1,812 research outputs found
Recommended from our members
Combination of Searches for Invisible Higgs Boson Decays with the ATLAS Experiment
Dark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter presents a statistical combination of searches for H -> invisible decays where H is produced according to the standard model via vector boson fusion, Z(ll)H, and W/Z(had)H, all performed with the ATLAS detector using 36.1 fb(-1) of pp collisions at a center-of-mass energy of root s = 13 TeV at the LHC. In combination with the results at root s = 7 and 8 TeV, an exclusion limit on the H -> invisible branching ratio of 0.26(0.17(-0.05)(+0.07)) at 95% confidence level is observed (expected).ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS; CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; COST, European Union; ERC, European Union; ERDF, European Union; Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d' Avenir Labex, ANR, France; Idex, ANR, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF, Greece; BSF-NSF, Israel; GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society, United Kingdom; Leverhulme Trust, United KingdomThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Search for the Higgs boson decays H -> ee and H -> eμ in pp collisions at root s=13 TeV with the ATLAS detector
Searches for the Higgs boson decays H -> ee and H -> e mu are performed using data corresponding to an integrated luminosity of 139 fb(-1) collected with the ATLAS detector in pp collisions at root s = 13 TeV at the LHC. No significant signals are observed, in agreement with the Standard Model expectation. For a Higgs boson mass of 125 GeV, the observed (expected) upper limit at the 95% confidence level on the branching fraction B(H -> ee) is 3.6 x 10(-4) (3.5 x 10(-4)) and on B(H -> e mu) is 6.2 x 10(-5) (5.9 x 10(-5)). These results represent improvements by factors of about five and six on the previous best limits on B(H -> ee) and B(H -> e mu) respectively. (C) 2019 The Author. Published by Elsevier B.V.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Macro- And Microvascular Functions In Cystic Fibrosis Adults Without Cardiovascular Risk Factors: A Case-Control Study.
Increasing survival from cystic fibrosis show untypical systems involvement, such as cardiocirculatory. In particular, the presence of CFTR in smooth muscle and endothelial cells, systemic inflammation and oxidative stress could explain vascular alterations in these patients. We aimed at noninvasely evaluating macro- and microvascular dysfunction in cystic fibrosis adults without cardiovascular risk factors. Twenty-twoadults affected by cystic fibrosis and 24 healthy volunteers matched for age and sex were enrolled. None had known cardiovascular risk factors. All people underwent blood pressure measurement, microvascular function assessment by EndoPAT-2000 device (calculating RH-PAT index) and macrovascular evaluation by pulse wave velocity (PWV). RH-PAT index was significantly lower in patients than in controls (1.74±0.59 vs 2.33±0.34; p<0.001). Thirteen patients of 22 had a value inferior to the threshold of 1.67 (59.1%), while no controls had (p<0.001). Carotid-femoral PWV did not differ between the two groups (5.2±1.5 m/s vs 5.4±1.1; p=0.9), while brachial-ankle one did (11.0±2.2 m/s vs 10.1±0.8 m/s; p=0.04).Adults patients affected by cystic fibrosis show peripheral endothelial dysfunction, which is the first alteration in atherosclerotic phenomenon. Moreover, arterial stiffness measured by PWV unclearly seems to differ respect of healthy people, perhaps because PWV alterations are typical of above 50 years old people. It is unclear what prognostic role of future developing of atherosclerotic disease these findings could be, but it seems evident that cystic fibrosis directly affects cardiovascular system itself
Recommended from our members
Search for invisible Higgs boson decays in vector boson fusion at root s=13 TeV with the ATLAS detector
We report a search for Higgs bosons that are produced via vector boson fusion and subsequently decay into invisible particles. The experimental signature is an energetic jet pair with invariant mass of O(1) TeVand O(100) GeVmissing transverse momentum. The analysis uses 36.1 fb(-1) of pp collision data at root s = 13 TeV recorded by the ATLAS detector at the LHC. In the signal region the 2252 observed events are consistent with the background estimation. Assuming a 125 GeV scalar particle with Standard Model cross sections, the upper limit on the branching fraction of the Higgs boson decay into invisible particles is 0.37 at 95% confidence level where 0.28 was expected. This limit is interpreted in Higgs portal models to set bounds on the wimp-nucleon scattering cross section. We also consider invisible decays of additional scalar bosons with masses up to 3 TeV for which the upper limits on the cross section times branching fraction are in the range of 0.3-1.7 pb. (C) 2019 The Author(s). Published by Elsevier B.V.ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmar; DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canarie, Canada; CRC, Canada; Compute Canada, Canada; COST, European Union; ERC, European Union; ERDF, European Union; Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d' Avenir Labex, ANR, France; Investissements d' Avenir Idex, ANR, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF, Greece; Thales programme - EU-ESF, Greece; Aristeia programme - EU-ESF, Greece; Greek NSRF, Greece; BSFNSF, Israel; GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; Royal Society, United Kingdom; Leverhulme Trust, United KingdomOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector
A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector
A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Measurement of substructure-dependent jet suppression in Pb+Pb collisions at 5.02 TeV with the ATLAS detector
The ATLAS detector at the Large Hadron Collider has been used to measure jet substructure modification and suppression in Pb+Pb collisions at a nucleon–nucleon center-of-mass energy √sNN = 5.02 TeV in comparison with proton–proton (pp) collisions at √s = 5.02 TeV. The Pb+Pb data, collected in 2018, have an integrated luminosity of 1.72 nb−1, while the ppdata, collected in 2017, have an integrated luminosity of 260 pb−1. Jets used in this analysis are clustered using the anti-kt algorithm with a radius parameter R = 0.4. The jet constituents, defined by both tracking and calorimeter information, are used to determine the angular scale rg of the first hard splitting inside the jet by reclustering them using the Cambridge–Aachen algorithm and employing the soft-drop grooming technique. The nuclear modification factor, RAA, used to characterize jet suppression in Pb+Pb collisions, is presented differentially in rg, jet transverse momentum, and in intervals of collision centrality. The RAA value is observed to depend significantly on jet rg. Jets produced with the largest measured rg are found to be twice as suppressed as those with the smallest rg in central Pb+Pb collisions. The RAA values do not exhibit a strong variation with jet pT in any of the rg intervals. The rg and pT dependence of jet RAA is qualitatively consistent with a picture of jet quenching arising from coherence and provides the most direct evidence in support of this approach
Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using Formula Presented pp collisions with the ATLAS detector
A search is presented for a heavy resonance Formula Presented decaying into a Standard Model Higgs boson Formula Presented and a new particle Formula Presented in a fully hadronic final state. The full Large Hadron Collider run 2 dataset of proton-proton collisions at Formula Presented collected by the ATLAS detector from 2015 to 2018 is used and corresponds to an integrated luminosity of Formula Presented. The search targets the high Formula Presented-mass region, where the Formula Presented and Formula Presented have a significant Lorentz boost in the laboratory frame. A novel application of anomaly detection is used to define a general signal region, where events are selected solely because of their incompatibility with a learned background-only model. It is constructed using a jet-level tagger for signal-model-independent selection of the boosted Formula Presented particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark Formula Presented decay into two quarks, covering topologies where the Formula Presented is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into Formula Presented, and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section Formula Presented) for signals with Formula Presented between 1.5 and 6 TeV and Formula Presented between 65 and 3000 GeV.
A search is presented for a heavy resonance
Y
decaying into a Standard Model Higgs boson
H
and a new particle
X
in a fully hadronic final state. The full Large Hadron Collider run 2 dataset of proton-proton collisions at
√
s
=
13
TeV
collected by the ATLAS detector from 2015 to 2018 is used and corresponds to an integrated luminosity of
139
fb
−
1
. The search targets the high
Y
-mass region, where the
H
and
X
have a significant Lorentz boost in the laboratory frame. A novel application of anomaly detection is used to define a general signal region, where events are selected solely because of their incompatibility with a learned background-only model. It is constructed using a jet-level tagger for signal-model-independent selection of the boosted
X
particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark
X
decay into two quarks, covering topologies where the
X
is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into
b
¯
b
, and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section
σ
(
p
p
→
Y
→
X
H
→
q
¯
q
b
¯
b
) for signals with
m
Y
between 1.5 and 6 TeV and
m
X
between 65 and 3000 GeV
- …