54 research outputs found

    The fractional amplitude of low-frequency fluctuations signals related to amyloid uptake in high-risk populations—A pilot fMRI study

    Get PDF
    BackgroundPatients with type 2 diabetes mellitus (T2DM) and subjective cognitive decline (SCD) have a higher risk to develop Alzheimer's Disease (AD). Resting-state-functional magnetic resonance imaging (rs-fMRI) was used to document neurological involvement in the two groups from the aspect of brain dysfunction. Accumulation of amyloid-β (Aβ) starts decades ago before the onset of clinical symptoms and may already have been associated with brain function in high-risk populations. However, this study aims to compare the patterns of fractional amplitude of low-frequency fluctuations (fALFF) maps between cognitively normal high-risk groups (SCD and T2DM) and healthy elderly and evaluate the association between regional amyloid deposition and local fALFF signals in certain cortical regions.Materials and methodsA total of 18 T2DM, 11 SCD, and 18 healthy elderlies were included in this study. The differences in the fALFF maps were compared between HC and high-risk groups. Regional amyloid deposition and local fALFF signals were obtained and further correlated in two high-risk groups.ResultsCompared to HC, the altered fALFF signals of regions were shown in SCD such as the left posterior cerebellum, left putamen, and cingulate gyrus. The T2DM group illustrated altered neural activity in the superior temporal gyrus, supplementary motor area, and precentral gyrus. The correlation between fALFF signals and amyloid deposition was negative in the left anterior cingulate cortex for both groups. In the T2DM group, a positive correlation was shown in the right occipital lobe and left mesial temporal lobe.ConclusionThe altered fALFF signals were demonstrated in high-risk groups compared to HC. Very early amyloid deposition in SCD and T2DM groups was observed to affect the neural activity mainly involved in the default mode network (DMN)

    The Tpeak – Tend interval as an electrocardiographic risk marker of arrhythmic and mortality outcomes: a systematic review and meta-analysis

    Get PDF
    Background: The Tpeak – Tend interval, an electrocardiographic marker reflecting transmural dispersion of repolarization, has been used to predict ventricular tachycardia/fibrillation (VT/VF) and sudden cardiac death (SCD) in different clinical settings. Objective: This systematic review and meta-analysis evaluated the significance of Tpeak – Tend interval in predicting arrhythmic and/or mortality endpoints. Methods: PubMed, Embase, Cochrane Library and CINAHL Plus databases were searched through 30th November 2016.Results: Of the 854 studies identified initially, 33 observational studies involving 155856 patients were included in our meta-analysis. Tpeak – Tend interval prolongation (mean cut-off: 103.3 ± 17.4 ms) was a significant predictor of the arrhythmic or mortality outcomes (odds ratio (OR): 1.14, 95% CI: 1.11 to 1.17, p < 0.001). When different end-points were analyzed, the ORs are as follows: VT/VF (1.10, 95% CI: 1.06 to 1.13, p < 0.0001), SCD (1.27, 95% CI 1.17 to 1.39, p < 0.0001), cardiovascular death (1.40, 95% CI 1.19 to 1.64, p < 0.0001), and all-cause mortality (4.56, 95% CI 0.62 to 33.68, p < 0.0001). Subgroup analysis for each disease revealed that the risk of VT/VF or death was highest for Brugada syndrome (OR: 5.68, 95% CI: 1.57 to 20.53, p < 0.01), followed by hypertension (OR: 1.52, 95% CI: 1.26 to 1.85, p < .0001), heart failure (OR: 1.07, 95% CI: 1.04 to 1.11, p < .0001) and ischemic heart disease (OR: 1.06, 95% CI: 1.02 to 1.10, p = 0.001). In the general population, a prolonged Tpeak – Tend interval also predicted arrhythmic or mortality outcomes (OR: 1.59, 95% CI: 1.21 to 2.09, p < 0.001).Conclusion: The Tpeak – Tend interval is useful risk stratification tool in different diseases and in the general population

    Higher Dispersion Measures of Conduction and Repolarization in Type 1 Compared to Non-type 1 Brugada Syndrome Patients: An Electrocardiographic Study From a Single Center

