 Running
SCAN USA 239 1 Jan 1996 5 Jun 2021 Running
SKKU South Korea 15 8 May 2014 29 Nov 2017 Running
SMOSMANIA France 22 1 Jan 2007 1 Jan 2020 Running
SNOTEL USA 441 1 Oct 1980 3 Jun 2021 Running
SoilSCAPE USA 171 3 Aug 2011 29 Mar 2017 Running
SWEX_POLAND Poland 6 1 Jan 2000 6 May 2013 Inactive
SW-WHU China 7 12 Jan 2014 3 Jun 2015 Running
TAHMO Sub-Saharan Africa 70 1 Jan 2015 15 Jul 2021 Running
TERENO Germany 5 31 Dec 2009 22 Jan 2021 Running
UDC_SMOS Germany 11 8 Nov 2007 18 Nov 2011 Inactive
UMBRIA Italy 13 9 Oct 2002 31 Dec 2017 Running
UMSUOL Italy 1 12 Jun 2009 30 Sep 2010 Running
USCRN USA 115 15 Nov 2000 2 Jun 2021 Running
USDA ARS USA 4 1 Jun 2002 31 Jul 2009 Inactive
VAS Spain 3 1 Jan 2010 1 Jan 2012 Running
VDS Myanmar 4 1 Jun 2017 13 Feb 2021 Running
WegenerNet Austria 12 1 Jan 2007 21 May 2021 Running
WSMN UK 8 2 Sep 2011 29 Feb 2016 Running
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A1 AACES

AACES stands for the Australian Airborne Cal/val Exper-
iments for SMOS. This campaign network covers a 500×
100 km2 study area located in southeastern Australia, cover-
ing a variety of topography, vegetation, and climate classes
(Rüdiger et al., 2007; Peischl et al., 2012). Measurements of
soil moisture, soil temperature, and precipitation were taken
between May 2009 and September 2010. The AACES cali-
bration and validation campaigns were a temporary project;
therefore, no further data sets will be available.

A2 AMMA-CATCH

The AMMA-CATCH observatory gathered data from
densely instrumented mesoscale sites in West Africa (Benin,
Niger, and Mali). The network is devoted to long-term re-
gional monitoring of global change impacts on the critical
zone. Height stations in Benin and four stations in Niger
of the network are included in the ISMN from 2006 to the
present, including surface soil moisture and root zone soil
moisture until 1 m depth. For more information, see Galle
et al. (2018).

A3 ARM

The Atmospheric Radiation Measurement (ARM) pro-
gramme has three soil sensor networks across north-
central Oklahoma and southern Kansas in the USA, in-
cluding the Soil Water And Temperature System (SWATS),
through 2016, and, presently, the Soil Temperature and Mois-
ture Profile (STAMP), and Surface Energy Balance Sys-
tem (SEBS). The SWATS and STAMP have profiles at 5–
8 depths up to 175 cm, while the SEBS measure at 2.5 cm.
All sites are co-located with a suite of meteorological and
radiative measurements available from https://arm.gov/ (last
access: 28 October 2021; Cook, 2016a; Cook and Sullivan,
2018).

A4 AWDN

The Automated Weather Data Network (AWDN) network is
located in Nebraska, USA, and consists of 50 stations. The
data sets were collected by the High Plains Regional Climate
Center, and data availability is from 1998 to 2010 but varies
per station.

A5 BIEBRZA_S-1

The dense soil moisture sites suited for the validation of high-
resolution Sentinel-1 soil moisture products were established
in the Biebrza Wetlands in northeastern Poland in May 2015
(Musial et al., 2016). One site is located across drained grass-
land and the second one across natural temporarily flooded
marshland. They are located within 7 km distance; therefore,
weather conditions are similar but soil moisture regimes dif-

fer. Both sites are equipped with nine soil moisture stations
with five soil probes each and a weather station. The sites
are homogeneous regarding vegetation cover. The organic
peat soils feature porosity values up to 82 %. The sites are
maintained by the Remote Sensing Centre of the Institute of
Geodesy and Cartography (IGiK).

A6 BNZ LTER

The Bonanza Creek Long-Term Ecological Re-
search (BNZ LTER) network consists of 12 stations located
in the boreal forest near Fairbanks, Alaska (Van Cleve
et al., 2015). Soil moisture measurements start around the
year 2000 for each station. In addition to soil moisture at
several depths, observations are available of soil tempera-
ture, air temperature, precipitation, snow depth, and snow
water equivalent.

A7 CALABRIA

The CALABRIA network operates five TDR stations mea-
suring volumetric soil moisture at 30, 60, and 90 cm depths.
The stations were installed in 2000 by the Centro Funzionale
Decentrato of the Calabria region for hydrometeorological
monitoring for flood and landslide risk mitigation. For more
information on the performance of the network, see Brocca
et al. (2011).

A8 CAMPANIA

The CAMPANIA network consisted of two stations located
near the city of Naples in southern Italy. It was managed by
the Centro Funzionale per la Previsione Meteorologica e il
Monitoraggio Meteo-Pluvio-Idrometrico e delle Frane. The
ISMN contains data from the operational start in 2000 until
the end of 2008. The data sets include soil moisture mea-
sured at a depth of 0.30 m, precipitation, and air temperature.
For more information on the performance of the network, see
Brocca et al. (2011).

A9 CARBOAFRICA (recently renamed SD_DEM)

CARBOAFRICA/SD_DEM is located outside El Obeid
in Kordofan, Sudan, and has been active since Febru-
ary 2002. It is operated by the Department of Physical Ge-
ography and Ecosystem Science at Lund University, Swe-
den, in cooperation with the Agricultural Research Corpora-
tion (ARC) in El Obeid, Sudan. From 2007–2009, eddy co-
variance measurements were undertaken, which are available
from FLUXNET (https://fluxnet.org/, last access: 28 Octo-
ber 2021). For more information, see Ardö (2013).

A10 CHINA

This agricultural monitoring campaign from 1981 to 1999
includes 40 stations with soil moisture measurements up to
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1 m depth and was hosted by the Institute of Geographi-
cal Sciences and Natural Resources Research at the Chinese
Academy of Sciences in Beijing (Liu et al., 2001). The data
set was transferred to the ISMN from the Global Soil Mois-
ture Data Bank (Robock et al., 2000) and contains measure-
ments made on the 8th, 18th, and 28th of each month.

A11 COSMOS

The Cosmic-ray Soil Moisture Observing System (COS-
MOS; Zreda et al., 2012) started in 2009 with a grant from
the U.S. National Science Foundation as a 4-year project for
demonstration of the then-new technology of sensing soil
moisture with cosmogenic neutrons (Zreda et al., 2008). On
the completion of the project, the network had 60 sites, most
of them in the USA and a few in South America, Europe,
and Africa. The network produces hourly soil moisture data,
available in real time, to all, without restrictions. After the
project funding ended in 2013, the network operations con-
tinued with the support of Quaesta Instruments, a private
company. The current status is active, but the sensors are be-
ing relocated and repurposed.

