35 research outputs found

    E-Net-Manager: a Power Management System for Networked PCs based on Soft Sensors

    Get PDF
    The overall energy consumption due to ICT equipment has followed an increasing trend over the last years. A considerable fraction of the consumed energy is caused by user devices, such as Personal Computers (PCs) and displays. However, a large part of this energy is wasted due to an inefficient use. Users leave their PCs on for long periods even when unused, especially in workplaces. Hence, significant energy savings could be achieved just turning them off. However, it is not wise to rely on user collaboration, and, thus, automated tools are needed. In this paper, we present E-Net-Manager, a power management system for large environments, which turns unused PCs off and switches them on when the user is about to use them. To this end, E-Net-Manager leverages soft sensors, i.e., software/hardware tools already in use by the users, thus not introducing any additional cost. E-Net-Manager combines information provided by the users and data obtained from a number of these soft sensors. This way, it is possible to accurately determine the user presence/activity near her/his PC and, therefore, eliminate wastes also due to short periods of inactivity

    IEEE 802.15.4e: a Survey

    Get PDF
    Several studies have highlighted that the IEEE 802.15.4 standard presents a number of limitations such as low reliability, unbounded packet delays and no protection against interference/fading, that prevent its adoption in applications with stringent requirements in terms of reliability and latency. Recently, the IEEE has released the 802.15.4e amendment that introduces a number of enhancements/modifications to the MAC layer of the original standard in order to overcome such limitations. In this paper we provide a clear and structured overview of all the new 802.15.4e mechanisms. After a general introduction to the 802.15.4e standard, we describe the details of the main 802.15.4e MAC behavior modes, namely Time Slotted Channel Hopping (TSCH), Deterministic and Synchronous Multi-channel Extension (DSME), and Low Latency Deterministic Network (LLDN). For each of them, we provide a detailed description and highlight the main features and possible application domains. Also, we survey the current literature and summarize open research issues

    Improving network formation in IEEE 802.15.4e DSME

    Get PDF
    Wireless Sensor and Actuator Networks are becoming attractive also for industrial applications, since recent standardization efforts have introduced significant improvement to reliability and deterministic communication delays. In this context, IEEE 802.15.4e is widely considered the major improvement, introducing many enhancements to the original IEEE 802.15.4 standard aimed at supporting critical applications. Among the new defined MAC protocols, Deterministic and Synchronous Multi-channel Extension (DSME) represents the most suitable option for applications with time-varying requirements. In this paper, an analysis of the IEEE 802.15.4 DSME MAC protocol during network formation is presented. The goal is to study the protocol performance and propose solutions to reduce the network formation time, improving energy and resource efficiency. To carry out the performance evaluation, DSME has been fully implemented in Contiki OS, an actual operating system for sensor nodes. The study has highlighted issues and inefficiencies in the network formation process, allowing to consequently propose effective solutions. In particular, it is proposed a set of guidelines for DSME configuration to the original MAC protocol that are proved to increase significantly the network formation efficiency

    A Low-cost Sensing System for Cooperative Air Quality Monitoring in Urban Areas

    Get PDF
    Air quality in urban areas is a very important topic as it closely affects the health of citizens. Recent studies highlight that the exposure to polluted air can increase the incidence of diseases and deteriorate the quality of life. Hence, it is necessary to develop tools for real-time air quality monitoring, so as to allow appropriate and timely decisions. In this paper, we present uSense, a low-cost cooperative monitoring tool that allows knowing, in real-time, the concentrations of polluting gases in various areas of the city. Specifically, users monitor the areas of their interest by deploying low-cost and low-power sensor nodes. In addition, they can share the collected data following a social networking approach. uSense has been tested through an in-field experimentation performed in different areas of a city. The obtained results are in line with those provided by the local environmental control authority and show that uSense can be profitably used for air quality monitoring

    Just-in-Time Adaptive Algorithm for Optimal Parameter Setting in 802.15.4 WSNs

    Get PDF
    Recent studies have shown that the IEEE 802.15.4 MAC protocol suffers from severe limitations, in terms of reliability and energy efficiency, when the CSMA/CA parameter setting is not appropriate. However, selecting the optimal setting that guarantees the application reliability requirements, with minimum energy consumption, is not a trivial task in wireless sensor networks, especially when the operating conditions change over time. In this paper we propose a Just-in-Time LEarning-based Adaptive Parameter tuning (JIT-LEAP) algorithm that adapts the CSMA/CA parameter setting to the time-varying operating conditions by also exploiting the past history to find the most appropriate setting for the current conditions. Following the approach of active adaptive algorithms, the adaptation mechanism of JIT-LEAP is triggered by a change detection test only when needed (i.e., in response to a change in the operating conditions). Simulation results show that the proposed algorithm outperforms other similar algorithms, both in stationary and dynamic scenarios

    Strategies for Optimal MAC Parameter Setting in IEEE 802.15.4 Wireless Sensor Networks: a Performance Comparison

    Get PDF
    Recent studies have shown that the IEEE 802.15.4 MAC protocol may suffer from severe limitations in terms of reliability and energy efficiency if a non appropriate parameter setting is used. Hence, a number of solutions have been proposed to select the optimal parameter setting to provide reliability with minimum energy consumption. In this paper we compare, by simulation, three different algorithms that take different approaches to the problem, namely offline computation, model-based adaptation, and measurement-based adaptation. We show that adaptive algorithms perform well, however the model-based adaptive approach has some limitations that make it unsuitable in practical scenarios, where operating conditions may vary over time and transmission errors cannot be neglected. Instead, the measurement-based adaptive approach is flexible and effectiv

    ATHENA X-IFU Demonstration Model: First Joint Operation of the Main TES Array and its Cryogenic AntiCoincidence Detector (CryoAC)

    Get PDF
    The X-IFU is the cryogenic spectrometer onboard the future ATHENA X-ray observatory. It is based on a large array of TES microcalorimeters, which work in combination with a Cryogenic AntiCoincidence detector (CryoAC). This is necessary to reduce the particle background level thus enabling part of the mission science goals. Here we present the first joint test of X-IFU TES array and CryoAC Demonstration Models, performed in a FDM setup. We show that it is possible to operate properly both detectors, and we provide a preliminary demonstration of the anti-coincidence capability of the system achieved by the simultaneous detection of cosmic muons

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    The Influence of Manga on the Graphic Novel

    Get PDF
    This material has been published in The Cambridge History of the Graphic Novel edited by Jan Baetens, Hugo Frey, Stephen E. Tabachnick. This version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. © Cambridge University PressProviding a range of cogent examples, this chapter describes the influences of the Manga genre of comics strip on the Graphic Novel genre, over the last 35 years, considering the functions of domestication, foreignisation and transmedia on readers, markets and forms
    corecore