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Abstract 

Background:  Type 2 diabetes mellitus (T2DM) is one of the most widely spread diseases, affecting around 90% of 
the patients with diabetes. Metabolomics has proven useful in diabetes research discovering new biomarkers to assist 
in therapeutical studies and elucidating pathways of interest. However, this technique has not yet been applied to a 
cohort of patients that have remitted from T2DM.

Methods:  All patients with a newly diagnosed T2DM at baseline (n = 190) were included. An untargeted metabo‑
lomics approach was employed to identify metabolic differences between individuals who remitted (RE), and those 
who did not (non-RE) from T2DM, during a 5-year study of dietary intervention. The biostatistical pipeline consisted of 
an orthogonal projection on the latent structure discriminant analysis (O-PLS DA), a generalized linear model (GLM), a 
receiver operating characteristic (ROC), a DeLong test, a Cox regression, and pathway analyses.

Results:  The model identified a significant increase in 12 metabolites in the non-RE group compared to the RE group. 
Cox proportional hazard models, calculated using these 12 metabolites, showed that patients in the high-score tercile 
had significantly (p-value < 0.001) higher remission probabilities (Hazard Ratio, HR, high versus low = 2.70) than those in the 
lowest tercile. The predictive power of these metabolites was further studied using GLMs and ROCs. The area under 
the curve (AUC) of the clinical variables alone is 0.61, but this increases up to 0.72 if the 12 metabolites are considered. 
A DeLong test shows that this difference is statistically significant (p-value = 0.01).

Conclusions:  Our study identified 12 endogenous metabolites with the potential to predict T2DM remission fol‑
lowing a dietary intervention. These metabolites, combined with clinical variables, can be used to provide, in clinical 
practice, a more precise therapy.
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Background
T2DM is a metabolic disorder widely identified by a gen-
eralized hyperglycaemia and insulin resistance [1]. Now-
adays, approximately 422 million adults are diagnosed 
with diabetes [2]; T2DM is the most prevalent form of the 
disease, affecting 90% of the patients (circa 380 million 
worldwide). Common co-morbidities associated with 
T2DM include cardiovascular diseases, blindness, nerve 
damage, and kidney failure [3–5]. The co-occurrence of 
coronary heart disease (CHD) along with T2DM mark-
edly increases the risk of macrovascular complications 
and mortality. Indeed, macrovascular events represent 
circa 80% of all deaths in these patients [1]. This current 
scenario urges us to find new approaches to diagnose 
and treat these patients. Metabolic profiling, or metabo-
lomics, allows for the characterization of hundreds of 
compounds (i.e. metabolites) facilitating functional infor-
mation of the metabolism at the time when the sample 
is taken [6–8] and has proven useful to understand the 
metabolism in the context of (i) diagnostic and prognos-
tic biomarker discovery, (ii) therapy research, and (iii) 
pathways determination within T2DM [8].

Recent evidence has shown that T2DM is reversible 
when tackled in an early phase following two different 
strategies: calorie restriction and bariatric surgery. The 
former is linked to weight loss, gut permeability, and 
reduction in inflammatory and endotoxemia biomarkers 
[9]. The latter leads to normalizing plasma glucose levels 
and a significant weight loss [10–12].

Here, we analyse the metabolomics modulations dif-
ferences between individuals where T2DM has remitted 
(RE) and those who did not recover and consequently 
remained as diabetics (non-RE) after 5  years of dietary 
intervention. The dietary intervention consisted of two 
different types of diets: low-fat diet (LF) and Mediterra-
nean diet (MED).

Methods
Aim and objectives
The aim is to characterize the metabolic profile of non-
RE and RE patients in serum samples at the baseline to 
identify biomarkers of interest to assist in the diagnosis, 
monitoring, and treatment of the disease. These biomark-
ers can be particularly useful to predict who will recover 
from T2DM following a dietary intervention.

The specific objectives of our study are to analyse the 
metabolomics differences before the dietary intervention 

and identify biomarkers of interest to assist in the predic-
tion of T2DM recovery.

Study design and participants
This study was developed within the framework of the 
CORDIOPREV (CORonary Diet Intervention with Olive 
oil and cardiovascular PREVention) study, registered at 
Clinicaltrials.gov (number NCT00924937). This study 
is an ongoing controlled, single-blind, and randomized 
trial, with 1002 CHD patients. The trial protocol and 
subsequent revisions were approved by the Reina Sofia 
University Hospital Ethics Committee, following the Hel-
sinki Declaration and good clinical practices. All patients 
signed a written informed consent to participate in the 
study.

Patients’ recruitment took place between November 
2009 and February 2012, mostly at Reina Sofia Univer-
sity Hospital, Córdoba, Andalusia, Spain, with contribu-
tions from other hospitals in Córdoba and Jaen areas, in 
Andalusia, Spain. Complete details of the study meth-
ods, rationale, inclusion criteria, cardiovascular risk fac-
tors, and baseline characteristics are found elsewhere 
[13]. In brief, eligible participants, in the age range of 20 
to 75 years, had established CHD with no clinical events 
in the previous 6 months. They all had at least a 5-year 
life expectancy and no other concurrent major diseases 
and were willing to participate in a long-term monitoring 
study [13].

In this work, 183 patients, from the CORDIOPREV 
study (https://​www.​cordi​oprev.​es/​index.​php/​es/) diag-
nosed with diabetes, underwent a dietary interventional 
study where participants were offered either an LF or 
MED diet for 5  years (Fig.  1). In our study, blood sam-
ples were taken during fasting (time 0) and 120 min after 
a glucose boost.

Oral glucose tolerance test
The patients underwent an OGTT at the baseline and, 
once a year, every year during the dietary intervention. 
Before the test, patients had fasted (from food/drugs) 
for 12  h and were asked to refrain from smoking and 
alcohol intake during the preceding 7 days. They were 
also asked to avoid strenuous physical activity, a day 
before the test. At 8:00 A.M., patients were admitted 
to the laboratory to perform the oral glucose toler-
ance test (OGTT) (75 g flavoured glucose load, Trutol 
75; Custom Laboratories, Baltimore, MD, USA). Blood 
samples were taken at times corresponding to 0, 30, 60, 
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90, and 120  min to determine the glucose and insulin 
concentrations [14]. The insulin sensitivity index (ISI) 
was calculated from the OGTT using the following for-
mula: ISI = 10.000 ÷ √([fasting plasma glucose X fast-
ing plasma insulin] × [mean glucose in OGTT × mean 
insulin in OGTT]) [14]. HOMA-IR was calculated as 
described by Song et  al. [15]. Beta-cell function was 
calculated using the disposition index (DI) as follows: 
DI = ISI × [AUC30 min insulin/AUC30 min glucose], 
where AUC30 min is the area under the curve between 
baseline and that at 30  min of the OGTT for insulin 
(pmol/l) and glucose (mmol/l) measurements, calcu-
lated by the trapezoidal method [16]. The indices used 
to determine tissue-specific insulin resistance (IR) 
were the hepatic insulin resistance index (HIRI, fasting 
plasma insulin × fasting plasma glucose) and the muscle 
insulin sensitivity index (MISI, (dG/dt)/mean of plasma 
insulin) [17]. Insulinogenic Index (IGI) was calculated 
by measuring plasma insulin at 30 min − fasting plasma 
insulin (mU/L)/(plasma glucose at 30  min − fasting 
plasma glucose(mg/dL) [18].

The adipose tissue (AT) insulin resistance index (Adipo-IR) 
was determined according to the formula: Adipo-IR = fast-
ing plasma NEFA (mM) × fasting plasma insulin (pmol/L), 
which has been found as a suitable and useful method in 
clinical practice to estimate AT insulin sensitivity [19].

Randomization and masking
The process of randomization has been reported else-
where [13]. Briefly, this is based on the following vari-
ables: sex (male, female), age (under and over 60  years 
old), and previous myocardial infarction (yes, no). Eight 
different groups were created to represent all the possi-
ble combinations of the above factors. Therefore, eight 
different blocks were created to assign the diets (bloc 
randomization). Dietitians were the only members of 
the intervention team to be aware of the dietary group of 
each participant.

Dietary assessment
The participants were randomized to consume two diets: 
the Med diet or an LF diet [13]. The LF diet consists 
of < 30% total fat (< 10% saturated fat, 12–14% MUFA 
fat, and 6–8% PUFA fat), 15% protein, and a minimum of 
55% carbohydrates. The Med diet consists of a minimum 
of 35% of calories as fat (22% MUFA fat, 6% PUFA fat, 
and < 10% saturated fat), 15% proteins, and a maximum 
of 50% carbohydrates [20]. Neither energy restriction, 
nor physical activity was specifically encouraged. In both 
diets, the cholesterol content was adjusted to < 300 mg/d.

The Mediterranean and low-fat diets were designed 
to provide a wide variety of foods, including vegeta-
bles, fruit, cereals, potatoes, legumes, dairy products, 

Fig. 1  CORDIOPREV study design



Page 4 of 14Mora‑Ortiz et al. BMC Medicine          (2022) 20:373 

meat, and fish. The participants in both intervention 
groups received the same intensive dietary counselling. 
The nutritionists administered personalized individual 
advice every 6 months. In addition, quarterly group edu-
cation sessions were held with up to 20 participants per 
session; separate group sessions were performed every 
3  months, and dietary counselling by phone was done 
every 2 months [20]. At the beginning of the study, and 
every 6  months afterwards, each patient had a face-to-
face interview with a nutritionist to complete a 137-item 
semi-quantitative food frequency questionnaire (vali-
dated in Spain [21]). The dietary evaluation was calcu-
lated by the 14-item Med Diet Adherence Screener, 
which was used for measuring adherence to the Med diet 
[22]. Moreover, a 9-item dietary adherence screener was 
used to measure adherence to the LF diet guidelines. A 
more detailed report on dietary adherence has been pub-
lished recently by our research group [20].

Diabetes remission criteria
Remission required the following: (i) the absence of 
glucose-lowering treatment and was defined by levels 
of HbA1c < 6·5%, (ii) a fasting plasma glucose < 126 mg/
dl, and (iii) a 2-h plasma glucose in the 75  g 
OGTT < 200 mg/dl maintained for at least 2 years. This 
agrees with the American Diabetes Association (ADA) 
diagnosis criteria [23].

Sample preparation
Plasma samples (100 μL) were immersed in bath ice 
and treated with 300 μL of 3:1 (v/v) methanol–acetoni-
trile (MeOH–ACN). The treated samples were vortexed 
for 2 min and subsequently cooled at − 20  °C for 3 min. 
Centrifugation was carried out for 15  min at 4  °C and 
13,800 × g in a thermostatic centrifuge Thermo Sorvall 
Legend Micro 21 R from Thermo (Thermo Fisher Sci-
entific, Bremen, Germany), and the supernatant phase 
was isolated. This phase was dried by evaporation and 
reconstituted with 60 μL of 3:1 (v/v) MeOH–ACN. All 
samples were processed in a 1200 Series LC system (Agi-
lent Technologies, Waldbronn, Germany) coupled to an 
Agilent 6530 high-resolution QTOF mass spectrometer 
equipped with a dual electrospray ionization source.

LC–QTOF MS/MS analysis
A Poroshell 120 EC-C18 column (50  mm × 2.1  mm i.d., 
2.7 μm particle size, from Agilent), kept at 25 °C, was used 
to carry out the chromatographic division. The mobile 
phases consisted of (A) 0.1% formic acid in deionized 
water and (B) 0.1% formic acid in acetonitrile. The pro-
tocol used for the elution consisted of 0–2  min, 5% B; 
2–11 min and the percentage of mobile phase B was mod-
ified from 0 to 100%. The final percentage was held for 

6 min. Five minutes post-run was included to equilibrate 
the column. The flow rate was maintained at 0.4 mL/min. 
The injected sample volume was 5.0 μL and the injector 
needle was washed 10 times with 70% methanol between 
injections. Therefore, the needle seat was flushed for 15 s 
at a flow rate of 4 mL/min, with 70% methanol, to avoid 
cross-contamination between samples. The autosampler 
was kept at 4 °C to increase sample stability. The settings 
of the electrospray ionization source, which was oper-
ated in negative and positive ionization modes, were as 
follows: capillary voltage ± 3.5  kV, Q1 voltage 130  V, N2 
pressure in the nebulizer 35 psi; N2 flow rate and temper-
ature as drying gas 10 L min–1 and 325 °C, respectively. 
MS/MS data were acquired in both polarities, using the 
centroid mode at a rate of 2.5 spectra s–1 in extended 
dynamic range mode (2 GHz). Accurate mass spectra in 
the MS scan were acquired in the m/z range 40–1100 and 
the MS/MS mode in the m/z range 30–1100. The instru-
ment gave a typical resolution of 18,000 full width at half 
maximum (FWHM) at m/z 118.0862 and 35,000 FWHM 
at m/z 922.0098. The instrument was calibrated and 
tuned as recommended by the manufacturer. To assure 
the desired mass resolution, continuous internal calibra-
tion was performed during analyses by using the signals 
at m/z 121.0509 (protonated purine) and m/z 922.0098 
[protonated hexakis(1H,1H,3H-tetrafluoropropoxy) phos-
phazine or HP-921] in the positive ion mode, while in 
the negative ion mode, ions with m/z 119.0362 (proton 
abstracted purine) and m/z 966.0007 (formate adduct of 
HP-921) were used. The collision energy was set at 20 V 
for the whole run. The analytical samples were injected in 
auto MS/MS acquisition mode to obtain fragmentation 
information from a maximum of two precursors selected 
per cycle with an exclusion window of 0.1 min after 2 con-
secutive selections of the same precursor.

Data processing
The MassHunter Workstation software (version B7.00 
Qualitative Analysis, Agilent Technologies, Santa Clara, 
CA, USA) was used to process all the data obtained by 
LC–QTOF in data-dependent acquisition MS/MS mode. 
Treatment of raw data files started with the extraction of 
potential molecular features (MFs) with the suited algo-
rithm included in the software. For this aim, the extrac-
tion algorithm considered all ions exceeding 500 counts 
for both polarities with a maximum charge state of 2 for 
the obtained chromatograms. The count cut-off value 
was established considering the chromatographic back-
ground noise. Additionally, only MFs defined by two or 
more ions were considered, with a tolerance for the iso-
topic distribution of 0.0025  m/z for peak spacing toler-
ance, plus 7.0 ppm in mass accuracy. Only the following 
potential ions and adducts were considered in positive 
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(H + , Na + , K + , NH4 +) and negative ionization (H − , 
HCOO + , Cl +) modes. Furthermore, a potential neutral 
loss by dehydration was also included to identify features 
corresponding to the same potential metabolite.

Identification of metabolites was supported on MS and 
MS/MS information by using METLIN MS and MS/MS 
databases (http://​metlin.​scrip​ps.​edu), the Human Metab-
olome Database (HMDB, 3.6 version), and the LIPID 
MAPS website ((http://​www.​lipid​maps.​org); in all cases, 
the MFs obtained in the previous step were used. A data-
base with all identified metabolites was used to perform a 
targeted compound extraction analysis using a tolerance 
window of 0.8 min and 5 ppm mass accuracy. This step 
was performed with Profinder Analysis (version B8.00, 
Agilent Technologies, Santa Clara, CA, USA). A table 
with the peak area of all identified compounds in the dif-
ferent samples injected was obtained as a result.

Statistical analysis
Metabolites showing in at least 80% of the samples were 
selected for further analysis. To allow predictive model-
ling, imputation was carried out when needed, substi-
tuting missing values by half the smallest value of the 
appropriate metabolite.

LC–MS data (polar and apolar) was imported into 
Matlab (R2015a, Mathworks UK) and analysed using 
the statistic toolbox and algorithms from Korrigan Tool-
box version 0.1 (Korrigan Sciences Ltd, UK). In Matlab, 
matrices were log 10 normalized. The biostatistical pipe-
line for the multivariate statistical analysis considered a 
preliminary unsupervised principal component analysis 
(PCA), followed by a supervised pairwise O-PLS DA [24, 
25], which identifies the specific modulations driven by 
the appropriate predictor (i.e. individuals who returned 
from T2DM versus those who did not).

To assess the predictive power of the O-PLS DA mod-
els, R2 (the explained variance) was calculated. This 
parameter evaluates the model maximizing variance 
given by the endogenous variables. The Q2, or goodness 
of prediction, assesses the predictive relevance of the 
model and is based on a matrix partition technique that 
ignores part of the data (in our case a seventh part each 
time), estimates the model parameters, and predicts the 
omitted parts using the estimates obtained previously. 
Q2 greater than 0 means the model has predictive value. 
In addition, the overfitting of the model (the difference 
between R2Y and Q2Y) was also considered, and only 
models with less than 50% overfitting were further con-
sidered. Model parameters and associated metabolites 
were reported and used for a Cox proportional hazard 
model, GLM, and ROC calculations in R (version 4.0.5 

(2021–03-31, https://​www.r-​proje​ct.​org) using the pack-
ages ‘caret’ and ‘pROC’. Unadjusted Cox proportional-
hazard models calculated the hazard ratio (HR) of every 
metabolite previously identified in the O-PLS DA model 
within a 95% confidence interval (CI). This unadjusted 
Cox allowed the identification of the betas for every 
metabolite. This information was used to calculate the 
patient’s likelihood of recovering from diabetes by run-
ning a Cox analysis adjusted for sex, age, body mass index 
(BMI), HDL, triglycerides, and intensity of statin therapy 
based on the tertiles resulting from the multiplication of 
the betas previously obtained by the abundance of each 
metabolite for every patient. Finally, generalized linear 
models were calculated for (i) all the clinical variables 
(i.e. sex, age, BMI, HDL, triglycerides, and intensity statin 
therapy), (ii) all the metabolites, (iii) the glycated haemo-
globin, (iv) the clinical variables and the 12 metabolites, 
and (v) the clinical variables and the glycated haemo-
globin. ROC analyses were carried out for these three 
models, and AUC, sensitivity, specificity, accuracy, and 
threshold were estimated for the models. Finally, DeLong 
analysis was used to compare whether the AUCs of these 
models were or not significantly different between them.

Results
Baseline characteristic
BMI, waist circumference, body weight, glucose, glycated 
haemoglobin (HbA1c), insulin, HIRI, and homeostatic 
model assessment of insulin resistance (HOMA-IR) were 
statistically significantly higher at baseline in the non-RE 
group than in the RE group. Conversely, ISI and DI val-
ues were statistically significantly lower at baseline in the 
RE group than in the non-RE group (p < 0.05) (Additional 
file 1: Table S1).

O‑PLS DA results from the comparison between individuals 
who remitted from T2DM and those who did not
The O-PLS DA was examined based on R2Y, Q2Y, and 
overfit parameters obtained in every pairwise compari-
son (see material and methods). The O-PLS DA analysis 
identified differences between RE and DM individuals 
during fasting (R2Y = 0.1420, Q2Y = 0.0018), but not after 
a glucose overdose (Fig.  2). DM individuals had higher 
levels of sphingosine (d18:2), docosenamide, oxo-tricosa-
noic acid, tetracosahexaenoic acid, ketodeoxycholic acid, 
stearoylcarnitine, diglyceride (33:4), creatine, tridecanoic 
acid, monoacylglycerol (22:6), dihydroxycholesterol, and 
biliverdin. These metabolites, as well as a ranking with 
the degree of statistically significant association of each 
metabolite, are presented in further detail in Additional 
file 2: Fig. S1.

http://metlin.scripps.edu
http://www.lipidmaps.org
https://www.r-project.org
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Cox proportional hazard models
Adjusted and unadjusted Cox proportional hazard mod-
els were calculated for every metabolite previously iden-
tified in the O-PLS DA model. These metabolites were 
grouped in terciles for the Cox analysis. The results are 
shown in Table 1. The unadjusted beta values were used 
to calculate the patient risk score (beta × metabolite 
abundance) for all the patients and metabolites. This 
patient risk score grouped by terciles was used to carry 
out a new Cox model adjusted for sex, age, BMI, HDL, 
TG, and intensity statin therapy (see Fig. 3). Results from 
the Cox analysis of the patient’s risk score showed that 
individuals in the high tercile (luckily to recover from 
T2DM) had an HR of 2.70 compared to individuals in 
the low tercile; this difference was statistically significant 
(p-value = 0.003). Moreover, we also grouped the patients 
by ascending terciles of glycated haemoglobin, to carry 
out a Cox model adjusted for sex, age, BMI, HDL, TG, 
and intensity statin therapy (Additional file  2: Fig. S2). 
Results from the Cox analysis of the glycated haemoglo-
bin showed that individuals in the low and medium ter-
cile had an HR of 3.80 and 4.31 respectively, compared to 
individuals in the High tercile (both p-value = 0.001).