A12 CTP_SMTMN

CTP_SMTMN is a multiscale Soil Moisture and Temper-
ature Monitoring Network on the central Tibetan Plateau
(Yang et al., 2013). The network, with an average elevation of
4650 m a.s.l., consists of 56 stations that measure soil mois-
ture and soil freeze/thaw status at three spatial scales (100,
25, and 9 km). The terrain is relatively flat and covered by
sparse and short grasses; the annual precipitation is about
400–500 mm. The network has been in operation since 2010.

A13 DAHRA

The DAHRA field site is located in a typical low tree and
shrub savanna environment in Senegal. To limit the uncer-
tainty in the comparison of remote sensing products and
models, the site was selected to be flat, with homogeneous
vegetation cover within a radius of at least 3 km. The site is
equipped with two towers, i.e. a meteorological tower with
meteorological, hydrological, and radiation sensors and an
eddy covariance flux tower. More information can be found
in Tagesson et al. (2014).

A14 FLUXNET-AMERIFLUX

AMERIFLUX is the North American contribution to the
global FLUXNET. At this moment, two sites close to Sacra-
mento, California, i.e. Tonzi and Vaira ranches, are dis-
tributed through the ISMN. Both stations provide soil mois-
ture measurements at eight different depths down to 0.60 m.
Additionally, soil temperature, air temperature, and precipi-
tation are provided.

A15 FMI

This distributed network of in situ measurement stations
gathering information on soil moisture and soil temperature
has been set up in recent years at the Finnish Meteorological
Institute’s (FMI) Sodankylä Arctic research station in north-
ern Finland. Between 2010 and 2017, 16 stations were in-
stalled around Sodankylä and 3 further north at Saariselkä.
Each station covers a vertical measuring profile and two ad-
ditional horizontal measuring points. The vertical profiles
have five sensors placed close to the station at the following
depths: 5, 10, 20, 40, and 80 cm in mineral and semi-organic
soils and at 5, 10, 20, 30, 40 cm in organic soils. The two
additional horizontal measuring points, at depths of 5 and
10 cm, have been installed approximately 10 m from the sta-
tion in opposing directions to catch small-scale variations in
topsoil moisture. A more detailed description is provided in
Ikonen et al. (2016, 2018).

A16 FR_AQUI

The FR_AQUI network was set up by INRAE in the
Bordeaux–Aquitaine region (southwestern France) in 2012
(Wigneron et al., 2018; Al-Yaari et al., 2018a). Measure-
ments taken at this five-station network (plus the nearby In-
tegrated Carbon Observation System (ICOS) Bilos site), in-
clude soil moisture and temperature at various depths and the
height of the groundwater table. There are four sites installed
in the Landes forest, which is one of the largest coniferous
forests in Europe, and one site is installed close to vineyards
of the Bordeaux Graves region.

A17 GROW

GROW gathered crowd-sourced observations to assess the
temporal and spatial consistency of various satellite-derived
soil moisture products. In total, 6500 low cost sensors were
deployed in 24 GROW places in 13 countries across Europe.
A subset of 150 sensors was transferred to the ISMN (Zappa
et al., 2019, 2020) and contains measurements of soil mois-
ture and air temperature. The complete data set is licensed
and available at https://doi.org/10.15132/10000156. More in-
formation on the quality of the data can be found in Xaver
et al. (2020).

A18 GTK

This network is operated by the Geological Survey of Fin-
land (GTK) and contains seven stations throughout the coun-
try, with one station north of the polar circle. Measurements
are taken from the upper soil layer until 0.9 m depth (soil
moisture and soil temperature, as well as air temperature).
The data are available from the years 2001 to 2012, but the
availability varies per station.
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A19 HiWATER_EHWSN

The HiWATER_EHWSN network is located on an irrigated
farmland in the middle stream of the Heihe River basin close
to the Gobi Desert, China. It consists of short time series be-
tween April and September 2012 collected at 174 stations by
the Cold and Arid Regions Environmental and Engineering
Research Institute (CAREERI) of the Chinese Academy of
Science (Kang et al., 2014; Jin et al., 2014).

A20 HOAL

The Hydrological Open Air Laboratory – Soil Net-
work (HOAL SoilNet) was set up in Petzenkirchen, Austria,
as part of a concerted effort to advance the understanding of
water-related flow and transport processes in a 66 ha agricul-
tural catchment (Blöschl et al., 2016). Soil moisture has been
monitored since 2013 at about 30 locations, at four depths,
and at time intervals of 30 min using time domain transmis-
sion sensors. Measurements are taken from permanent sta-
tions, located in grassland, forest, or at field boundaries, as
well as from stations that are temporarily installed in crop-
land (Vreugdenhil et al., 2013).

A21 HOBE

HOBE is a hydrological observatory established in the west-
ern part of Denmark in the Skjern River catchment (Jensen
and Refsgaard, 2018). Within the sub-catchment of Ahler-
gaarde, data have been collected from a network of 30 soil
moisture stations distributed within the sub-catchment, ac-
cording to respective fractions of classes representing mainly
land cover and soil type (Bircher et al., 2012). At each sta-
tion, Decagon 5TE capacitance sensors have been installed
at 2.5, 22.5, and 52.5 cm depths. The sensors are logged ev-
ery 30 min.

A22 HSC_SEOLMACHEON

HSC_SELMACHEON was a single station located in South
Korea. Data were collected by the Hydrological Survey Cen-
ter (HSC) and Water Resource and Remote Sensing Labo-
ratory (WRRSL) and are available for the period August–
September 2011.

A23 HYDROL-Net Perugia

The HYDROL-Net Perugia network (Morbidelli et al.,
2014a, 2017; Flammini et al., 2018a, b; Morbidelli et al.,
2014b, 2011) consists of one station (called WEEF – Wa-
ter Engineering Experimental Field) located near the city of
Perugia in central Italy. Measurements of soil moisture at
four different depths (0.05, 0.15, 0.25, and 0.35 m), soil tem-
perature at two depths (0.05 and 0.30 m), precipitation, and
air temperature from January 2010 to December 2013 are in-
cluded in the ISMN. HYDROL-Net Perugia is operated by

the Department of Civil and Environmental Engineering of
the University of Perugia.

A24 ICN

The former Illinois Climate Network (ICN) was operated by
the Water and Atmospheric Resources Program of the Illinois
State Water Survey and formerly integrated in the Global
Soil Moisture Data Bank (Hollinger and Isard, 1994). Be-
tween 1983 and 2010, ICN covered 19 stations measuring
soil moisture and soil temperature down to 2 m depth, as well
as precipitation.

A25 IIT_KANPUR

The network IIT_KANPUR network consisted of a single
station and was managed by the Hydraulics and Water Re-
sources Laboratory at the Indian Institute of Technology
Kanpur, India. Soil moisture measurements were made at
four depths (10, 25, 50, and 80 cm) between from June 2011
to November 2012. The station was situated in the Ganges
River basin, which is the largest river basin in India, and the
soil type at the observation site is clayey silt.

A26 IMA_CAN1

The IMA_CAN1 network is operated by the Institute for
Agricultural and Earthmoving Machines (IMAMOTER) of
the Italian National Research Council (CNR), now part of
STEMS-CNR. It is located in an experimental vineyard in
Carpeneto, in the hilly Alto Monferrato region, which is a
valuable vine growing and wine production area in the Pied-
mont region in northwestern Italy. The monitored vineyards
are part of the Experimental Vine and Wine Centre of Agrion
Foundation. The stations in the network provide measure-
ments of soil moisture, precipitation, air temperature and
humidity, hourly runoff, and event soil losses. Hourly vol-
umetric soil moisture was measured by 12 Decagon 5TM
sensors in the period 2011–2015, both in grassed and tilled
vineyards, in correspondence with the track and no-track po-
sition, both down and up the hill (Biddoccu et al., 2016;
Capello et al., 2019; Raffelli et al., 2018).

A27 IOWA

The IOWA network was located in two catchments in the
southwestern part of Iowa, USA. Soil moisture observations
from six stations, until 2.6 m depth, with an interval of twice
a month during 1972 to 1994 (April to October) are included
in the ISMN (Robock et al., 2000). This network was for-
merly included in the Global Soil Moisture Data Bank.

A28 IPE

The Instituto Pirenaico de Ecologia (IPE) network runs two
stations located in Aragon, northeastern Spain. The stations
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have been collecting meteorological data with at least an
hourly time resolution (air and soil temperatures, soil mois-
ture, relative humidity, radiation, and wind speed) since 2008
in a Mediterranean oak forest (Agüero) and a semi-arid pine
forest (Peñaflor). These measurements are related to den-
drometer hourly records of changes in the root and stem
(Agüero; see Alday et al., 2020) or stem (Peñaflor) increment
of the main tree species.

A29 iRON

The interactive Roaring Fork Observation Network (iRON)
is a series of 10 stations operated by the Aspen Global
Change Institute spread across the elevations of the Roaring
Fork Watershed, located in the Southern Rocky Mountains
of the USA. This data set includes soil moisture at 5, 20,
and 50 cm, soil temperature at 20 cm, and additional weather
measurements variable by station. Further information can
be found in Osenga et al. (2019) or at https://www.agci.org/
iron/about (last access: 28 October 2021).

A30 KHOREZM

The KHOREZM network in Uzbekistan is located between
the Amu Darya river and the border with Turkmenistan
and was part of a project conducted by the University of
Würzburg, Germany (Patrick Knöfel). There were seven sta-
tions that made soil moisture, soil temperature, air tempera-
ture, and surface temperature measurements from 2010 April
to 2011 September, and these data are included in the ISMN.
Although soil moisture was not observed continuously, the
measurements are still a valuable contribution since no other
recent observations are available in this region.

A31 KIHS_CMC

The Korea Institute of Hydrological Survey (KIHS) has been
running the Cheongmicheon (CMC) network since 2009,
with annually returning measurements from March till De-
cember. It comprises 56 TDR Buriable Waveguide soil mois-
ture sensors at 18 stations located on an area of approxi-
mately 50× 50 m2. All stations have a sensor installed at
0.1 m and additional sensors at varying depths, i.e. at 0.3,
0.4, 0.6, and 0.9 m.

A32 KIHS_SMC

KIHS_SMC is operated by the Environmental and Remote
Sensing Lab of the Korea Institute of Hydrological Survey.
The 51 soil moisture sensors (depths from 0.1 to 0.6 m) are
located on a mountain slope distributed over 19 stations in
close proximity to each other.

A33 LAB-net

LAB-net was created as the first soil moisture network in
Chile to support remote sensing research on drought and wa-

ter use conflicts (Mattar et al., 2016, 2014). The three stations
measuring soil moisture, soil temperature, precipitation, and
air temperature between 2014 and 2017 over various land
cover types have been included in the ISMN.

A34 MAQU

The MAQU monitoring network (Su et al., 2011; Dente et al.,
2012) is situated on the northeastern fringe of the Tibetan
Plateau, covering an area of approximately 40× 80 km, with
the elevation varying from 3200 m to 4200 m a.s.l. The net-
work provides access to soil moisture and temperature pro-
files (5, 10, 20, 40, and 80 cm) measured at 15 min intervals.
Soil moisture and temperature data from 2008 to 2018 are
included in the ISMN.

A35 METEROBS

The METEROBS (MET European Research OBServations)
network measured soil moisture at a single site between Oc-
tober 2011 October and May 2012. It was located in the
Apennines mountains in the rural area of Benevento, South-
ern Italy. Soil Moisture measurements from five layers until
0.5 m depth have been included in the ISMN.

A36 MOL-RAO

The MOL-RAO network is operated by the German Meteo-
rological Service (DWD) and is part of the operational mea-
suring programme of the MOL-RAO (Meteorological Obser-
vatory Lindenberg – Richard Aßmann Observatory). The net-
work is situated in the northeast of Germany and consists of
two stations. While the station at Falkenberg has a grass-type
vegetation, Kehrigk is situated in a pine forest (Beyrich and
Adam, 2007). Volumetric soil moisture, soil temperature, air
temperature, and precipitation have been provided in a half-
hourly resolution since 2003.

A37 MONGOLIA

Soil moisture data sets for 44 stations were collected by
the National Agency of Meteorology, Hydrology, and Envi-
ronment Monitoring in Ulaanbaatar. All observations were
taken using the gravimetric technique and initially provided
as volumetric plant-available water (in percent). Volumetric
soil moisture (m3 m−3) was calculated by first extracting tex-
ture properties of all sites from the Harmonized World Soil
Database and subsequently calculating the wilting levels for
all stations using the equations of Saxton and Rawls (2006).
Soil moisture measurements are provided 3 times a month
(on the 8th, 18th, and 28th) from 1964 to 2002 during the
warm period of the year, which runs from April until the end
of October (e.g. Robock et al., 2000).
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A38 MySMNet

The Malaysian Soil Moisture Network (MySMNet) has been
operational since 2014. It deploys seven stations (four on an
oil palm plantation, two on shrubland, and one on an orchard)
that collect soil moisture at 5, 50, and 100 cm depth, soil tem-
perature at 5 cm, air temperature, and relative humidity, all on
an hourly basis. The soil moisture sensors used are the Wa-
terScout SM100 (Kang et al., 2019).

A39 NAQU

The NAQU network is part of the Tibetan Plateau ob-
servatory of plateau-scale soil moisture and soil tempera-
ture (Tibet-Obs) and consists of 11 stations located in a cold
semi-arid climate in Tibet at elevations over 4500 m. Soil
moisture and soil temperature have been measured at five dif-
ferent depths (5, 10, 20, 40, and 80 cm) from 2010 onwards
(Su et al., 2011).

A40 NGARI

The NGARI network is part of the Tibetan Plateau ob-
servatory of plateau-scale soil moisture and soil tempera-
ture (Tibet-Obs) and consists of 23 stations located in a cold
arid climate in Tibet at elevations between 4200–4700 m.
Soil moisture and soil temperature have been measured at
five different depths (5, 10, 20, 40, and 80 cm) from 2010
onwards (Su et al., 2011).

A41 NVE

This is a network of monitoring stations of the Norwegian
Water Resources and Energy Directorate (NVE). Soil mois-
ture, soil temperature, and air temperature are measured.
Currently, three out of eight stations are accessible through
the ISMN. The stations are situated in the Trøndelag region
in eastern Norway. Data are available from 2012 to 2019 at
more than five different depth layers and down to 1.5 to 2 m
depth.

A42 ORACLE

The ORACLE network includes six stations. The data sets
reach back to the year 1985 and are available until 2013. OR-
ACLE is a research observatory east of Paris used to study the
Grand Morin and Petit Morin river catchments, particularly
floods, low water periods, water quality, and the impact of
human activities on the environment.

A43 OzNet

OzNet was established in 2001 with eight sites across the
Murrumbidgee River catchment and a cluster of five fur-
ther sites in the Adelong and Kyeamba catchments. This was
further extended in 2003 to include a total of 11 sites at
Kyeamba, for a GRACE validation experiment, and 13 sites

at Yanco, for SMOS pre-launch algorithm development and
post-launch calibration-validation. The Yanco site was fur-
ther extended to have clusters of stations across 9 and 3 km
grids in crop and grassland areas for SMAP algorithm de-
velopment, calibration, and validation (Smith et al., 2012;
Young et al., 2008).

A44 PBO_H2O

The PBO_H2O network is a former near-real time network
of the ISMN hosted by the University of Colorado Boul-
der, USA. It consisted of 159 stations distributed in the west
of the USA, the Bahamas, the Dominican Republic, Puerto
Rico, Colombia, South Africa, and Saudi Arabia. Soil mois-
ture (measured using GPS reflections), precipitation, air tem-
perature, and snow depth from 2004 to 2017 is stored in the
ISMN database (Larson et al., 2008). The network was dis-
continued in 2018 because of lacking financial support.

A45 PTSMN

The Patitapu Soil Moisture Network (PTSMN) was estab-
lished in 2016 on the hill country landscapes of the east coast
of New Zealand’s North Island. PTSMN was deployed to
capture spatiotemporal soil moisture trends on various to-
pographical positions distributed over a 13.8 km2 area. The
network is composed of 20 multi-sensor probes that were
calibrated to the site-specific soils (Hajdu et al., 2019). The
sensors provide readings at four consecutive depths down to
0.43 m.

A46 REMEDHUS

REMEDHUS is the University of Salamanca Soil Mois-
ture Measurement Stations Network and was installed in
March 1999 with a set of old TDR stations and manual mea-
surements. It is one of the first soil moisture networks in Eu-
rope. The network was automated and upgraded with capaci-
tance probes in 2005. The REMEDHUS data available in the
ISMN cover the period since its automation. REMEDHUS
is located in an agricultural area in the central part of the
Duero basin (Spain). The network currently has 20 stations
that measure soil moisture and soil temperature hourly in the
0–5 cm layer (González-Zamora et al., 2018).

A47 RISMA

The Real-time In-Situ Soil Monitoring for Agricul-
ture (RISMA) network was established in 2011 by Agri-
culture and Agri-Food Canada at agricultural locations
in Ontario, Manitoba, and Saskatchewan (Ojo et al.,
2015; L’Heureux, 2011; Canisius, 2011). There are cur-
rently 23 RISMA stations collecting hourly soil mois-
ture/temperature data at depths to 1–1.5 m in combination
with meteorological data. Calibrated, quality-controlled soil
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moisture and weather data are provided to the ISMN on an
annual basis.

A48 RSMN

The Romanian Soil Moisture Network (RSMN) consists of
19 stations homogeneously distributed over Romania. The
network is managed by the Romanian National Meteorologi-
cal Administration and is part of the ASSIMO project, which
aims to create a framework for the evaluation of current and
future satellite microwave-derived soil moisture products.

A49 Ru_CFR

The Ru_CFR network includes two stations located on the
territory of the Central Forest Reserve (CFR), Tver region,
Russia. Since 2015, half-hourly continuous measurements of
soil moisture have been carried out. Both stations provide
measurements of soil moisture at four different depths and
measurements of soil temperature, air temperature, and pre-
cipitation.

A50 RUSWET-AGRO, RUSWET-GRASS, and
RUSWET-VALDAI

The three historical RUSWET networks were agricultural
prediction campaigns conducted by the State Hydrologi-
cal Institute of the former Soviet Union within the area of
present-day Russia. Measurements were taken from 1952
until 2002 and initially distributed through the Global Soil
Moisture Data Bank. Altogether, the networks operated
337 sites at which soil moisture was measured 3 times per
month via gravimetric sampling. At RUSWET-VALDAI, soil
temperature, precipitation, and air temperature were also col-
lected. RUSWET contributes both the northernmost (on Mc-
Clintock Island) and the earliest (8 June 1952) observations
to the ISMN (Robock et al., 2000).

A51 SASMAS

The Scaling and Assimilation of Soil Moisture and Stream-
flow (SASMAS) monitoring network commenced commis-
sioning in late 2002, with a total of 26 stations in operation
by 2003 across a 6500 km2 catchment (Rüdiger et al., 2007).
Soil moisture is observed up to a depth of 90 cm (where pos-
sible) at depth intervals of 0–30, 30–60, and 60–90 cm. The
network was developed as a nested catchment with three dif-
ferent types of scales (low-resolution across the entire catch-
ment, medium density across to smaller subcatchment, and
very high density across a 175 ha single reach). This site
also hosted the second National Airborne Field Experiment
(NAFE) campaign, for which additional data were collected.

A52 SCAN

The Natural Resources Conservation Service (NRCS) oper-
ates the comprehensive, USA-wide Soil Climate Analysis

Network (SCAN). SCAN supports natural resource assess-
ments and conservation activities through its network of au-
tomated climate monitoring and data collection sites. SCAN
focuses primarily on agricultural areas of the USA, Puerto
Rico, and the Virgin Islands. The network consists of 216 sta-
tions located across the USA and reports soil moisture, soil
temperature, precipitation, temperature, and other climatic
variables hourly. Soil sensors are situated at 5, 10, 20, 50, and
100 cm depths (Schaefer et al., 2007).

