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Background: Patients with type 2 diabetes mellitus (T2DM) and subjective

cognitive decline (SCD) have a higher risk to develop Alzheimer’s Disease (AD).

Resting-state-functional magnetic resonance imaging (rs-fMRI) was used to

document neurological involvement in the two groups from the aspect of brain

dysfunction. Accumulation of amyloid-β (Aβ) starts decades ago before the

onset of clinical symptoms and may already have been associated with brain

function in high-risk populations. However, this study aims to compare the

patterns of fractional amplitude of low-frequency fluctuations (fALFF) maps

between cognitively normal high-risk groups (SCD and T2DM) and healthy

elderly and evaluate the association between regional amyloid deposition and

local fALFF signals in certain cortical regions.

Materials and methods: A total of 18 T2DM, 11 SCD, and 18 healthy elderlies

were included in this study. The di�erences in the fALFF maps were compared

betweenHC and high-risk groups. Regional amyloid deposition and local fALFF

signals were obtained and further correlated in two high-risk groups.

Results: Compared to HC, the altered fALFF signals of regions were shown in

SCD such as the left posterior cerebellum, left putamen, and cingulate gyrus.

The T2DM group illustrated altered neural activity in the superior temporal

gyrus, supplementary motor area, and precentral gyrus. The correlation

between fALFF signals and amyloid deposition was negative in the left anterior

cingulate cortex for both groups. In the T2DM group, a positive correlation was

shown in the right occipital lobe and left mesial temporal lobe.

Conclusion: The altered fALFF signals were demonstrated in high-risk groups

compared to HC. Very early amyloid deposition in SCD and T2DM groups

was observed to a�ect the neural activity mainly involved in the default mode

network (DMN).

KEYWORDS
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Introduction

Alzheimer’s Disease (AD) is the most common

neurodegenerative disease and is conceptualized as a continuum

from the preclinical phase to the clinical stage of dementia

(Sperling et al., 2011). Subjective cognitive decline (SCD) is

served as a typical preclinical manifestation of AD. Patients

with SCD have a 4.5–6.5 times higher risk to proceed into

mild cognitive impairment (MCI) or AD dementia in the

future, compared to normal elderlies (Jessen et al., 2014b;

Rönnlund et al., 2015; Chen et al., 2020). Type 2 diabetes

mellitus (T2DM) as a metabolic disorder typically begins

at an older age, associated with cognitive impairment with

growing evidence (van den Berg et al., 2009; McCrimmon

et al., 2012; Vagelatos and Eslick, 2013). Patients with T2DM

are proved to show an increased risk of developing AD with

a relative risk of 1.46 (Cheng et al., 2012). Additionally, the

decline in multiple cognitive domains of T2DM subjects,

such as motor function, executive function, and processing

speed, is found (Dufouil et al., 2005; Glodzik-Sobanska et al.,

2007; Reisberg et al., 2010). The hypometabolism for glucose

and decreased resting cerebral blood flow (CBF) in AD have

been observed by assessing neuroimaging techniques such

as 18F-Fluorodeoxyglucose positron emission tomography

(18F-FDG PET; Besson et al., 2015) and arterial spin labeling

magnetic resonance (ASL MR) perfusion (Haller et al., 2016).

Compared to healthy controls, T2DM, SCD, and AD groups

demonstrate significantly decreased CBF found in our previous

work (Chau et al., 2020). Furthermore, a negative correlation

between chronic hyperglycemia and CBF in non-demented

T2DM indicates a link between diabetes and dementia (Chau

et al., 2020). As suggested by Sperling et al. (2011), this long

preclinical phase may aid in an earlier therapeutic intervention

of AD. Therefore, T2DM and SCD as the high-risk population

may be the best stages to study AD.

Non-invasive resting-state functional magnetic resonance

imaging (rs-fMRI) is introduced to investigate the functional

change in neurodegenerative impairment by detecting

spontaneous activity. The measurements include functional

connectivity (FC; Greicius et al., 2003; Ebisch et al., 2011),

regional homogeneity (ReHo; Zang et al., 2004) and amplitude

of low-frequency fluctuations (ALFF) /fractional ALFF

(fALFF; Fox and Raichle, 2007). The abnormalities of brain

function assessed by rs-fMRI were found in AD and MCI

compared to healthy controls based on previous research

work (He et al., 2007; Wang et al., 2011; Zhang et al., 2012;

Zhao et al., 2014). It is also able to document neurological

involvement in SCD (Chen et al., 2020; Zhang et al., 2021)

and T2DM (Xia et al., 2017) from the aspect of brain

dysfunction. As far as we know, only a few studies applied

ALFF/fALFF measurements to assess alterations of brain

function in T2DM (Xia et al., 2013; Cui et al., 2014; Wang

et al., 2014) and SCD (Yang et al., 2018). The manifestation

of regional brain function in T2DM and SCD requires

more investigation.

Accumulation of amyloid-β (Aβ) starts decades ago before

the onset of clinical symptoms (Jack et al., 2010; Sperling et al.,

2014). As suggested by previous studies, compared to cognitively

normal elderlies (Kang et al., 2017) and SCD (Li et al., 2021)

with negative Aβ retention, those with positive results indicated

altered regional functional synchronization. Therefore, non-

demented participants with abnormal neocortical Aβ pathology

demonstrate the changed brain function that provides insight

into exploring the relationship between neuropathology and

other events such as neurophysiology at a very early stage.

Interestingly, in Hahn et al. (2019) study, for cognitively

unimpaired elderlies with negative/normal amyloid-PET results,

the earliest Aβ deposition in the regions mainly involved in

default mode network (DMN) was observed to be associated

with enhanced dynamic functional connectivity as well. The

regional neural activity could be affected by amyloid status

(positive vs. negative) to some degree. Meanwhile, the very early

Aβ accumulation in cognitively normal participants with normal

amyloid-PET results may already influence brain connectivity,

structure, and function. To date, the association between Aβ

deposition and local neural activity measured by ALFF/ fALFF,

in the cognitively normal elderly, is much less discussed

than it should be since it is crucial to understanding the

pathophysiological link between the two events.

In this study, we would like to compare the different

patterns of fALFF maps between cognitively normal high-risk

groups (SCD and T2DM) and healthy elderlies and evaluate the

association between fALFF signals and local amyloid deposition

in those clusters showing altered neural activity further. In

addition, we aimed to evaluate the correlation between regional

amyloid deposition and local fALFF signals within cortical

regions mainly affected by amyloid in the two high-risk groups.

Materials and methods

Participants

In this study, 18 T2DM participants were recruited

from the university specialist clinic based on the American

Diabetes Association (ADA) diagnostic criteria. All T2DM were

cognitively normal with the local version of the Montreal

Cognitive Assessment (HK-MoCA) score ≥ 26 (Wong et al.,

2009). Eleven SCD participants were consecutively recruited

from the local memory clinic of a university hospital during

the period from June 2017 to June 2019. The final diagnosis of

cognitively impaired subjects was made by a multi-disciplinary

panel, consisting of a neuroradiologist (HKFM) and two

geriatricians (YFS, PKCC). The panel made the clinical diagnosis

of SCD according to Jessen et al. (2014a). A total of 18 healthy

elderlies were recruited from community centers that met the
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inclusion criteria involving HK-MoCA score≥26 and normal

pressure<140/90 mmHg. Healthy elderlies with prediabetes,

diabetes, claustrophobia, and previous cerebrovascular diseases

were not included. For all subjects, the exclusion criteria

included a history of stroke, head injury, seizure, migraine,

cancer within 5 years, active infection, renal or other organ

failures, psychiatric illness, regular alcohol or drug abuse,

deafness, or other physical barriers.

All participants underwent clinical evaluation,

neuropsychological test, structural-MRI (sMRI), and rs-

fMRI scanning. The SCD and T2DM groups were also assessed

by 18F-Flutemetamol PET. The duration between MRI and

amyloid PET scanning was within 1 week. The determination

of amyloid positivity of 18F-Flutemetamol PET was dependent

on visual rating by a neuroradiologist (HKFM) who had

successfully trained through an electronic training program

developed by GE Healthcare (Buckley et al., 2017). Informed

consent was obtained from all non-demented participants. The

study logistics complied with the Declaration of Helsinki and

ethical approval of the research protocol had been obtained from

the Institutional Review Board of the University of Hong Kong

and the Hospital Authority Hong Kong West Cluster.

Clinical and neurological assessment

All participants underwent HK-MoCA (Wong et al.,

2009) as a neuropsychological test by a trained research

assistant. For the history of vascular risk factors (such as

hypertension, hyperlipidemia) and comorbidities, information

of all participants was collected from their medical history

recorded in a clinical management system database or interviews

managed by a research nurse.

Data acquisition

MRI acquisition

MR images were acquired by a 3T clinical scanner (Philips

Healthcare, Achieva) using a 32-channel head coil at the

university imaging center. MRI sequences with parameters as

follows: Three-dimensional (3D) T1-weighted MPRAGE using

repetition time (TR) = 6.8ms, echo time (TE) = 3.2ms,

thickness = 1.2mm, flip angle = 8◦, field of view (FOV) =

256 × 240 × 204 (mm), matrix = 256 × 240; 3D FLAIR using

TR = 6.8ms, TE = 3.2ms, thickness = 1.2mm, field of view

(FOV) = 250 × 250 × 184 (mm), matrix = 208 × 207. rs-

fMRI with a gradient-echo echo-planar sequence with TR/TE

= 2,000/30ms, flip angle = 90, FOV = 230 × 230 × 144

(mm), image acquisition resolution = 3.28 × 3.28 mm2, slice

thickness = 4mm, number of volumes = 180. During rs-fMRI,

participants were instructed to focus on a cross in themirror and

not to think of anything in particular.

18F-flutemetamol PET-CT imaging acquisition

All participants were required to fast for at least 6 h and rest

in a dimmed room waiting for a tracer injection. A bolus of

18F-flutametamol was administered intravenously (within 40 s)

to the patients at a dosage of 185Mbq (∼5mCi). The scanning

started at 90min after injection, using an integrated in-line

PET/CT scanner with 3D list mode. Filtered back-projection

reconstruction was used with a slice thickness of 2–4mm,

matrix size of 128∗128 with a pixel size of 2mm. A full width

half-maximum (FWHM) post-smoothing filter was applied, of

not more than 5mm. The duration of the scan lasted 30min

(Nelissen et al., 2009; Vandenberghe et al., 2010).

White matter lesions (WMLs)
quantification

Periventricular and subcortical WMLs were quantified

by Fazekas score (0–3; Fazekas et al., 1987) through axial

FLAIR images. The scoring was performed and confirmed by

trained personnel.

Imaging processing and data extraction

18F-flutemetamol PET processing in cortex ID
ROIs

The post-processing of fused structural MRI and 18F-

Flutemetamol images was performed by semi-automatic

commercially available software (Cortex ID software, GE

Healthcare Ltd., USA) for all SCD and T2DM participants.

The procedures included realignment, co-registration, and

normalization. In addition, a quantitative analysis of 1

global and 16 region-of-interests (ROIs) was made by

Cortex ID software, including bilateral prefrontal, anterior

cingulate, precuneus/posterior cingulate, parietal, lateral

temporal, occipital, sensorimotor, and mesial temporal regions.

Normalized for injected dose and body weight of each subject,

standardized uptake values (SUVs) were calculated in all

regions. The standardized uptake value ratio (SUVR) was the

ratio between SUV data of the target region and reference region

(pons in our study).

As Palmqvist et al. reported, the posterior cingulate cortex,

precuneus, rostral anterior cingulate cortex, medial, and lateral

orbitofrontal cortex are most prone to the earliest accumulation

of Aβ (Palmqvist et al., 2017). These regions also correspond

to those involved at stage 1 or 2 according to in vivo staging

amyloid scheme (Grothe et al., 2017). Part of the regions

(bilateral prefrontal, anterior cingulate, precuneus/posterior

cingulate) used in this study is characteristic of being affected

by Aβ at an early stage. Besides, the regions late affected by

amyloid were also involved, such as the occipital lobe and mesial
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temporal lobe, which were closely associated with vision and

memory respectively and frequently addressed in T2DM (Xia

et al., 2013; Cui et al., 2014; Wang et al., 2014) and cognitive

impairment diseases (Han et al., 2011; Sun et al., 2016; Zhang

et al., 2021).

18F-flutemetamol PET processing and SUVR
extraction in survived clusters

Structural MRI images and 18F-Flutemetamol PET images

underwent re-origin and realignment by Statistical Parametric

Mapping (SPM) 12 implemented in MATLAB R2019a. The

resultant PET images were co-registered with the corresponding

sMRI images. The fused images were normalized and smoothed

by SPM12. The masks of survived clusters with differences in

HC vs. T2DM and HC vs. SCD were saved and applied to

fused images for obtaining the SUV values within each cluster

by ROI signal extractor function based on DPARSFA (Data

Processing Assistant for Resting-State fMRI advanced version)

toolbox (http://rfmri.org/DPARSF, version 5.3), implemented

withinMATLABR2019a (Yan and Zang, 2010). All cluster-based

SUV values were normalized to pons’ SUV value to obtain SUVR

values for every participant.

Rs-fMRI processing and fALFF extraction in
cortex ID ROIs and survived clusters

Structural MRI images and rs-fMRI images were processed

by DPARSFA. The sMRI image taken for an individual is

the first realigned and followed by a reorientation, bet, co-

registration, and segmentation. The rs-fMRI image underwent

realignment and co-registered with sMRI images. The fused rs-

fMRI underwent normalization and smoothing with a Gaussian

kernel size of 4∗4∗4 mm3 full-width half-maximum (FWHM).

In addition, a linear tread model was applied to avoid the

systematic increased or decreased signals with time (Lowe and

Russell, 1999), and a rigid-body 6 head motion model was

selected in this study to reduce the non-neuronal blood-oxygen-

level-dependent (BOLD) fluctuations and effects of head motion

(Fox et al., 2005; Kelly et al., 2008). After that, fALFF maps

were obtained from fused rs-fMRI images. The fALFF of each

voxel was normalized by the global mean fALFF within a brain

mask to obtain standardized fALFF (mfALFF). Therefore, the

following fALFF data was obtained from individuals’ mfALFF

maps. The WFU_pickatlas toolbox (http://www.fmri.wfubmc.

edu/cms/software, version 3.0.5; Maldjian et al., 2003) and ROI

signal extractor function of DPARSFA contributed to creating

the masks of ROIs and signal extraction, respectively.

The generated masks of ROIs were the same as those made

by Cortex ID software (GE Healthcare Ltd., USA), including

bilateral prefrontal, anterior cingulate, precuneus/posterior

cingulate, parietal, lateral temporal, occipital, sensorimotor,

and mesial temporal regions. Extraction of the same regional

values in rs-fMRI and 18F-Flutemetamol images was for further

correlation analysis. Besides, the masks of survived clusters with

altered fALFF signals, when compared T2DM and SCD groups

to the HC group, were also saved and applied to rs-fMRI images

for obtaining the signal of fALFF of each cluster.

Statistical analysis

All statistical tests were performed on SPSS software (SPSS

version 23.0.0, Chicago, IL, USA). Shapiro-Wilk test was used

to check the normality of data. Our data were not normally

distributed. Among three groups, the comparison of continuous

data (age, MoCA scores) and ordinal data (WMLs) was assessed

by the non-parametric independent-samples Kruskal–Wallis

test, and the categorical difference (sex and vascular risk

factors) was assessed by the Chi-square test. The comparison

of quantitative amyloid deposition was assessed by a non-

parametric Kolmogorov–Smirnov test between T2DM and SCD

groups. In T2DM and SCD groups, the correlations between

regional standardized fALFF signals and amyloid burden in

SUVR extracted from Cortex ID ROIs and survived clusters

were evaluated by a non-parametric partial correlation test

controlling for age and sex. All p-values were two-sided and set

at 0.05.

Voxel-wise analysis

All voxel-wise tests were implemented on the DPARSFA

toolbox (statistical analysis section). The analyses of

standardized fALFF maps in a voxel-wise manner were

performed within a gray matter mask. In addition, the

Gaussian random field (GRF) method was applied for multiple

comparison corrections. The threshold was set at voxel p <

0.01, cluster p < 0.05 and a cluster size > 55 voxels. All p-values

were two-tailed.

Voxel-wise fALFF analysis within each
group

To detect the standardized fALFF patterns in each group, a

one-sample t-test was applied through a voxel-by-voxel analysis.

Standardized fALFF maps of each group were imported and set

the base as 1, which indicated that compared to the mean global

fALFF maps of each group.

Voxel-wise fALFF analysis between
groups

For assessing the differences in standardized fALFF signals

between two groups (SCD vs. HC and T2DM vs. HC), a two-

sample t-test was performed in a voxel-wise manner. Age,
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TABLE 1 Demographic and neuropsychological characteristics of the cohort.

Variable Group

T2DM SCD HC

n = 18 n = 11 n = 18

Agea , mean (SD) 62.50 (3.65) 70.91 (7.40) 71.33 (5.64)

Sexb , No. F 2 8 16

M 16 3 2

Disease duration, mean (SD) 20.06 (8.50) / /

MoCA score, mean (SD) 27.56 (1.04) 25.89 (6.99) 26.50 (2.07)

Amyloid positivity, No. (%) 1 (6%) 2 (18%) /

Mean global amyloid deposition in SUVR (SD) 0.46 (0.07) 0.49 (0.07) /

WMLs (Fazekas score), Median Periventricular 0 1 0

Subcortical 1 1 1

Vascular risk factors, No. (%) Hypertension 9 (50%) 3 (27%) 8 (44%)

Hyperlipidemiac 16 (89%) 3 (27%) 4 (22%)

Hypertension+ hyperlipidemia 9 (50%) 1 (9%) 4 (22%)

Comorbidities, No. (%) Retinopathy 5 (28%) / /

Retinopathy+maculopathy 2 (11%) / /

Retinopathy+ nephropathy 1 (6%) / /

aIndependent-samples Kruskal-Wallis Test in age, p < 0.01 in SCD vs. T2DM; p < 0.001 in HC vs. T2DM.
bChi-square test with p < 0.0001 in sex among three groups.
cChi-square test with p < 0.0001 in hyperlipidemia among three groups.

sex, WMH, and vascular risk factors (hyperlipidemia and

hypertension) were input as covariates. Modulated gray matter

(GM)maps obtained fromDPARSF (segmentation section) were

also used as a covariate to avoid the possible effects of GM

volume differences.

Results

Demographic characteristics,
neuropsychological characteristics, and
regional amyloid deposition of the cohort

Table 1 showed the demographic characteristics and

neuropsychological characteristics of our cohort including

WMLs, vascular risk factors, and comorbidities of our cohort.

The mean age in the T2DM group was younger (age: 62.50 ±

3.65), than SCD (70.91 ± 7.40) and HC groups (age: 71.33 ±

5.64) with p < 0.01 and p < 0.001 respectively. In addition, the

distribution of sex among the three groups was different with p

< 0.0001. The comparable mean MoCA score in HC (27.56 ±

1.04), T2DM (26.50 ± 2.07), and SCD (25.89 ± 6.99) indicated

intact cognition. Our T2DM subjects had ∼20.06-year with

standard deviation (SD)= 8.50 of DM duration.

The 18F-Flutemetamol-PET results revealed 1 T2DM

(positive prevalence: 6%) and 2 SCD participants (positive

prevalence: 22%) had positive scanning. The mean global SUVR

value was 0.46 (SD = 0.07) and 0.49 (SD = 0.07) in T2DM

and SCD groups, respectively, that lower than the threshold

(SUVR of 0.62) used for defining positive amyloid binding at

the global level (Thurfjell et al., 2014). Three groups presented

the same median of 1 in subcortical white matter hyperintensity.

The median in periventricular was the same in T2DM and HC

groups (median = 0), and higher in the SCD group (median =

1). The distribution of WMLs had no significant difference in

ternary comparison.

Referring to vascular risk factors, 50% of T2DM, 27%

of SCD, and 44% of HC participants had hypertension. The

proportion of subjects with hyperlipidemia was up to 89% in

the T2DM group which was higher than that in the HC group

(22%) and SCD group (27%) with a p < 0.0001. There were 50%

of T2DM participants, 9% of SCD participants, and 44% of HC

had two vascular risk factors. Additionally, five participants with

retinopathy were found to have T2DM (28%). Three of them had

two comorbidities recorded as retinopathy with maculopathy (2,

11%) or retinopathy with nephropathy (1, 6%).

Quantitative regional amyloid deposition in SCD and T2DM

groups and comparisons between groups are shown in Table 2.

There was no significant difference in amyloid deposition shown

between groups as p > 0.05 were presented in all regions.

Rs-fMRI fALFF

fALFF pattern in each group

In Figure 1, one-sample t-test results of fALFF maps

of the three groups are shown. The significantly increased
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TABLE 2 The mean values of regional amyloid deposition in SCD and

T2DM.

ROIs SCD T2DM SCD vs. T2DM

Mean SD Mean SD P-value

Prefrontal R 0.45 0.07 0.42 0.06 >0.05

Prefrontal L 0.46 0.09 0.42 0.08 >0.05

Anterior Cingulate R 0.49 0.07 0.46 0.07 >0.05

Anterior Cingulate L 0.53 0.08 0.50 0.08 >0.05

Precuneus/Posterior Cingulate R 0.49 0.07 0.47 0.08 >0.05

Precuneus/Posterior Cingulate L 0.52 0.09 0.49 0.10 >0.05

Parietal R 0.50 0.07 0.47 0.08 >0.05

Parietal L 0.48 0.08 0.45 0.09 >0.05

Temporal Lateral R 0.54 0.05 0.51 0.05 >0.05

Temporal Lateral L 0.53 0.07 0.50 0.07 >0.05

Occipital R 0.55 0.07 0.51 0.04 >0.05

Occipital L 0.56 0.08 0.52 0.05 >0.05

Sensorimotor R 0.46 0.05 0.44 0.06 >0.05

Sensorimotor L 0.47 0.04 0.44 0.07 >0.05

Temporal Mesial R 0.50 0.02 0.52 0.04 >0.05

Temporal Mesial L 0.49 0.02 0.51 0.04 >0.05

L, Left; R, Right.

fALFF signals compared to global fALFF signals were mainly

concentrated within DMN including bilateral precuneus cortex

and middle occipital lobe for all groups. The elevated signals in

the calcarine, cuneus cortex, and inferior frontal lobe were also

observed. In HC and SCD groups (Figures 1A,B), the activated

fALFF signals were exhibited additionally in the bilateral parietal

lobe, inferior occipital lobe, middle temporal lobe, angular lobe,

and posterior part of the cerebellum.

fALFF comparison between HC and T2DM
groups

Compared to the HC group, T2DM participants had

increased fALFF signals in two clusters (Figure 2A). Cluster 1

included 102 voxels and 79% of the voxels within this cluster

belong to the left superior temporal gyrus (Temporal_Sup_L).

Cluster 2 with 56 voxels consisted of the left supplementary

motor area (Supp_Motor_Area_L) only. The decreased fALFF

signal was shown in cluster 3 including the left precentral gyrus

(Precentral_L) and left middle frontal gyrus (Frontal_Mid_L)

occupying 59% and 41%, respectively (Table 3).

fALFF comparison between HC and SCD groups

In Figure 2B, four clusters were shown to have increased

fALFF signals in the SCD group compared to the HC group.

Cluster 1 with 80 voxels was in the left cerebellum and 71% of the

cluster was within left cerebellum crus 8 (Cerebellum_8_L). The

rest three clusters had 73, 64, and 63 voxels. The voxels in the left

putamen (Putamen_L; 33, 45%), right cingulate gyrus, mid part

(Cingulum_Mid_R; 43, 67%), and left superior temporal gyrus

(Temporal_Sup_L; 27, 43%) occupied the highest proportion in

each cluster (Table 3).

Correlation analysis

Partial correlation in T2DM and SCD groups:
Survived clusters-based

Table 4 showed no significant correlation shown between

regional fALFF values and local amyloid deposition in the

survived clusters for each group.

Partial correlation in T2DM and SCD groups:
Cortex ID ROI-based

A non-parametric partial correlation controlled for age

and sex between 16 regional fALFF values and local amyloid

deposition was performed for the T2DM and SCD groups.

In Table 5, fALFF values of the left anterior cingulate cortex

(ACC) were negatively correlated with local amyloid burden at

a significant level (r = −0.778, p < 0.001). In contrast, fALFF

values were positively correlated with amyloid deposition in

the right occipital lobe (r = 0.804, p < 0.001) and left mesial

temporal lobe (r = 0.604, p < 0.05). In the SCD group (Table 6)

significant negative correlation was shown in the left ACC (r =

−0.755, p < 0.05).

Discussion

Altered fALFF signals in T2DM

The increased fALFF signals in the T2DM group displayed

in the left superior temporal gyrus and left supplementary

motor areas. The superior temporal gyrus within the auditory

network (Beckmann et al., 2005) plays an essential role in

language, speech, and auditory processing (Bueti et al., 2008;

Patel et al., 2021). A previous study stated that impaired

language processing was associated with the superior temporal

lobe during dysglycemia (Allen et al., 2015). Consistent with

the Zhou et al. study, hyperactivity in the left superior

temporal gyrus was observed when comparing T2DM with

MCI and HC (Zhou et al., 2014). The increased neural activity

was also shown in the left supplementary motor area, a

part of the sensorimotor network (Beckmann et al., 2005).

The supplementary motor area is responsible for controlling

language and speech processing (Hertrich et al., 2016), as well

as complex movement planning and coordination (Hiroshima

et al., 2014). However, study by Wang et al. illustrated that

there were decreased ALFF signals in the left supplementary

motor area, as shown in the T2DM group compared to HC
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FIGURE 1

fALFF maps with activation pattern compared to global fALFF maps assessed by one sample t-test. (A) Increased fALFF pattern in HC group; (B)

increased fALFF pattern in SCD group; (C) increased fALFF pattern in DM group GRF correction was applied with voxel p-value < 0.01, cluster

p-value < 0.05 and a cluster size > 55 voxels.

FIGURE 2

(A) Regions with the significant di�erence in activation between HC and T2DM assessed by two-sample t-test; (B) Regions with the significant

di�erence in activation between HC and SCD assessed by two-sample t-test. GRF correction was applied with voxel p-value < 0.01, cluster

p-value < 0.05 and a cluster size > 55 voxels; Covariates included sex, age, WMLs and vascular risk factors.

(Wang et al., 2014). The discrepancy may depend on the

different cognitive levels in the T2DM participants between

that study and the current one since cognitive decline was

associated with abnormal ALFF signals in particular regions

(Xia et al., 2013; Cui et al., 2014; Wang et al., 2014). The

increased fALFF signals in the superior temporal gyrus may

be associated with compensation counterbalancing the possible

decline in language, speech, or auditory processing. Similarly,

hyperactivity in the supplementary motor area may make up for

motor deficits.

In the meantime, the cluster with decreased fALFF signals

was shown in the left precentral gyrus. The region contains

the primary motor cortex (Lemon, 2008) which contributes to

controlling voluntary motor movement on the contralateral side

of the body (Cross et al., 2020). Although motor dysfunction

is usually linked to T2DM via diabetic peripheral neuropathy
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TABLE 3 Clusters showing fALFF di�erence in HC vs. T2DM and HC vs. SCD with cluster size and MNI coordinates.

fALFF

signals

Cluster position

(decided by

predominant

voxels)

Cluster size

(No. of voxels,

volume in

mm3)

Peak coordinate

(in MNI space)

Peak

intensity

(T-value)

Cluster breakdown

(No. of voxels, % in

cluster)

T2DM>HC Cluster 1: L Temporal

lobe

102, 816 X=−52, Y=−18, Z= 8 5.8813 Temporal_Sup_L (81, 79%)

Temporal_Mid_L (9, 9%)

Heschl_L (6, 6%)

Rolandic_Oper_L (4, 4%)

Postcentral_L (2, 2%)

Cluster 2: L Frontal lobe 56, 448 X=−10, Y= 4, Z= 68 3.6728 Supp_Motor_Area_L (56, 100%)

T2DM<HC Cluster 3: L Frontal lobe 63, 504 X=−36, Y= 4, Z= 58 −2.761 Precentral_L (37, 59%)

Frontal_Mid_L (26, 41%)

SCD>HC Cluster 1: L Cerebellum 80, 640 X=−20, Y=−42, Z=−46 4.6196 Cerebellum_8_L (57, 71%)

Cerebellum_9_L (20, 25%)

Cerebelum_1_L (2, 3%)

Cerebellum_7b_L (1, 1%)

Cluster 2: L Central

structures

73, 584 X=−18, Y= 14, Z=−2 4.1051 Putamen_L (33, 45%)

Rectus_L (18, 25%)

Frontal_Sup_Orb_L (7, 10%)

Olfactory_L (4, 5%)

Pallidum_L (3, 4%)

Caudate_L (2, 3%)

Insula_L (1, 1%)

Cluster 3: R Cingulate

gyrus

64, 512 X= 8, Y=−28, Z= 38 4.2046 Cingulum_Mid_R (43, 67%)

Cingulum_Mid_L (20, 31%)

None (1, 2%)

Cluster 4: L Temporal

lobe

63, 504 X=−58, Y=−14, Z= 10 4.9823 Temporal_Sup_L (27, 43%)

Rolandic_Oper_L (13, 21%)

Postcentral_L (12, 19%)

Heschl_L (11, 17%)

Temporal_Sup_L, left superior temporal gyrus; Temporal_Mid_L, left middle temporal gyrus; Heschl_L, left heschl gyrus; Rolandic_Oper_L, left rolandic operculum; Postcentral_L, left

postcentral gyrus; Supp_Motor_Area_L, left supplementary motor area; Precentral_L, left precentral gyrus; Frontal_Mid_L, left middle frontal gyrus; Cerebellum_8_L, left cerebellum

crus 8; Cerebellum_9_L, Cerebelum_1_L, left cerebellum crus 1; Cerebellum_7b_L, left cerebellum crus 7; Putamen_L, left putamen; Rectus_L, left rectus gyrus; Frontal_Sup_Orb_L, left

superior frontal gyrus, orbital; Olfactory_L, left olfactory cortex; Pallidum_L, left pallidum; Caudate_L, left caudate nucleus; Insula_L, left insula; Cingulum_Mid_R, right cingulate gyrus,

mid part; Cingulum_Mid_L, left cingulate gyrus, mid part. The bold values indicate the cluster position with maximum voxel.

(DNP; Fulk et al., 2010; Gorniak et al., 2014, 2019; Ochoa

et al., 2016), DNP is not the sole contributor to motor

dysfunction (Fulk et al., 2010; Hewston and Deshpande, 2016).

The subtle diabetic-related decline in sensory, metabolic muscle,

and executive functions could also contribute to impaired

balance in T2DM (Hewston and Deshpande, 2016). Besides, in

previous studies, the decreased fALFF in the frontal lobe was

significantly correlated with severe microvascular disease (Wang

et al., 2014), and the decreased CBF in this region was also found

in the T2DM group with a higher incidence of vascular risk

factors (Last et al., 2007; Chau et al., 2020). Consistently, our

T2DM group had a much higher prevalence of hyperlipidemia

(89%) compared to the HC group (22%). Although both the

supplementary motor area and precentral gyrus are parts of

the frontal lobe and within the sensorimotor network, the

supplementary motor area plays an important role in internal-

guided movement whilst the precentral gyrus contributes to

both internal and external-guided movements (Ninomiya et al.,

2019). This could partly explain the opposite neural activity

change in the two sites.

Altered fALFF signals in SCD

Compared to HC, the areas showed increased fALFF signals

in the SCD group included the left posterior cerebellum,
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TABLE 4 Non-parametrical partial correlation (control for age and

sex) between regional fALFF values and local amyloid deposition in

T2DM and SCD groups, survived clusters-based.

Group Clusters R-value P-value

T2DM Cluster1 0.108 0.691

Cluster2 0.161 0.552

Cluster3 0.3 0.26

SCD Cluster1 −0.626 0.071

Cluster2 0.066 0.867

Cluster3 0.041 0.916

Cluster4 −0.02 0.959

TABLE 5 Non-parametrical partial correlation (control for age and

sex) between regional fALFF values and local amyloid deposition in

T2DM group, cortex ID ROI-based.

T2DM R-value P-value

Prefrontal R −0.365 0.164

Prefrontal L −0.361 0.17

Anterior Cingulate R −0.362 0.168

Anterior Cingulate L −0.778 <0.001

Precuneus/Posterior Cingulate R 0.206 0.444

Precuneus/Posterior Cingulate L 0.19 0.482

Parietal R 0.137 0.612

Parietal L 0.289 0.277

Temporal Lateral R 0.249 0.353

Temporal Lateral L 0.056 0.836

Occipital R 0.804 <0.001

Occipital L 0.149 0.106

Sensorimotor R 0.345 0.191

Sensorimotor L 0.295 0.267

Temporal Mesial R 0.369 0.159

Temporal Mesial L 0.604 <0.05

L, Left; R, Right. The bold values indicate R-value with P-value < 0.05.

left superior temporal gyrus, left putamen, and right middle

cingulate gyrus extending to the paracingulate gyrus. The

cerebellum has an important role in motor coordination and

modulation of cognition and emotion (Jacobs et al., 2017).

As mentioned before, the superior temporal lobe contributes

to language processing (Bueti et al., 2008; Patel et al., 2021).

Language decline is a common feature (Forbes-McKay et al.,

2013) in AD that is linked to the severity of the disease

(Kav and Dassa, 2018). The increased ALFF/fALFF signals in

the superior temporal gyri and cerebellum were also reported

by previous studies when comparing SCD with HC (Sun

et al., 2016) and comparing amnestic MCI with HC (Han

et al., 2011; Yin et al., 2014). The putamen is a part of

the basal ganglia that regulates a wide range of motor and

cognition (Nagano-Saito et al., 2014). One previous work

TABLE 6 Non-parametrical partial correlation (control for age and

sex) between regional fALFF values and local amyloid deposition in

SCD group, cortex ID ROI-based.

SCD R-value P-value

Prefrontal R 0.409 0.274

Prefrontal L 0.189 0.626

Anterior Cingulate R −0.605 0.084

Anterior Cingulate L −0.755 <0.05

Precuneus/Posterior Cingulate R −0.343 0.367

Precuneus/Posterior Cingulate L −0.11 0.778

Parietal R −0.145 0.71

Parietal L 0.003 0.994

Temporal Lateral R 0.266 0.49

Temporal Lateral L −0.143 0.714

Occipital R −0.178 0.646

Occipital L −0.123 0.752

Sensorimotor R −0.514 0.157

Sensorimotor L −0.413 0.269

Temporal Mesial R −0.641 0.063

Temporal Mesial L −0.503 0.168

L, Left; R, Right. The bold values indicate R-value with P-value < 0.05.

proved the decreased volume of putamen (De Jong and van

der Grond, 2008), which may be associated with cognitive

impairment. The middle cingulate and paracingulate gyri house

Brodmann’s area 23 and are located in the ventral part

of the posterior cingulate cortex (PCC; Cera et al., 2019).

PCC is a core component of the DMN that contributes to

visuospatial orientation, body navigation (Vogt, 2005), self-

reflection, and autobiographical memories (Spreng et al., 2009).

There is an abundance of converging evidence on altered

DMN connectivity in SCD (Dillen et al., 2017; Xue et al.,

2019), MCI (Jacobs et al., 2013; Wang et al., 2013a; Xue

et al., 2019), and AD (Toussaint et al., 2014; Dai et al.,

2015; Dillen et al., 2017; Xue et al., 2019). Furthermore, the

increased neural activity in the part of temporal, occipital,

parietal, and subcortical regions was negatively correlated with

various neuropsychological tests’ performance in the SCD group

(Zhang et al., 2021). With this finding, we may speculate that

the increased local neural activity in SCD may represent a

compensatory mechanism that counterbalances neural damage

and functional decline.

The results reported by the previous meta-analytic studies

may illustrate the altered spontaneous activity in patients with

high-risk factors more fairly. Xia et al. observed reduced brain

activity in the bilateral lingual gyrus, left postcentral gyrus,

right inferior temporal gyrus, right cerebellar culmen, right

insula, and right posterior cingulate cortex but hyperactivity

in the left superior frontal gyrus and right precuneus, when

comparing T2DM group with HC group (Xia et al., 2017).
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In another meta-analytic study reported by Liu et al. (2021),

regional hypoactivity in patients with T2DM was presented in

the right medial superior frontal gyrus, right superior temporal

gyrus, and left lingual gyrus, and hyperactivity was shown

in the right cerebellum. Several key regions were consistently

reported in previousmeta-analytic studies and the current study,

for instance, the superior frontal gyrus and superior temporal

gyrus, although the specific alterations (increased or decreased

brain activity) may not be accordant. The heterogeneity of

included studies and different tools for data analysis may result

in the discrepancy. Similarly, in a previous meta-analytic study

investigating spontaneous brain activity in MCI, decreased

ALFF values were found in the bilateral PCC (Pan et al.,

2016). Our SCD group showed increased fALFF values in the

ventral part of PCC. Moreover, the elevated Aβ deposition

and decreased glucose metabolism of this region were also

observed in MCI and AD (He et al., 2014). PCC is a major

component within the DMN and is prone to amyloid deposition

at the early stage of AD, which could be a key region for

early diagnosis of AD. In addition, our study demonstrated

more regions showing increased brain activity compared to

previous studies. The hyperactivity in these regions could

be closely associated with the intact cognition of SCD and

T2DM groups (showing comparable regional amyloid load in

Table 2), such as making up for possible deficits to compensate

for the loss of cognitive function by recruiting additional

neural activities.

Partial correlation in T2DM and SCD
groups: Survived cluster-based

The fALFF signals in the survived clusters were not

correlated with the local amyloid load when comparing

each high-risk group with HC. However, the correlation was

established between two variates in certain pre-set regions in

high-risk groups (Tables 4, 5) discussed below. The results are

not against each other since they are two different comparisons.

We hypothesized that altered fALFF in those survived clusters

may not be solely dependent on local amyloid deposition.

Cognitive impairment could be another factor affecting the

correlation. Altered fALFF values from particular survived

clusters were significantly correlated to MoCA scores for

cognitively impaired patients with T2DM reported by one

previous study. Nevertheless, our T2DM participants were

cognitively normal. Besides, Chen et al. reported that enhanced

topographical pro perties in the SCD group compared to

the HC group were negatively correlated with cerebrospinal

fluid (CSF) Aβ levels in those DMN-related regions (Chen

et al., 2020). Notably, abnormal Aβ level detected by CSF

maker was prior to amyloid plaques detected by amyloid-PET

(Mattsson et al., 2015; Palmqvist et al., 2017) which may result

in this difference.

Partial correlation in T2DM and SCD
groups: Cortex ID ROI-based

In both high-risk groups, fALFF signals were negatively

correlated with amyloid deposition in the left ACC which is

a part of the DMN and responsible for memory processing

(Buckner et al., 2005; van den Heuvel and Hulshoff Pol,

2010). Previous research had proved that DMN connectivity

dysfunction was associated with amyloid burden in the

cognitively normal elderly (Sheline et al., 2010; Mormino et al.,

2011; Wang et al., 2013b; Elman et al., 2016; Palmqvist et al.,

2017). Moreover, in the Scheel et al. study, a robust negative

correlation between ALFF signals and the amyloid load was

predominantly in the DMN and visual network, in the amnesic

MCI group (Scheel et al., 2021). The negative correlation shown

in the ACC for both SCD and T2DM groups may illustrate the

vulnerability of the ACC to amyloid pathology.

In T2DM, a positive correlation was also shown in the

mesial temporal within the DMN and occipital lobes within

the visual network. Compared to the ACC, the mesial temporal

and occipital lobes affected by Aβ are commonly seen in

the late stage of AD (Thal et al., 2002; Grothe et al., 2017).

One mice model study showed that increased physiological

neural activity was closely associated with early and soluble Aβ

oligomers, before the formation of fibrillar Aβ plaques (Bero

et al., 2011). Palmqvist et al. found that the connectivity within

the DMN shifted from hyperconnection to hypoconnection

when CSF Aβ42 levels dropped from near abnormal range to

abnormal level (Palmqvist et al., 2017). Hence, we speculate that

the specific correlation may be associated with the temporal

difference between the regions affected by Aβ deposition and

the local magnitude of Aβ abnormality. The occipital lobe has

an important role in visual processing (van den Heuvel and

Hulshoff Pol, 2010). Although amyloid accumulation in the

visual network was observed to be less as compared to the

DMN in the early stages of AD (Palmqvist et al., 2017), 28

and 11% of our T2DM participants with retinopathy and with

both retinopathy and maculopathy, respectively, may contribute

to the correlation. Atrophy of the mesial temporal regions was

initiated at a very early stage (Cho et al., 2016), whereas the Aβ

load in these regions was very low or even non-existent (Braak

and Braak, 1991; Arriagada et al., 1992; Price and Morris, 1999).

Consequently, local amyloid uptake may be difficult to detect

or quantify due to atrophy. Therefore, the positive correlation

in the mesial temporal regions requires further validation. A

positive correlation was also seen between amyloid uptake

and dynamic functional connectivity in cognitively unimpaired

elderlies with normal amyloid-PET results (Hahn et al., 2019).
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The enhanced dynamic connectivity may reflect a compensation

to maintain the normal cognitive performance in the presence of

increasing Aβ accumulation during the early phase of AD (Hahn

et al., 2019). Previous studies incorporating different modalities

also illustrated this phenomenon, including enhanced neuronal

activation (Elman et al., 2014) and gray matter volume (van

Loenhoud et al., 2017) observed in the early stages of dementia.

It is theorized to make up for Aβ-induced neuronal damage

and structural change. Correspondingly, a significant positive

correlation in our study may also reflect a compensatory

mechanism, in the form of cognitive reserve, to counterbalance

the increased Aβ burden.

From another aspect, previous work recruiting non-

demented elderlies with normal amyloid-PET results found that

the earliest Aβ accumulation started in the core regions of DMN

(precuneus, posterior cingulate cortex, and orbitofrontal cortex)

and was associated with the altered functional connectivity

(Palmqvist et al., 2017; Hahn et al., 2019). Similarly, the current

study illustrated significant correlations between Aβ and local

neural activity in certain ROIs within the DMN and visual

network in non-demented SCD and T2DM groups with mean

negative amyloid retention as well. All the findings suggest that

the very early Aβ deposition can be assessed in non-demented

elderlies when global amyloid retention is still normal and

has been associated with brain functional connectivity or local

neural activity.

There are several limitations to this study. Our sample

size was small. Nevertheless, it is a pilot study investigating

the possible association between early Aβ accumulation

and local neural activity in non-demented high-risk

populations. Other clinical data could not be assessed,

such as blood pressure, body mass index, and education.

Specific neuropsychological tests were not performed, which

limited further analysis between different domains of cognition

and neural activity.

Conclusion

Taken all together, compared to the HC group, the altered

neural activity in the T2DM group was predominately presented

in the superior temporal and motor cortex. In the meantime, the

altered neural activity in the SCD group was in the cerebellum,

subcortical central structure, cingulate gyrus, and temporal lobe.

However, in both groups, altered fALFF signals of these regions

were found to be independent of local Aβ deposition. Moreover,

the very early amyloid uptake in the SCD and T2DM groups was

observed to affect the local neural activity shown in several ROIs

mainly involved in the DMN. The specific correlation (positive

or negative) may be dependent on the temporal difference of the

regions affected by Aβ deposition and the magnitude of local

Aβ abnormality.
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