Generalized linear models and receiving operating 
characteristics
GLMs and ROCs were run for (i) clinical variables alone, 
(ii) the 12 metabolites of interest, (iii) glycated haemoglo-
bin, (iv) the clinical variables and the 12 metabolites, and 
(v) the clinical variables and the glycated haemoglobin. 
AUC, sensitivity, specificity, accuracy, and threshold were 
calculated in all cases. The results are shown in Tables 2 
and 3 and Fig. 4. The AUC for the clinical variables was 
0.610, for the metabolites was 0.701, for the glycated hae-
moglobin 0.618, for the combination of clinical variables 

and the 12 metabolites 0.721, and for the combination of 
the clinical variables and the glycated haemoglobin 0.667. 
A DeLong test was carried out comparing the AUC from 
the GLM of the clinical variables alone with the GLM 
with the clinical variables and the 12 metabolites or the 
GLM with the clinical variables and the glycated hae-
moglobin (Fig. 4). There were not significant differences 
between the model with the clinical variables alone and 
the addition of the glycated haemoglobin. However, the 
p-value (0.01265) resulting from the DeLong test com-
paring the model with the clinical variables alone and 
the clinical variables with the 12 metabolites indicated 
that these two models were significantly different and 
showed that the addition of the metabolites significantly 
improved the prediction capacity of the model.

Discussion
Our study identified 12 plasma metabolites by O-PLS 
DA differing between RE and non-RE patients at the 
baseline of the study; these metabolites were further 
used to build a score to assess regression probability. 
This score was significantly associated with a higher 
probability of T2DM remission. These 12 metabolites, 
together with the clinical variables previously described, 
significantly improved the T2DM remission prediction 
power of the model. However, the prediction capacity of 
the model with the clinical variables did not significantly 
improve when the glycated haemoglobin was added. In 
practice, this could be achieved by analysing a plasma 
sample from the patients and determining the concen-
trations of these molecules.

Lifestyle modifications, including the implementation 
of healthy diets, result in a beneficial effect on T2DM 
prevention and management [26]. Recent studies indi-
cated that it was possible to induce T2DM remission by 

Fig. 2  O-PLS DA analysis loading and score plot calculated using all spectra as a matrix of independent variables and diabetic remission as the 
predictor
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Table 1  Cox proportional hazard models were calculated for every metabolite. The hazard ratios (HR) between groups were 
calculated with Tertile 3 as a reference and adjusted by age, gender, diet, body mass index, HDL-c, and triglycerides

95.0% CI for HR

Metabolite Tertile Model type Sig HR Lower Upper

Sphingosine (d18:2) Tertile 3 (ref.)

Tertile 2 Unadjusted .283 1.414 .751 2.664

Adjusted .324 1.389 .723 2.667

Tertile 1 Unadjusted .013 2.111 1.171 3.806

Adjusted .018 2.059 1.129 3.753

Docosenamide Tertile 3 (ref.)

Tertile 2 Unadjusted .704 1.122 .621 2.027

Adjusted .670 1.141 .622 2.094

Tertile 1 Unadjusted .320 1.336 .755 2.364

Adjusted .404 1.278 .718 2.275

Oxo-tricosanoic acid Tertile 3 (ref.)

Tertile 2 Unadjusted .522 1.222 .661 2.257

Adjusted .458 1.265 .680 2.352

Tertile 1 Unadjusted .046 1.794 1.009 3.189

Adjusted .044 1.832 1.017 3.300

Tetracosahexaenoic acid Tertile 3 (ref.)

Tertile 2 Unadjusted .008 2.440 1.258 4.732

Adjusted .004 2.758 1.384 5.496

Tertile 1 Unadjusted .002 2.829 1.479 5.413

Adjusted .001 3.155 1.571 6.336

Ketodeoxycholic acid Tertile 3 (ref.)

Tertile 2 Unadjusted .612 .850 .453 1.595

Adjusted .677 .871 .456 1.665

Tertile 1 Unadjusted .065 1.682 .969 2.920

Adjusted .065 1.717 .967 3.046

Stearoylcarnitine Tertile 3 (ref.)

Tertile 2 Unadjusted .039 1.921 1.034 3.568

Adjusted .050 1.890 1.001 3.570

Tertile 1 Unadjusted .039 1.911 1.033 3.533

Adjusted .063 1.820 .967 3.426

Diglyceride (33:4) Tertile 3 (ref.)

Tertile 2 Unadjusted .569 1.207 .632 2.304

Adjusted .464 1.279 .661 2.474

Tertile 1 Unadjusted .004 2.380 1.328 4.266

Adjusted .004 2.423 1.321 4.444

Creatine Tertile 3 (ref.)

Tertile 2 Unadjusted .115 1.635 .887 3.014

Adjusted .123 1.632 .876 3.042

Tertile 1 Unadjusted .061 1.778 .973 3.249

Adjusted .093 1.703 .916 3.166

Tridecanoic acid Tertile 3 (ref.)

Tertile 2 Unadjusted .327 1.372 .729 2.585

Adjusted .394 1.323 .695 2.518

Tertile 1 Unadjusted .013 2.101 1.166 3.786

Adjusted .033 1.946 1.053 3.594
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weight loss with calorie restriction interventions [27]. 
Previous studies showed that bariatric surgeries can 
revert T2DM regulating the glucose in plasma before a 
significant weight reduction is obtained [9–11].

The importance of the early identification of diabetic 
patients with a probability of achieving T2DM remission 
lies in the ability of the β cells to recover long-term func-
tionality after T2DM diagnosis, and before an irreversible 
stage of β cell dysfunction [9]. Moreover, an effective and 
efficient therapeutic action focused on disease remission 
is especially important in individuals with co-occurring 
acute myocardial infarction and T2DM, who have a 
higher risk of developing a new cardiovascular event than 
those without T2DM [28].

In terms of predicting T2DM remission, a variety of 
scores and variables were previously used to identify 
subjects with a probability of remission. Classical clini-
cal variables have shown a reduced prediction capacity 
[29, 30]. Conversely, we have previously reported how 
the use of miRNAs or gut microbiota proxies improve the 
predictive power of the clinical variables alone, improv-
ing the estimation of the T2DM remission probability 
induced by the dietary intervention [31–33]. However, to 
the best of our knowledge, the plasma metabolite profile 
has not been applied to such end.

This study has shown a metabolic profile associated 
with T2DM remission in CHD patients. Here, TOF/
LS-MS metabolomics at baseline was used to iden-
tify which newly diagnosed T2DM patients will benefit 
from a dietary intervention (a Med or a low-fat diet) to 

induce the remission of T2DM, with the main differ-
ence between the diets in the amount and type of dietary 
sources of fat and the amount of carbohydrates [20]. Both 
diets were ethically appropriate for this profile of patients 
and no further energy restriction or physical activity was 
implemented.

This profile was characterized by a reduction in 12 
metabolites across RE patients identified by O-PLS DA. 
This model also showed which metabolites found have 
the strongest influence. These metabolites ranked with a 
different degree of significance in the model as shown in 
Additional file 2: Fig. S1. These metabolites, according to 
the results from the DeLong test, significantly improved 
the predictive capacity of the clinical variables alone. 
These metabolites are included in several insulin-related 
pathways such as sphingolipid metabolism or alpha-lino-
lenic acid and linoleic acid metabolism. Moreover, taken 
together, these metabolites may be linked to the lipid 
alterations associated with T2DM. In fact, the derange-
ment of the lipid metabolism is a common complica-
tion in T2DM due to the inadequate functioning of key 
enzymes and pathways as well as the insulin resistance 
prevalent in these patients [34]. In addition, the associa-
tion between dyslipidaemia and atherosclerosis is well 
established, and the composition of lipid particles in dia-
betic dyslipidaemia has a stronger atherogenic impact on 
the disease compared to other kinds of dyslipidaemia [35, 
36]. Thus, it would be also expected the relationship of 
these metabolites with lipid alterations considering that 
the individuals included in this study were CHD patients. 

Table 1  (continued)

95.0% CI for HR

Metabolite Tertile Model type Sig HR Lower Upper

Monoacylglycerol (22:6) Tertile 3 (ref.)

Tertile 2 Unadjusted .315 1.358 .748 2.466

Adjusted .406 1.311 .692 2.485

Tertile 1 Unadjusted .131 1.571 .873 2.827

Adjusted .109 1.634 .896 2.979

Dihydroxycholesterol Tertile 3 (ref.)

Tertile 2 Unadjusted .388 .744 .381 1.454

Adjusted .373 .736 .375 1.445

Tertile 1 Unadjusted .008 2.099 1.214 3.631

Adjusted .019 1.987 1.119 3.529

Biliverdin Tertile 3 (ref.)

Tertile 2 Unadjusted .842 1.064 .577 1.964

Adjusted .961 .984 .517 1.872

Tertile 1 Unadjusted .116 1.574 .894 2.772

Adjusted .168 1.497 .843 2.657
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Moreover, these disruptions in the metabolite profile 
in non-RE patients seem to be additional to the dys-
lipidaemia associated with CHD, which includes hyper-
triglyceridemia, hypercholesterolemia, and elevated 
LDL cholesterol [37]. This present study brings insights 
into the metabolomics modulations occurring during 
dyslipidaemia.

The O-PLS DA model showed that out of the 12 
metabolites identified, tetracosahexaenoic acid (THA), 
oxo-tricosanoic acid, dihydrocholesterol, and tridecanoic 
acid were the most discriminant between RE and non-
RE; hence, high levels were observed in non-RE patients. 

In line with this, it is worth mentioning that THA and 
tridecanoic acid are rare fatty acids. Current literature is 
contradictory about the beneficial or detrimental effects 
of rare fatty acids in CHD or T2DM patients [38–40]. In 
our study, higher levels of THA and tridecanoic acid were 
observed in non-RE patients. This could be because our 
population comprises patients with established CHD in 
which may exist certain alterations in their lipid species 
profile patients due to the cardiovascular disease.

Dihydroxycholesterol is a metabolite involved in the 
primary bile acid biosynthesis pathway and derived 
from cholesterol. This metabolite was identified as an 

Fig. 3  Adjusted Cox for the analysis of the patient risk scored grouped in tertiles. a Survival probability chart overtime (expressed in months). b 
Hazard ratio of the risk score for the three tertiles and the covariables
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intermediate in C21-Steroid hormone metabolism [41]. 
Previous studies have shown that plasma concentrations 
of cholesterol oxidation (ChOx) products (including dif-
ferent forms of hydroxycholesterol) are elevated in DM1 
and DM2 patients compared to age-matched subjects 
without diabetes [42]. In our study, significantly higher 
levels of dihydroxycholesterol were identified across 

those individuals who did not return from T2DM with 
the dietary intervention, which suggests that the lipid 
metabolism of those individuals is more impaired in non-
RE than in RE patients. The relationship between cho-
lesterol oxidized metabolites and lipid metabolism lies 
in the fact that high levels of glucose seem to promote 
lipidic accumulation via the DNA CpG methylation in the 

Table 2  Results were obtained for the generalized linear models used with the (i) clinical variables, (ii) metabolites, and (iii) clinical 
variables and metabolites. * means statistically significant

Estimate Std. error z value Pr( >|z|)

Clinical variables Intercept  − 0.43249 0.18301  − 2.363 0.0181*

Sex  − 0.08264 0.16283  − 0.508 0.6118

Age baseline 0.09660 0.16102 0.600 0.5486

HDL Imputed 0.10651 0.16663 0.639 0.5227

TG Imputed  − 0.27225 0.17275  − 1.576 0.1150

BMI baseline 0.44999 131.228 0.343 0.7317

Intensity statin therapy  − 0.11911 0.15505  − 0.768 0.4424

Metabolites Intercept  − 0.459189 0.704513  − 0.652 0.5145

Sphingosine (d18:2)  − 0.107924 0.260230  − 0.415 0.6783

Docosenamide 0.004636 0.004572 1.014 0.3106

Oxo-tricosanoic acid  − 0.002283 0.003195  − 0.714 0.4750

Tetracosahexaenoic acid  − 0.003083 0.003112  − 0.991 0.3219

Ketodeoxycholic acid  − 0.293914 0.290994  − 1.010 0.3125

Stearoylcarnitine  − 0.436030 0.230849  − 1.889 0.0589

Diglyceride (33:4) 0.194136 0.198864 0.976 0.3290

Creatine  − 0.001211 0.003222  − 0.376 0.7071

Tridecanoic acid  − 0.001950 0.003332  − 0.585 0.5584

Monoacylglycerol (22:6) 0.003391 0.003096 1.095 0.2733

Dihydroxycholesterol  − 0.327887 0.177616  − 1.846 0.0649

Biliverdin  − 0.362871 0.179566  − 2.021 0.0433*

Clinical variables and 
metabolites

Intercept  − 0.330027 0.726670  − 0.454 0.6497

Sphingosine (d18:2)  − 0.042235 0.271197  − 0.156 0.8762

Docosenamide 0.004359 0.004724 0.923 0.3561

Oxo-tricosanoic acid  − 0.002246 0.003257  − 0.689 0.4905

Tetracosahexaenoic acid  − 0.004089 0.003290  − 1.243 0.2139

Ketodeoxycholic acid  − 0.321368 0.302763  − 1.061 0.2885

Stearoylcarnitine  − 0.461926 0.236503  − 1.953 0.0508

Diglyceride (33:4) 0.184457 0.208359 0.885 0.3760

Creatine  − 0.001613 0.003291  − 0.490 0.6241

Tridecanoic acid  − 0.001681 0.003458  − 0.486 0.6268

Monoacylglycerol (22:6) 0.003439 0.003158 1.089 0.2761

Dihydroxycholesterol  − 0.307896 0.182783  − 1.684 0.0921

Biliverdin  − 0.348474 0.181466  − 1.920 0.0548

Sex  − 0.091159 0.178688  − 0.510 0.6099

Age baseline 0.142588 0.177915 0.801 0.4229

HDL Imputed 0.053527 0.188053 0.285 0.7759

TG Imputed  − 0.223763 0.185640  − 1.205 0.2281

BMI baseline 0.402986 1.322.298 0.305 0.7605

Intensity Statin Therapy  − 0.214802 0.174998  − 1.227 0.2197
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DNA methyltransferase-1 (DNMT1) promoter region, 
where cholesterol oxidized metabolites act as mediators 
[43]. The high levels of glucose increase a nuclear form 
of oxidized cholesterol (25-hydroxycholesterol) which 
activates DNMT1 regulating the expression of several 
genes implicated in the intracellular lipid metabolism in 
the liver. This process results in the hypermethylation 
of genes directly implicated in carbohydrate and lipid 
metabolism of PI3K, cAMP, insulin, insulin secretion, 
and diabetic and non-alcoholic fatty liver disease signal-
ling pathways. This suggests that the high hydroxycho-
lesterol plasma levels found in our study, in the non-RE 
group, might be altering the expression of these genes 
towards a deleterious gene expression profile. This epige-
netic regulation of hepatic cell metabolism seems to also 
have relevance in non-alcoholic, fatty liver disease, and 
metabolic syndrome [44, 45].

Table 3  Results obtained for the general lineal models (GLM) 
carried out using the clinical variables alone (GLM1), the 
metabolites alone (GLM2), the glycated hemoglobin as reference 
(GLM3), or the combination of the clinical variables and the 
metabolites (GLM4), and the combination of the clinical variables 
and the glycated hemoglobin (GLM5)

Model Sensitivity Specificity Accuracy Threshold

GLM 1 0.5633 0.6454 0.6132 0.4107

GLM 2 0.7887 0.5818 0.6630 0.3642

GLM 3 0.6761 0.7636 0.7293 0.4429

GLM 4 0.8028 0.5545 0.6519 0.3173

GLM 5 0.6197 0.6909 0.6630 0.4223

Fig. 4  ROCs were obtained for the clinical variables and in combination with the metabolites or glycated haemoglobin (HbA1c)
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Hepatic lipogenesis can be suppressed by downregu-
lating the gene SREBP1c (trigged by n3 supplemen-
tation), implicated in fatty acid biosynthesis. These 
inhibitory effects in hepatic lipogenesis are associated 
with a reduction in plasma levels of THA [46]. In our 
study, we have observed high levels of THA amongst the 
non-RE group, which suggests a lack of inhibitory feed-
back in this pathway. This could explain the metabolic 
resilience to respond to the dietary intervention in these 
patients, which could be due to the methylation of the 
promoter region DNMT1. Previous studies from Nagao 
and colleagues (2003) showed that the depletion in THA 
was associated with omega 3-PUFAs supplementation. 
This suggests that the omega 3-PUFAs ingested in the 
dietary intervention are effective only in patients with 
low THA levels at baseline. Therefore, the high levels of 
THA amongst non-RE patients could predispose them 
towards a higher degree of metabolic impedance, pre-
venting them to respond to the healthy diet adminis-
trated which contains 6–8% of total calories as PUFAs. 
However, this hypothesis needs further evidence.

We also found elevated tridecanoic acid levels in the 
DM group, a metabolite previously associated with hypo-
glycaemia, fatty liver, and cardiomyopathies, that are 
implicated in functions such as oxidation, cell death, and 
insulin resistance [47]. The latter is especially important 
as high tridecanoic aid levels were found in the non-RE 
group, which included the patients who did not reduce 
their insulin resistance after the ingestion of the healthy 
diet intervention.

Predicting which patients with CHD can recover from 
T2DM is crucial since patients with co-occurring CHD 
and T2DM have a considerably higher risk of developing 
a new cardiovascular event than those without T2DM. 
Furthermore, some of the metabolites might be linked 
to other physiological processes that remain unclear and 
future research in this field is needed.

In summary, our study provides new plasma biomark-
ers to predict, in combination with clinical variables, the 
dietary remission capacity of T2DM patients with co-
occurring CHD. Indeed, the addition of the 12 metabo-
lites identified significantly improved the prediction 
power of the clinical variables alone.

It is also important to mention the limitations of this 
study. Firstly, this research is based on a long-term, well-
controlled dietary intervention, which despite ensur-
ing the quality of the study, may not reflect the level of 
compliance in a free-living population. The second limi-
tation is that the remission of T2DM was not the pri-
mary endpoint of the CORDIOPREV trial, although it 
was a secondary objective of this study. However, there 
are no reasons to believe that this randomization would 
not have worked in such a large subset of participants, 

taking into account that the baseline characteristics 
in the groups of patients analysed in the current study 
according to the diet were similar.

Conclusions
This study showed the association of a specific metabolic 
profile in plasma with T2DM remission in patients with 
CHD in a dietary intervention. These metabolites, com-
bined with clinical variables, could be used to provide 
in clinical practice more precise therapeutical advice. 
This new approach will allow the possibility to discern 
between newly diagnosed T2DM luckily to remit from 
diabetes following a dietary intervention, from those 
who will need a more exhaustive treatment such us anti-
glycaemic drugs. That would improve the management 
of these patients and represent a personalized medi-
cine approach. Moreover, our results suggest that lipid 
metabolism is implicated in the probability to remit 
from T2DM. The detailed pathway that allows for high 
glucose (or high dietary glucose) to produce lipids accu-
mulation is not fully understood yet, but early down-
regulation of liver lipogenesis seems determinant for 
the metabolism to recover from T2DM. Further inves-
tigations should interrogate the potential methylation of 
the promoter region DNMT1, to unravel whether epige-
netic changes may influence the capacity to return from 
T2DM.
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