68 research outputs found

    Working Memory abilities, attachment relationships and learning process in children of primary school age: an empirical research

    Get PDF
    Several studies underline a definite link between “working memory†(WM) and the learning process (deficit and learning disorder in children). WM abi-lities mainly affect written language learning and arithmetic learning. According to studies related to the Attachment Theory, it is possible to rationalize that child with a secure attachment to the caregiver and/or to the teacher have higher skills in school adaptability. In this study—based on previous pilot study (Del Villano, Ce-cere, Sapuppo, & Caviglia., 2011)—the relationship between: cognitive test (WM measurement test), learning test and the student’s attachment style (both with his caregivers and his teacher) have been empirically evaluated. This pilot study was performed in several of the primary schools in Campania Italy between 2009 and 2011. The selected sample was composed of 80 children 6-7 years old (38 Female and 42 Male) who, after parental and school consent, were tested by the tools de-scribed in the main body of this research paper. The pilot study shows an absence of linguistic deficit, and a relationship between cognitive abilities and the learning le-vel achieved in reading and mathematical calculation, furthermore it has shown a modulation effect of the attachment on the relationship between the WM ability and MT calculation and reading tests. This modulation effect is more evident if we consider the unsecure or disorganized attachment, especially if we consider the data accumulated with reference to the attachment to the teacher. Our research was conducted with the sole intention to widen the sample and make the outcomes more valid and reliable. The recruited sample was composed of 130 children age 6-7 who, after parenentalt and school consent, were tested with the TVL -Linguistic As-sessment Test , the short version of AWMA (Automated Working Memory As-sessment), the SAT-Separation Anxiety Test, both family and school versions, and the Reading Trials MT -AC-MT 6-11- Calculation Ability Assessment Test. The re-sults underline the absence of deficit or malfunctions in the subjects’ linguistic de-velopment, a significant connection between the learning performances and the verbal and visual-spatial trials assessed with the AWMA, and a moderating effect of the attachment style upon the connection itself

    Comparing the prognostic value of stress myocardial perfusion imaging by conventional and cadmium-zinc telluride single-photon emission computed tomography through a machine learning approach

    Get PDF
    We compared the prognostic value of myocardial perfusion imaging (MPI) by conventional- (C-) single-photon emission computed tomography (SPECT) and cadmium-zinc-telluride- (CZT-) SPECT in a cohort of patients with suspected or known coronary artery disease (CAD) using machine learning (ML) algorithms. A total of 453 consecutive patients underwent stress MPI by both C-SPECT and CZT-SPECT. The outcome was a composite end point of all-cause death, cardiac death, nonfatal myocardial infarction, or coronary revascularization procedures whichever occurred first. ML analysis performed through the implementation of random forest (RF) and k-nearest neighbors (KNN) algorithms proved that CZT-SPECT has greater accuracy than C-SPECT in detecting CAD. For both algorithms, the sensitivity of CZT-SPECT (96% for RF and 60% for KNN) was greater than that of C-SPECT (88% for RF and 53% for KNN). A preliminary univariate analysis was performed through Mann-Whitney tests separately on the features of each camera in order to understand which ones could distinguish patients who will experience an adverse event from those who will not. Then, a machine learning analysis was performed by using Matlab (v. 2019b). Tree, KNN, support vector machine (SVM), Naïve Bayes, and RF were implemented twice: first, the analysis was performed on the as-is dataset; then, since the dataset was imbalanced (patients experiencing an adverse event were lower than the others), the analysis was performed again after balancing the classes through the Synthetic Minority Oversampling Technique. According to KNN and SVM with and without balancing the classes, the accuracy (p value = 0.02 and p value = 0.01) and recall (p value = 0.001 and p value = 0.03) of the CZT-SPECT were greater than those obtained by C-SPECT in a statistically significant way. ML approach showed that although the prognostic value of stress MPI by C-SPECT and CZT-SPECT is comparable, CZT-SPECT seems to have higher accuracy and recall

    Managing a Mass CO Poisoning: Critical Issues and Solutions From the Field to the Hyperbaric Chamber

    Get PDF
    Carbon monoxide acute intoxication is a common cause of accidental poisoning in industrialized countries and sometimes it produces a real mass casualty incident. The incident described here occurred in a church in the province of Verona, when a group of people was exposed to carbon monoxide due to a heating system malfunction. Fifty-seven people went to the Emergency Department. The mean carboxyhemoglobin (COHb) level was 10.1\ub15.7% (range: 3-25%). The clinicians, after medical examination, decided to move 37 patients to hyperbaric chambers for hyperbaric oxygen (HBO) therapy. This is the first case report that highlights and analyses the logistic difficulties of managing a mass carbon monoxide poisoning in different health care settings, with a high influx of patients in an Emergency Department and a complex liaison between emergency services. This article shows how it is possible to manage a complex situation with good outcome. (Disaster Med Public Health Preparedness. 2016;page 1 of 5)

    The unprecedented 2017-2018 stratospheric smoke event : Decay phase and aerosol properties observed with the EARLINET

    Get PDF
    © Author(s) 2019. This open access work is distributed under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm-pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22-23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21-23 August 2017 to 0.005-0.03 until 5-10 September and was mainly 0.003-0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001-0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50-200 Mm-1 until the beginning of September and on the order of 1 Mm-1 (0.5- 5 Mm-1) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05-0.5 μg m-3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50-500 L-1 until the first days in September and afterwards 5-50 L-1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of -55 ?C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15-0.25 (August-September) to values of 0.05-0.10 (October-November) and < 0.05 (December-January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32-35? N, that ascended from heights of about 18-19 to 22-23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.Peer reviewe

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore