43 research outputs found

    Genome and transcriptome profiling of spontaneous preterm birth phenotypes

    Get PDF
    Preterm birth (PTB) occurs before 37 weeks of gestation. Risk factors include genetics and infection/inflammation. Different mechanisms have been reported for spontaneous preterm birth (SPTB) and preterm birth following preterm premature rupture of membranes (PPROM). This study aimed to identify early pregnancy biomarkers of SPTB and PPROM from the maternal genome and transcriptome. Pregnant women were recruited at the Liverpool Women’s Hospital. Pregnancy outcomes were categorised as SPTB, PPROM (≤ 34 weeks gestation, n = 53), high-risk term (HTERM, ≥ 37 weeks, n = 126) or low-risk (no history of SPTB/PPROM) term (LTERM, ≥ 39 weeks, n = 188). Blood samples were collected at 16 and 20 weeks gestation from which, genome (UK Biobank Axiom array) and transcriptome (Clariom D Human assay) data were acquired. PLINK and R were used to perform genetic association and differential expression analyses and expression quantitative trait loci (eQTL) mapping. Several significant molecular signatures were identified across the analyses in preterm cases. Genome-wide significant SNP rs14675645 (ASTN1) was associated with SPTB whereas microRNA-142 transcript and PPARG1-FOXP3 gene set were associated with PPROM at week 20 of gestation and is related to inflammation and immune response. This study has determined genomic and transcriptomic candidate biomarkers of SPTB and PPROM that require validation in diverse populations

    Plasma long-chain omega-3 fatty acid status and risk of recurrent early spontaneous preterm birth: a prospective observational study

    Get PDF
    Introduction A 2018 Cochrane review found that omega-3 supplementation in pregnancy was associated with a risk reduction of early preterm birth of 0.58; prompting calls for universal supplementation. Recent analysis suggests the benefit may be confined to women with a low baseline omega-3 fatty acid status, however the contemporary UK pregnant omega-3 fatty acid status is largely unknown. This is particularly pertinent for women with a previous preterm birth, in whom a small relative risk reduction would have a larger reduction of absolute risk. This study aimed to assess the omega-3 fatty acid status of a UK pregnant population and determine the association between the long-chain omega-3 fatty acids and recurrent spontaneous early preterm birth. Material and methods A total of 283 high-risk women with previous early preterm birth were recruited to the prospective obstervational study in Liverpool, UK. Additionally, 96 pregnant women with previous term births and birth ≥39⁺⁰ weeks in the index pregnancy provided a low-risk population sample. Within the high-risk group we assessed the odds ratio of recurrent early preterm birth compared to birth at ≥37⁺⁰ weeks gestation according to plasma eicosapentaenoic acid plus docosahexaenoic acid (EPA+DHA) at 15-22 weeks gestation.  RESULTS: Our participants had low EPA+DHA; 62% (143/229) of women with previous preterm birth and 69% (68/96) of the population sample had levels within the lowest two quintiles of a previously published pregnancy cohort. We found no association between long-chain omega-3 status and recurrent early preterm birth (n=51). The crude odds ratio of a recurrent event was 0.91 (95% CI 0.38 to 2.15, p=0.83) for women in the lowest, compared to the highest three quintiles of EPA+DHA. Conclusions In the majority of our participants levels of long-chain omega-3 were low; within the range that may benefit from supplementation. However, levels showed no association with risk of recurrent early spontaneous preterm birth. This could be because our population levels were too low to show benefit in being omega-3 'replete'; or else omega-3 levels may be of lesser importance in recurrent early preterm birth.Laura Goodfellow, Angharad Care, Jane Harrold, Andrew Sharp, Jelena Ivandic, Borna Poljak ... et al

    A hypomorphic vasopressin allele prevents anxiety-related behavior

    Get PDF
    In this study, microarray analysis, in situ hybridization, quantitative real-time PCR and immunohistochemistry revealed decreased expression of the vasopressin gene (Avp) in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei of adult LAB mice compared to HAB, NAB (normal anxiety-related behavior) and HABxLAB F1 intercross controls, without detecting differences in receptor expression or density. By sequencing the regions 2.5 kbp up- and downstream of the Avp gene locus, we could identify several polymorphic loci, differing between the HAB and LAB lines. In the gene promoter, a deletion of twelve bp Δ(−2180–2191) is particularly likely to contribute to the reduced Avp expression detected in LAB animals under basal conditions. Indeed, allele-specific transcription analysis of F1 animals revealed a hypomorphic LAB-specific Avp allele with a reduced transcription rate by 75% compared to the HAB-specific allele, thus explaining line-specific Avp expression profiles and phenotypic features. Accordingly, intra-PVN Avp mRNA levels were found to correlate with anxiety-related and depression-like behaviors. In addition to this correlative evidence, a significant, though moderate, genotype/phenotype association was demonstrated in 258 male mice of a freely-segregating F2 panel, suggesting a causal contribution of the Avp promoter deletion to anxiety-related behavior

    Vaginal bacterial load in the second trimester is associated with early preterm birth recurrence: a nested case-control study

    Get PDF
    Objective To assess the association between vaginal microbiome (VMB) composition and recurrent early spontaneous preterm birth (sPTB)/preterm prelabour rupture of membranes (PPROM). Design Nested case-control study. Setting UK tertiary referral hospital. Sample High-risk women with previous sPTB/PPROM Methods Vaginal swabs collected between 15-22 weeks gestation were analysed by 16S rRNA gene sequencing and 16S quantitative PCR. Main outcome measure Recurrent early sPTB/PPROM. Results 28/109 high-risk women had anaerobic vaginal dysbiosis, with the remainder dominated by lactobacilli ( L. iners 36/109, L. crispatus 23/109, or other 22/109). VMB type, diversity, and stability were not associated with recurrence. Women with a recurrence, compared to those without, had a higher median vaginal bacterial load (8.64 vs. 7.89 log 10 cells/μl, adjusted odds ratio (aOR)=1.90, 95% confidence interval (CI)=1.01-3.56, p=0.047) and estimated Lactobacillus concentration (8.59 vs. 7.48 log 10 cells/μl, aOR=2.35, CI=1.20-4.61, p=0.013). A higher recurrence risk was associated with higher median bacterial loads for each VMB type after stratification, although statistical significance was reached only for L. iners -domination (aOR=3.44, CI=1.06-11.15, p=0.040). Women with anaerobic dysbiosis or L. iners -domination had a higher median vaginal bacterial load than women with a VMB dominated by L. crispatus or other lactobacilli (8.54, 7.96, 7.63, and 7.53 log 10 cells/μl, respectively). Conclusions Vaginal bacterial load is associated with early sPTB/PPROM recurrence. Domination by lactobacilli other than L. iners may protect women from developing high bacterial loads. Future PTB studies should quantify vaginal bacteria and yeasts. Funding Wellbeing of Women, London, UK Tweetable abstract Increased vaginal bacterial load in the second trimester may be associated with recurrent early spontaneous preterm birth

    Genetic variants in RBFOX3 are associated with sleep latency

    Get PDF
    Time to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep latency. We performed a meta-analysis of genome-wide association studies (GWAS) including 2 572 737 single nucleotide polymorphisms (SNPs) established in seven European cohorts including 4242 individuals. We found a cluster of three highly correlated variants (rs9900428, rs9907432 and rs7211029) in the RNA-binding protein fox-1 homolog 3 gene (RBFOX3) associated with sleep latency (P-values=5.77 × 10-08, 6.59 × 10- 08 and 9.17 × 10- 08). These SNPs were replicated in up to 12 independent populations including 30 377 individuals (P-values=1.5 × 10- 02, 7.0 × 10- 03 and 2.5 × 10- 03; combined meta-analysis P-values=5.5 × 10-07, 5.4 × 10-07 and 1.0 × 10-07). A functional prediction of RBFOX3 based on co-expression with other genes shows that this gene is predominantly expressed in brain (P-value=1.4 × 10-316) and the central nervous system (P-value=7.5 × 10- 321). The predicted function of RBFOX3 based on co-expression analysis with other genes shows that this gene is significantly involved in the release cycle of neurotransmitte

    Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people

    Get PDF
    The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 x 10(-8)) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits.Peer reviewe

    Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity

    Get PDF
    Multiple sclerosis (MS) disease risk is associated with reduced sun-exposure. This study assessed the relationship between measures of sun exposure (vitamin D [vitD], latitude) and MS severity in the setting of two multicenter cohort studies (n(NationMS) = 946, n(BIONAT) = 990). Additionally, effect-modification by medication and photosensitivity-associated MC1R variants was assessed. High serum vitD was associated with a reduced MS severity score (MSSS), reduced risk for relapses, and lower disability accumulation over time. Low latitude was associated with higher vitD, lower MSSS, fewer gadolinium-enhancing lesions, and lower disability accumulation. The association of latitude with disability was lacking in IFN-β-treated patients. In carriers of MC1R:rs1805008(T), who reported increased sensitivity toward sunlight, lower latitude was associated with higher MRI activity, whereas for noncarriers there was less MRI activity at lower latitudes. In a further exploratory approach, the effect of ultraviolet (UV)-phototherapy on the transcriptome of immune cells of MS patients was assessed using samples from an earlier study. Phototherapy induced a vitD and type I IFN signature that was most apparent in monocytes but that could also be detected in B and T cells. In summary, our study suggests beneficial effects of sun exposure on established MS, as demonstrated by a correlative network between the three factors: Latitude, vitD, and disease severity. However, sun exposure might be detrimental for photosensitive patients. Furthermore, a direct induction of type I IFNs through sun exposure could be another mechanism of UV-mediated immune-modulation in MS

    Cerebral small vessel disease genomics and its implications across the lifespan

    Get PDF
    White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Migraine polygenic risk score associates with efficacy of migraine-specific drugs

    Get PDF
    Objective To assess whether the polygenic risk score (PRS) for migraine is associated with acute and/or prophylactic migraine treatment response. Methods We interviewed 2,219 unrelated patients at the Danish Headache Center using a semistructured interview to diagnose migraine and assess acute and prophylactic drug response. All patients were genotyped. A PRS was calculated with the linkage disequilibrium pred algorithm using summary statistics from the most recent migraine genome-wide association study comprising ∼375,000 cases and controls. The PRS was scaled to a unit corresponding to a twofold increase in migraine risk, using 929 unrelated Danish controls as reference. The association of the PRS with treatment response was assessed by logistic regression, and the predictive power of the model by area under the curve using a case-control design with treatment response as outcome. Results A twofold increase in migraine risk associates with positive response to migraine-specific acute treatment (odds ratio [OR] = 1.25 [95% confidence interval (CI) = 1.05–1.49]). The association between migraine risk and migraine-specific acute treatment was replicated in an independent cohort consisting of 5,616 triptan users with prescription history (OR = 3.20 [95% CI = 1.26–8.14]). No association was found for acute treatment with non–migraine-specific weak analgesics and prophylactic treatment response. Conclusions The migraine PRS can significantly identify subgroups of patients with a higher-than-average likelihood of a positive response to triptans, which provides a first step toward genetics-based precision medicine in migraine
    corecore