A53 SKKU

The SKKU network was located at an evenly and mod-
erately vegetated botanical garden in South Korea. It was
operated by Sungkyunkwan University (SKKU) from 2014
to 2016, as part of a project for evaluating Cosmic-Ray Neu-
tron Probe (CRNP) soil moisture (Nguyen et al., 2017). The
network consisted of 10 stations, and soil moisture measure-
ments were taken at four different depths (i.e. 10, 20, 30, and
40 cm).

A54 SMOSMANIA

The SMOSMANIA network was installed in southern France
by Météo-France, the French national meteorological ser-
vice, in order to monitor in situ soil moisture and soil tem-
perature in contrasting soil and climatic conditions at oper-
ational automatic weather stations (Calvet et al., 2007). The
SMOSMANIA network is composed of 21 stations, forming
an Atlantic–Mediterranean transect, over a large variety of
mineral soils ranging from sand and clay to silt loam (Calvet
et al., 2016).

A55 SNOTEL

NRCS instals, operates, and maintains an extensive, auto-
mated data collection network called SNOTEL (short for
snow telemetry; Leavesley et al., 2008). SNOTEL is part of
the Snow Survey and Water Supply Forecasting (SSWSF)
programme and is designed to collect snowpack and re-
lated climatic data in the western USA and Alaska. The pro-
gramme operates under technical guidance from the NRCS
National Water and Climate Center (NWCC). With the ma-
jority of the water supply in the west arriving in the form
of snow, data on snowpack provide critical information to
decision-makers and water managers. SNOTEL currently
consists of a network of over 860 automated SNOTEL sta-
tions, of which 463 stations have soil moisture and soil tem-
perature sensors.

A56 SoilSCAPE

The Soil moisture Sensing Controller And oPtimal Esti-
mator (SoilSCAPE) is a wireless soil moisture sensor net-
work for measurements of surface-to-root-zone profiles of
soil moisture (Moghaddam et al., 2011, 2016; Shuman et al.,

Hydrol. Earth Syst. Sci., 25, 5749–5804, 2021 https://doi.org/10.5194/hess-25-5749-2021



W. Dorigo et al.: A decade of ISMN 5777

2010). It is designed for long-term, ultra-efficient, unattended
field operations. Several networks are deployed in the USA,
including in the states of California, Arizona, Colorado,
Alaska, and New York. Additional deployments are planned
in New Mexico, USA, and in New Zealand. The SoilSCAPE
architecture includes a local coordinator (LC) and multiple
end devices (EDs). The LC is the central command centre
of the network, receiving data from the several soil moisture
and temperature sensors connected to each ED. The sensors
include Decagon 5TM and Teros 12, depending on how re-
cently they were deployed.

A57 SWEX_POLAND

The Soil Water and Energy exchange –
Poland (SWEX_POLAND) network was operated be-
tween 2000 and 2013 by the Institutes of Agrophysics,
Polish Academy of Sciences, in Lublin. The network
consisted of six stations located in the wetlands of Poleski
Park Krajobrazowy to support SMOS product calibration
and validation. Soil moisture and temperature measurements
were taken down to 1 m depth, along with precipitation
observations (Marczewski et al., 2010).

A58 SW-WHU

The SW-WHU network was hosted by Wuhan University
(Chen et al., 2015a, b). SW-WHU is a high-density network,
with nearly 100 soil moisture and temperature sensors within
1 km2. It adopts a Narrowband Internet of things (NB-IoT)
technique for data transmission at low power consumption.
Therefore, the data of SW-WHU are particularly valuable
for soil moisture validation, monitoring, and application at a
very high spatiotemporal resolution (X. Zhang et al., 2018).

A59 TAHMO

The Trans-African Hydro-Meteorological Observatory
(TAHMO; https://tahmo.org/, last access: 28 October 2021)
presently runs a network of over 600 meteorological weather
stations in more than 20 African countries. The stations
measure all standard weather parameters, such as barometric
pressure, wind speed, rainfall, and radiation. Each station
also has five open ports that can be used for additional
sensors, such as soil moisture sensors. Presently, 70 stations
have soil moisture sensors, some of them at several depths.
Ideally, many stations will be upgraded by soil moisture
sensors in the near future.

A60 TERENO

TERENO consists of four terrestrial observatories that repre-
sent typical landscapes in Germany and central Europe and
are considered to be highly vulnerable to the effects of global
and climate change (Zacharias et al., 2011; Bogena et al.,
2012). TERENO combines observations with comprehen-

sive large-scale experiments, integrated modelling, remote
sensing, and novel measurement technologies to increase
our understanding of the functioning and feedbacks of ter-
restrial ecosystems (Bogena, 2016). The long-term observa-
tion platform of TERENO is composed of various measure-
ment systems, including networks of climate and lysimeter
stations, eddy covariance towers, and networks of soil, sur-
face water, and groundwater sensors. Almost all online mea-
surements are freely accessible via the TERENO data portal
(http://www.tereno.net/ddp/, last access: 28 October 2021).

A61 UDC_SMOS

The former German UDC_SMOS network was hosted by the
Department of Geography at the University of Munich, in co-
operation with the Bavarian State Research Center for Agri-
culture, and funded by the German Aerospace Centre (DLR).
It was located in grassland in the Bavarian region around
Munich as an official European SMOS calibration/validation
test site. In total, 11 stations provided soil moisture data
from 2007 until 2011, up to 40 cm depth, as measured by
several types of sensors (Loew et al., 2009; Schlenz et al.,
2012a).

A62 UMBRIA

This soil moisture monitoring network in the north of the
Umbria region, in the upper Tiber River basin, operates three
stations in real time (Torre dell’Olmo, Petrelle, and Cer-
bara). Each station measures at 10, 20, and 40 cm depth.
Additional stations of the network have not been operational
since 2015 due to a lack of resources for their maintenance.
Provided financial resources become available, the stations
that are no longer functioning will be restored (Brocca et al.,
2011, 2009, 2008).

A63 UMSUOL

UMSUOL (Umidita del Suolo) is a one-station network
located close to Bologna, northern Italy. Soil moisture
measurements at seven different depths are provided by
the Agenzia Regionale Prevenione Ambiente (ARPA). The
ISMN contains data from the years 2009 and 2010.

A64 USCRN

The U.S. Climate Reference Network (USCRN) contains
114 stations sparsely distributed across the contiguous USA.
Each station has three sets of soil moisture/temperature
probes at five depths (5, 10, 20, 50, and 100 cm), in addi-
tion to air and surface temperature, precipitation, relative hu-
midity, and solar radiation (Bell et al., 2013). The stations
were installed between 2009 and 2011 and are still in oper-
ation in 2021. The stations are maintained by the National
Oceanic and Atmospheric Administration Atmospheric Tur-
bulence and Diffusion Division (NOAA ATDD), and their
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data are maintained by NOAA National Centers for Environ-
mental Information (NOAA NCEI).

A65 USDA-ARS

The U.S. Department of Agriculture Agricultural Research
Service (USDA ARS) operates a number of Long-Term
Agroecosystem Research (LTAR) sites, some of which have
spatial coverage of soil moisture and soil temperature. As
experimental sites, the locations and configuration of the sta-
tions can change depending on the current scientific ques-
tions being addressed. A description of the sites can be found
in Jackson et al. (2011).

A66 VAS

The Valencia Anchor Station (VAS) network is operated by
the Climatology from Satellites Group and Jucar River Basin
Authority of the University of Valencia, Spain. The network
is located in Spain and consists of three stations. The data
sets are available for the years 2010 and 2011.

A67 VDS

The VDS network is run by VanderSat, a Dutch company
that specialises in providing global satellite-observed data
and services over land. The VDS network consists of four
stations located near the city of Bago in Myanmar. The net-
work was installed to validate satellite soil moisture products
in the tropics. The network has two measurement periods, i.e.
one from June 2017 to July 2018 and one from March 2020
onwards.

A68 WegenerNet

The WegenerNet, located in the foreland of the southeastern
Austrian Alps, is a long-term weather and climate monitor-
ing facility comprising 155 hydrometeorological stations in a
dense grid, with one station every about 2 km2 (Kirchengast
et al., 2014; Fuchsberger et al., 2021). Together with a range
of meteorological variables, such as temperature, humidity,
precipitation, and wind, it also measures soil moisture and
temperature at 12 stations. These variables are measured at
0.2–0.3 m depth in diverse soil types representative for the
region.

A69 WSMN

The Wales Soil Moisture Network (WSMN) was founded in
July 2011. It consists of a total of nine monitoring sites lo-
cated in mid-Wales representing a range of conditions typical
of the Welsh environment, with climate ranging from oceanic
to temperate and the most typical land use/cover types. The
data set acquired in the network is composed of 0–5 (or 0–
10) cm soil moisture, soil temperature, precipitation, as well
as other ancillary data (Petropoulos and McCalmont, 2017).
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Appendix B: Detailed system overview

Figure B1. Detailed system overview of the ISMN (status in July 2021).

https://doi.org/10.5194/hess-25-5749-2021 Hydrol. Earth Syst. Sci., 25, 5749–5804, 2021



5780 W. Dorigo et al.: A decade of ISMN

Appendix C: Soil moisture sensor availability per soil
depth interval

Table C1. Overview of data availability per depth layers showing the total number of individual sensor brands, data sets, and stations
integrated in the ISMN database. The calculations have been made with respect to horizontally and vertically placed sensors for each depth
layer.

Depth from – Sensors Data Stations
to (m) sets

0.00–0.05 131 2116 1696
0.05–0.10 123 2482 1459
0.10–0.20 138 2690 1523
0.20–0.30 104 1899 1463
0.30–0.40 43 562 483
0.40–0.50 73 1463 1207
0.50–0.60 65 1389 1125
0.60–0.70 25 210 185
0.70–0.80 20 113 106
0.80–0.90 24 183 159
0.90–1.00 25 346 302
1.00–1.10 42 571 450
1.10–1.20 5 7 5
1.20–1.30 7 44 24
1.30–1.40 4 8 6
1.40–1.50 8 13 9
1.50–1.60 12 21 15
1.60–1.70 0 0 0
1.70–1.80 3 35 18
1.80–1.90 1 1 1
1.90–2.00 8 20 20
2.00–2.10 13 10 8

Appendix D: Metadata structure

Figure D1. Overview of all mandatory metadata information available for each station within the ISMN database.
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Appendix E: Scientific studies using ISMN data for
satellite and model product evaluation and development.

Table E1. Overview of scientific studies using ISMN data for satellite product evaluation and development.

Sensor Publications

SMOS Albergel et al. (2012c), Mecklenburg et al. (2012), Parrens et al. (2012), Sanchez et al. (2012), Schlenz et al.
(2012b), Wanders et al. (2012), Pellarin et al. (2013), Fascetti et al. (2014), Petropoulos et al. (2014), Pierdicca
et al. (2014), Zeng et al. (2014), Rodriguez-Fernandez et al. (2015), Gruber et al. (2015), Hottenstein et al. (2015),
Kornelsen and Coulibaly (2015), Lee and Im (2015), Parinussa et al. (2015), Pierdicca et al. (2015a), Pierdicca
et al. (2015b), Scaini et al. (2015), González-Zamora et al. (2015), Fascetti et al. (2016), Fascetti et al. (2016),
Kędzior and Zawadzki (2016), Kerr et al. (2016), Pablos et al. (2016), Piles et al. (2016), Rautiainen et al. (2016),
Scholze et al. (2016), van der Schalie et al. (2016), González-Zamora et al. (2016), Ángel González-Zamora et al.
(2016), Al-Yaari et al. (2017), Cui et al. (2017), Fascetti et al. (2017), Fernandez-Moran et al. (2017b), Fernandez-
Moran et al. (2017a), Karthikeyan et al. (2017), Lievens et al. (2017), Martens et al. (2017), Mohanty et al. (2017),
Montzka et al. (2017), Muñoz Sabater et al. (2017), Pan et al. (2017), Peng et al. (2017), Pierdicca et al. (2017),
Rains et al. (2017), van der Schalie et al. (2017), Yao et al. (2017), Al-Yaari et al. (2018b), Ebrahimi et al. (2018),
Ebrahimi-Khusfi et al. (2018), Lee (2018), Liu et al. (2018), Pablos et al. (2018), Tagesson et al. (2018), Tian
(2018), van der Schalie et al. (2018), Wu et al. (2018), Al-Yaari et al. (2019b), Al-Yaari et al. (2019a), Blyverket
et al. (2019a), Blyverket et al. (2019b), de Rosnay et al. (2019), Kang et al. (2019), Ma et al. (2019), Piles et al.
(2019), Rodriguez-Fernandez et al. (2019), S. Tian et al. (2019), González-Zamora et al. (2019), Beck et al. (2021),
Helgert and Khodayar (2020), Herbert et al. (2020), Link et al. (2020), Moreno-Martínez et al. (2020), Portal et al.
(2020), Sadri et al. (2020),Dong et al. (2020),X. Li et al. (2020),Wigneron et al. (2021), Balenzano et al. (2021),
Chen et al. (2021), van der Schalie et al. (2021), Xu et al. (2021), Yao et al. (2021), R. Zhang et al. (2021)

ASCAT Brocca et al. (2011), Liu et al. (2011), Albergel et al. (2012c), Y. Liu et al. (2012), Parrens et al. (2012), Wanders
et al. (2012), Albergel et al. (2013b), Pellarin et al. (2013), Zwieback et al. (2013), Fascetti et al. (2014), Gruber
et al. (2014), Parinussa et al. (2014b), Paulik et al. (2014), Pierdicca et al. (2014), Gruber et al. (2015), Parinussa
et al. (2015), Pierdicca et al. (2015a), Pierdicca et al. (2015b), Su et al. (2015), Zwieback et al. (2015), Fascetti
et al. (2016), Fascetti et al. (2016), Zwieback et al. (2016), Fascetti et al. (2017), Gruber et al. (2017), Karthikeyan
et al. (2017), Kolassa et al. (2017), Lievens et al. (2017), Massari et al. (2017), Mohanty et al. (2017), Montzka
et al. (2017), Pierdicca et al. (2017), Sure et al. (2017), Al-Yaari et al. (2018b), Bauer-Marschallinger et al. (2018),
Kim et al. (2018), Afshar et al. (2019), Al-Yaari et al. (2019b), Fairbairn et al. (2019), Gruber et al. (2019a), Beck
et al. (2021), Link et al. (2020), Moreno-Martínez et al. (2020), Zappa et al. (2020), Chen et al. (2021), Kim et al.
(2021), Steele-Dunne et al. (2021), Wu et al. (2021), R. Zhang et al. (2021)

AMSR-E Brocca et al. (2011), Liu et al. (2011), Y. Liu et al. (2012), Parinussa et al. (2012), Wanders et al. (2012), Albergel
et al. (2013b), Dente et al. (2013), Dorigo et al. (2013), Zhao and Li (2013), de Jeu et al. (2014), Parinussa et al.
(2014b), Zeng et al. (2014), Coopersmith et al. (2015), Parinussa et al. (2015), Su et al. (2015), Zhao and Li (2015),
Al-Yaari et al. (2016), Du et al. (2016), Han et al. (2016), Parinussa et al. (2016), Santi et al. (2016), Zhao et al.
(2016), Gruber et al. (2017), Han et al. (2017), Karthikeyan et al. (2017), Kolassa et al. (2017), Massari et al. (2017),
Mohanty et al. (2017), Su et al. (2017), Sure et al. (2017), Tobin et al. (2017), van der Schalie et al. (2017), R. Wang
et al. (2017), Yao et al. (2017), Lei et al. (2018), Liu et al. (2018), van der Schalie et al. (2018), Afshar et al. (2019),
Hu et al. (2019), Xie et al. (2019), Deng et al. (2020c), Hagan et al. (2020),Dong et al. (2020), Chen et al. (2021),
Yao et al. (2021)

SMAP Fascetti et al. (2016), Zeng et al. (2016), Al-Yaari et al. (2017), Cui et al. (2017), Fascetti et al. (2017), Karthikeyan
et al. (2017), Mohanty et al. (2017), Montzka et al. (2017), Pierdicca et al. (2017), Alemohammad et al. (2018),
Ebrahimi et al. (2018), Ebrahimi-Khusfi et al. (2018), Kim et al. (2018), Kim and Lakshmi (2018), Kolassa et al.
(2018), Pablos et al. (2018), Santi et al. (2018), Xu et al. (2018), Zhao et al. (2018), Al-Yaari et al. (2019b), Bai et al.
(2019), Blyverket et al. (2019a), Blyverket et al. (2019b), Ebtehaj and Bras (2019), Fang et al. (2019), Ma et al.
(2019), Park et al. (2019), R. Zhang et al. (2019), Beck et al. (2021), Fang et al. (2020), Gao et al. (2020b), Gao
et al. (2020a), Link et al. (2020), Park et al. (2020), Portal et al. (2020), Sadri et al. (2020), Suman et al. (2020), Sun
et al. (2020), Zappa et al. (2020), Chen et al. (2021), Fang et al. (2021b), Fang et al. (2021a), Gupta et al. (2021),
He et al. (2021), Kim et al. (2021), Ojha et al. (2021), van der Schalie et al. (2021), Sun and Cui (2021), Wu et al.
(2021), Xu et al. (2021), Yao et al. (2021), R. Zhang et al. (2021)
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Table E1. Continued.

Sensor Publications

ESA CCI Gruber et al. (2013), Enenkel et al. (2016), Su et al. (2016), Cui et al. (2017), Dorigo et al. (2017), Karthikeyan et al.
(2017), Martens et al. (2017), Tobin et al. (2017), Al-Yaari et al. (2018b), Al-Yaari et al. (2019b), Al-Yaari et al.
(2019a), Blyverket et al. (2019a), Blyverket et al. (2019b), Gruber et al. (2019b), Guevara and Vargas (2019), Ma
et al. (2019), González-Zamora et al. (2019), Zhu et al. (2019), Beck et al. (2021), Deng et al. (2020c), Kovačević
et al. (2020), Zappa et al. (2020), Dorigo et al. (2015), Pratola et al. (2015), Nicolai-Shaw et al. (2015b), An et al.
(2016), Liu et al. (2018), Liu et al. (2020),Chen et al. (2016), Almendra-Martín et al. (2021), Grillakis et al. (2021),
Guevara et al. (2021), Wang et al. (2021), Yao et al. (2021)

AMSR2 Kim et al. (2015a), Kim et al. (2015b), Parinussa et al. (2015), Kim et al. (2016), Wu et al. (2016), Anoop et al.
(2017), Cui et al. (2017), Karthikeyan et al. (2017), Montzka et al. (2017), Yao et al. (2017), Fang et al. (2018), Kim
et al. (2018), Liu et al. (2018), Santi et al. (2018), Hu et al. (2019), Ma et al. (2019), Beck et al. (2021), Hagan et al.
(2020), Link et al. (2020), Moreno-Martínez et al. (2020), Anoop et al. (2017), Chen et al. (2021), Moradizadeh
and Srivastava (2021), Yao et al. (2021), Q. Zhang et al. (2021)

MODIS Liu et al. (2014), Boussetta et al. (2015), Zhao and Li (2015), Pablos et al. (2016), Przeździecki et al. (2017),
Alemohammad et al. (2018), Gumbricht (2018), Pablos et al. (2018), Kumar et al. (2019b), Park et al. (2019), Han
et al. (2020), Chen et al. (2021), Ojha et al. (2021), Sun and Cui (2021)

Sentinel-1 Paloscia et al. (2013), Liu et al. (2017), Bao et al. (2018), Bauer-Marschallinger et al. (2018), Dabrowska-Zielinska
et al. (2018), Bauer-Marschallinger et al. (2019), Greifeneder et al. (2019), Rodionova (2019b), Rodionova (2019a),
Wang et al. (2019a), Foucras et al. (2020), Han et al. (2020), Ma et al. (2020), Zappa et al. (2020), Ojha et al. (2021)

SEVIRI Zhao and Li (2013), Liu et al. (2014), Leng et al. (2015),Leng et al. (2016), Piles et al. (2016), Leng et al. (2017),
Tagesson et al. (2018), Ghilain et al. (2019)

FY-3B Parinussa et al. (2014a), Cui et al. (2017), Parinussa et al. (2018), Sheng et al. (2019), Hagan et al. (2020), Liu et al.
(2021)

TMI Y. Liu et al. (2012), Albergel et al. (2013b), Gruber et al. (2015), Karthikeyan et al. (2017), Hagan et al. (2020),
Chen et al. (2021)

ERS Y. Liu et al. (2012), Albergel et al. (2013b), Dente et al. (2013), Kolassa et al. (2013), Karthikeyan et al. (2017),
Chen et al. (2021)

GNSS-I R S. Zhang et al. (2018), Kim and Lakshmi (2018), Xu et al. (2018), Eroglu et al. (2019), Chew and Small (2020),
(CYGNSS) Senyurek et al. (2020)

SSM/I Y. Liu et al. (2012), Albergel et al. (2013b), Kolassa et al. (2013), Karthikeyan et al. (2017), Hagan et al. (2020),
Chen et al. (2021)

WindSat Parinussa et al. (2012), Karthikeyan et al. (2017), Hagan et al. (2020)

ERS-2 Reimer et al. (2012), Pierdicca et al. (2014)

Landsat Zhao et al. (2017), Bao et al. (2018), Pradhan (2019)

GRACE Khaki et al. (2019), Sadeghi et al. (2020)

Aquarius/SAC-D González-Zamora et al. (2016)

FY-3C Liu et al. (2021)

GF-1 WFV Xing et al. (2017)

HY-2 Zhao et al. (2014)

MEaSUREs Chen et al. (2021)

MeMo Beck et al. (2021)

Sentinel-3 Ojha et al. (2021)

SMmodel Mimeau et al. (2021)

SMOPS Wang et al. (2021)

SMMR Chen et al. (2021)
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Table E2. Overview of scientific studies using ISMN data for model evaluation and development.

Sensor Publications

ERA-Interim; Albergel et al. (2012b), Albergel et al. (2012a),Albergel et al. (2013a), Albergel et al. (2013b), Gruber et al. (2013),
ERA-Interim/Land Pierdicca et al. (2015a), Zwieback et al. (2013), Angevine et al. (2014), Balsamo et al. (2015), Cammalleri et al.

(2015), Zwieback et al. (2015), Kim et al. (2016), Deng et al. (2020c), Deng et al. (2020b), M. Li et al. (2020),
Pierdicca et al. (2015b), Nicolai-Shaw et al. (2015b), Beck et al. (2021)

ECMWF IFS Albergel et al. (2012c), Mecklenburg et al. (2012), Pellarin et al. (2013), Albergel et al. (2015), Rodriguez-
Fernandez et al. (2015)

ERA-40 G. Liu et al. (2012)

ERA-5 M. Li et al. (2020), Xu et al. (2021)

H-TESSEL Albergel et al. (2010), Albergel et al. (2015), Dirmeyer et al. (2016)

ISBA Albergel et al. (2010), Parrens et al. (2012), Barbu et al. (2014)

GLDAS Noah Liu et al. (2011), Dorigo et al. (2013), Angevine et al. (2014), Bi et al. (2016), Dirmeyer et al. (2016), Zawadzki and
Kędzior (2016), Pan et al. (2017), Lee (2018), McDonough et al. (2018), Mishra et al. (2018), Afshar et al. (2019),
Kędzior and Zawadzki (2016), Beck et al. (2021), Deng et al. (2020c), Solander et al. (2020), Xu et al. (2021)

GLDAS Mosaic Bi et al. (2016), Solander et al. (2020)

MERRA; MERRA/ Albergel et al. (2013b), Pellarin et al. (2013), Kim et al. (2016), Reichle et al. (2017), Draper and Reichle (2019),
Land; MERRA-2 Y. Wang et al. (2019), M. Li et al. (2020), Xu et al. (2021)

CLM Cammalleri et al. (2015), Bi et al. (2016), Dirmeyer et al. (2016), Mishra et al. (2018), Zhao and Yang (2018)

VIC Mishra et al. (2014), Bi et al. (2016), Mishra et al. (2018), Beck et al. (2021), Solander et al. (2020), Erlingis et al.
(2021)

GLEAM Lievens et al. (2017), Martens et al. (2017), Martens et al. (2018)

LDAS Fairbairn et al. (2015), Albergel et al. (2018), Xia et al. (2019), Albergel et al. (2020)

BEACH Van doninck et al. (2012)

BEPS He et al. (2021)

CAS-LSM Wang et al. (2019b)

CFSR M. Li et al. (2020)

CLSM Dong et al. (2020), Erlingis et al. (2021)

CPC G. Liu et al. (2012)

CSSP Ji et al. (2017)

ESSMRA Naz et al. (2020)

GLDAS2 Wu et al. (2021)

GSFC Dirmeyer et al. (2016)

HadGEM3-GC3.05 Li et al. (2021)

HBV Beck et al. (2021)

JRA-5 M. Li et al. (2020), Xu et al. (2021)

LISFLOOD Cammalleri et al. (2015)

NLDAS Noah Dong et al. (2020), Erlingis et al. (2021)

NLDAS Mosaic Dong et al. (2020), Erlingis et al. (2021)

NCEP/NCAR Pierdicca et al. (2015b), Xu et al. (2021)

Noah-MP Dong et al. (2020), Erlingis et al. (2021)

SAC Erlingis et al. (2021)
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Table E2. Continued.

Sensor Publications

SSA Fairbairn et al. (2019)

SSMP Pal and Maity (2019)

WCDA; SCDA; OPNL Lin and Pu (2019)

WLDAS Erlingis et al. (2021)

WRF; WRF3.3-CLM4crop Angevine et al. (2014), Lu et al. (2015)

ORCHIDEE-MICT Yin et al. (2018), Raoult et al. (2021)

Appendix F: Effect of quality flagging on validation of
ERA5 and ESA CCI soil moisture

Figure F1. Scatterplots of R Spearman between ISMN and ERA5 and ISMN and ESA CCI v05.2 combined for absolute values and anoma-
lies. A 35 d moving average window was used to calculate anomalies. Each dot represents a single time series. (a) ERA5 absolute values.
(b) ERA5 anomalies. (c) ESA CCI absolute values. (d) ESA CCI anomalies.
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Code and data availability. Upon registration, all data and meta-
data described in this paper can be downloaded for free from
https://ismn.earth (ISMN, 2021). A Python package to read and
plot the data and metadata (TUW-GEO/ismn: v1.1) can be ac-
cessed at https://doi.org/10.5281/zenodo.855308 (Preimesberger et
al., 2021). An example of output of this package is shown in Fig. 1.
A Python package containing the ISMN quality control procedures
for in situ soil moisture is available on GitHub (https://github.com/
TUW-GEO/flagit; Aberer et al., 2021).
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