    Get PDF
    Background: Brugada syndrome (BrS) is a cardiac ion channelopathy that predisposes affected individuals to sudden cardiac death (SCD). Type 1 BrS is thought to take a more malignant clinical course than non-type 1 BrS. We hypothesized that the degrees of abnormal repolarization and conduction are greater in type 1 subjects and these differences can be detected by electrocardiography (ECG).Methods: Electrocardiographic data from spontaneous type 1 and non-type 1 BrS patients were analyzed. ECG parameters were measured from leads V1 to V3. Values were expressed as median [lower quartile-upper quartile] and compared using Kruskal-Wallis ANOVA.Results: Compared to non-type 1 BrS patients (n = 29), patients with spontaneous type 1 patterns (n = 22) showed similar (P &gt; 0.05) heart rate (73 [64–77] vs. 68 [62–80] bpm), QRS duration (136 [124–161] vs. 127 [117–144] ms), uncorrected QT (418 [393–443] vs. 402 [386–424] ms) and corrected QT intervals (457 [414–474] vs. 430 [417–457] ms), JTpeak intervals (174 [144–183] vs. 174 [150–188] ms), Tpeak− Tend intervals (101 [93–120] vs. 99 [90–105] ms), Tpeak− Tend/QT ratios (0.25 [0.23–0.27] vs. 0.24 [0.22–0.27]), Tpeak− Tend/QRS (0.77 [0.62–0.87] vs. 0.77 [0.69–0.86]), Tpeak− Tend/(QRS × QT) (0.00074 [0.00034–0.00096] vs. 0.00073 [0.00048–0.00012] ms−1), index of Cardiac Electrophysiological Balance (iCEB, QT/QRS, marker of wavelength: 3.14 [2.56–3.35] vs. 3.21 [2.85–3.46]) and corrected iCEB (QTc/QRS: 3.25 [2.91–3.73] vs. 3.49 [2.99–3.78]). Higher QRS dispersion was seen in type 1 subjects (QRSd: 34 [24–66] vs. 24 [12–34] ms) but QT dispersion (QTd: 48 [39–71] vs. 43 [22–94] ms), QTc dispersion (QTcd: 52 [41–79] vs. 46 [23–104] ms), JTpeak dispersion (44 [23–62] vs. 45 [30–62] ms), Tpeak− Tend dispersion (28 [15–34] vs. 29 [22–53] ms) or Tpeak− Tend/QT dispersion (0.06 [0.03–0.08] vs. 0.08 [0.04–0.12]) did not differ between the two groups. Type 1 subjects showed higher (QRSd × Tpeak− Tend)/QRS (25 [19–44] vs. 19 [9–30] ms) but similar iCEB dispersion (0.83 [0.49–1.14] vs. 0.61 [0.34–0.92]) and iCEBc dispersion (0.93 [0.51–1.15] vs. 0.65 [0.39–0.96]).Conclusion: Higher levels of dispersion in conduction and repolarization are found in type 1 than non-type 1 BrS patients, potentially explaining the higher incidence of ventricular arrhythmias in the former group

    Ultrasound irradiation in the production of ethanol from biomass

    Full text link
    Ethanol produced from renewable biomass, such as lignocellulosic feedstock, is one of the alternative energy resources that can be environmentally friendly. However, physical and chemical barriers caused by the close association of the main components of lignocellulosic biomass, as well as starch, hinder the hydrolysis of cellulose and hemicellulose in lignocellulose as well as amylase and amylopectin in starch to fermentable sugars. One of the main goals of pretreatment for enzymatic hydrolysis is to increase the enzyme accessibility for improving digestibility of cellulose and starch. Ultrasound irradiation applied to cellulosic materials and starch-based feedstock was found to enhance the efficiency of hydrolysis and subsequently increase the sugar yield. Prior research conducted on applying ultrasonic technology for cellulose and starch pretreatment has considered a variety of effects on physical and chemical characteristics, hydrolysis efficiency and ethanol yield. This paper reviews the application of ultrasound irradiation to cellulose and starch prior to and during hydrolysis in terms of sugar and ethanol yields. It also addresses characteristics such as accessibility, crystallinity, degree of polymerization, morphological structure, swelling power, particle size and viscosity as influenced by ultrasonic treatment. © 2014 Elsevier Ltd

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore