572 research outputs found

    Search for dark matter produced in association with a Higgs boson decaying to bbŐÖ with the ATLAS experiment

    Full text link
    Astronomical and cosmological observations suggest that 80% of the matter content of the universe is made up of dark matter. However, except for its gravitational interactions with ordinary matter particles, there is no evidence of its interactions via other known forces. A variety of extensions to the Standard Model of particle physics predict the existence of a weakly interacting massive particle which can account for the existence of dark matter. Even though these hypothetical particles can explain the abundance of dark matter in the universe, previous searches showed no direct evidence of their existence. In this thesis, a search for dark matter production in proton-proton collisions at the Large Hadron Collider (LHC) at CERN is presented. The observation of a new particle compatible with the Standard Model Higgs boson in 2012 by the ATLAS and CMS experiments at the LHC enabled new search channels for dark matter production at particle colliders. This thesis describes a search for dark matter produced in association with a Higgs boson decaying to a bottom quark and an anti-bottom quark (bbŐÖ) with the ATLAS experiment. The search was conducted using proton-proton collision data gathered from 2015 and 2016 at a center-of-mass energy of 13 TeV at the LHC. The analysis is performed by selecting final states compatible with a Higgs boson decaying to a bbŐÖ pair recoiling against dark matter particles which are detected as large missing transverse energy. The observations show no significant deviation from Standard Model expectations without dark matter. The results are converted to limits on the parameter space of a Z'-2HDM signal model as well as limits on production cross sections of beyond the Standard Model processes with the same final state signature of a Higgs boson and large missing transverse energy, without any further assumptions

    Search for dark matter produced in association with bottom or top quarks in ‚ąös = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb‚ąí1 of proton‚Äďproton collision data recorded by the ATLAS experiment at ‚ąös = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV