39 research outputs found

    Metabolomics analysis of type 2 diabetes remission identifies 12 metabolites with predictive capacity: a CORDIOPREV clinical trial study.

    Get PDF
    Type 2 diabetes mellitus (T2DM) is one of the most widely spread diseases, affecting around 90% of the patients with diabetes. Metabolomics has proven useful in diabetes research discovering new biomarkers to assist in therapeutical studies and elucidating pathways of interest. However, this technique has not yet been applied to a cohort of patients that have remitted from T2DM. All patients with a newly diagnosed T2DM at baseline (n = 190) were included. An untargeted metabolomics approach was employed to identify metabolic differences between individuals who remitted (RE), and those who did not (non-RE) from T2DM, during a 5-year study of dietary intervention. The biostatistical pipeline consisted of an orthogonal projection on the latent structure discriminant analysis (O-PLS DA), a generalized linear model (GLM), a receiver operating characteristic (ROC), a DeLong test, a Cox regression, and pathway analyses. The model identified a significant increase in 12 metabolites in the non-RE group compared to the RE group. Cox proportional hazard models, calculated using these 12 metabolites, showed that patients in the high-score tercile had significantly (p-value < 0.001) higher remission probabilities (Hazard Ratio, HR, high versus low = 2.70) than those in the lowest tercile. The predictive power of these metabolites was further studied using GLMs and ROCs. The area under the curve (AUC) of the clinical variables alone is 0.61, but this increases up to 0.72 if the 12 metabolites are considered. A DeLong test shows that this difference is statistically significant (p-value = 0.01). Our study identified 12 endogenous metabolites with the potential to predict T2DM remission following a dietary intervention. These metabolites, combined with clinical variables, can be used to provide, in clinical practice, a more precise therapy. ClinicalTrials.gov, NCT00924937.The CORDIOPREV study is supported by the Ministerio de Economia y Competitividad, Spain, under the grants AGL2012/39615, PIE14/00005, and PIE14/00031 associated to J.L.-M.; AGL2015-67896-P to J.L.-M. and A.C.; CP14/00114 to A.C.; PI19/00299 to A.C.; DTS19/00007 to A.C.; FIS PI13/00023 to J.D.-L., PI16/01777 to F.P.-J. and P.P.-M.; Antonio Camargo is supported by an ISCIII research contract (Programa Miguel-Servet CPII19/00007); Marina Mora-Ortiz has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 847468; ‘Fundacion Patrimonio Comunal Olivarero’, Junta de Andalucía (Consejería de Salud, Consejeria de Agricultura y Pesca, Consejería de Innovacion, Ciencia y Empresa), ‘Diputaciones de Jaen y Cordoba’, ‘Centro de Excelencia en Investigación sobre Aceite de Oliva y Salud’ and ‘Ministerio de Medio Ambiente, Medio Rural y Marino’, Gobierno de España; ‘Consejeria de Innovación, Ciencia y Empresa, Proyectos de Investigación de Excelencia’, Junta de Andalucía under the grant CVI-7450 obtaiend by J.L.-M.; and we would also like to thank the ‘Fondo Europeo de Desarrollo Regional (FEDER)’.S

    Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex

    Get PDF
    Crystallographic studies of the RNA polymerase II (Pol II) elongation complex (EC) revealed the locations of downstream DNA and the DNA-RNA hybrid, but not the course of the nontemplate DNA strand in the transcription bubble and the upstream DNA duplex. Here we used single-molecule Fluorescence Resonance Energy Transfer (smFRET) experiments to locate nontemplate and upstream DNA with our recently developed Nano Positioning System (NPS). In the resulting complete model of the Pol II EC, separation of the nontemplate from the template strand at position +2 involves interaction with fork loop 2. The nontemplate strand passes loop β10-β11 on the Pol II lobe, and then turns to the other side of the cleft above the rudder. The upstream DNA duplex exits at an approximately right angle from the incoming downstream DNA, and emanates from the cleft between the protrusion and clamp. Comparison with published data suggests that the architecture of the complete EC is conserved from bacteria to eukaryotes and that upstream DNA is relocated during the initiation–elongation transition

    Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance

    Get PDF
    Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum(ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPK alpha 1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.Peer reviewe

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global injury morbidity and mortality from 1990 to 2017 : results from the Global Burden of Disease Study 2017

    Get PDF
    Correction:Background Past research in population health trends has shown that injuries form a substantial burden of population health loss. Regular updates to injury burden assessments are critical. We report Global Burden of Disease (GBD) 2017 Study estimates on morbidity and mortality for all injuries. Methods We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs). Findings In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505). Interpretation Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.Peer reviewe

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    miR-223-3p as a Potential Biomarker and Player for Adipose Tissue Dysfunction Preceding Type 2 Diabetes Onset

    No full text
    Circulating microRNAs (miRNAs) have been proposed as biomarkers for type 2 diabetes (T2D). Adipose tissue (AT), for which dysfunction is widely associated with T2D development, has been reported as a major source of circulating miRNAs. However, the role of dysfunctional AT in the altered pattern of circulating miRNAs associated with T2D onset remains unexplored. Herein, we investigated the relationship between T2D-associated circulating miRNAs and AT function, as well as the role of preadipocytes and adipocytes as secreting cells of candidate circulating miRNAs. Among the plasma miRNAs related to T2D onset in the CORonary Diet Intervention with Olive oil and cardiovascular PREVention (CORDIOPREV) cohort, baseline miR-223-3p levels (diminished in patients who next developed T2D [incident-T2D]) were significantly related to AT insulin resistance (IR). Baseline serum from incident-T2D participants induced inflammation and IR in 3T3-L1 adipocytes. We demonstrated that tumor necrosis factor (TNF)-alpha inhibited miR-223-3p secretion while enhancing miR-223-3p intracellular accumulation in 3T3-L1 (pre)adipocytes. Overexpression studies showed that an intracellular increase of miR-223-3p impaired glucose and lipid metabolism in these cells. Our findings provide mechanistic insights into the alteration of circulating miRNAs preceding T2D, unveiling both preadipocytes and adipocytes as miR-223-3p-secreting cells and suggesting that inflammation promotes miR-223-3p intracellular accumulation, which might contribute to (pre)adipocyte dysfunction and body metabolic dysregulation
    corecore