166 research outputs found

    The global burden of scabies: a cross-sectional analysis from the Global Burden of Disease Study 2015.

    Get PDF
    Background Numerous population-based studies have documented high prevalence of scabies in overcrowded settings, particularly among children and in tropical regions. We provide an estimate of the global burden of scabies using data from the Global Burden of Disease (GBD) Study 2015. Methods We identified scabies epidemiological data sources from an extensive literature search and hospital insurance data and analysed data sources with a Bayesian meta-regression modelling tool, DisMod-MR 2·1, to yield prevalence estimates. We combined prevalence estimates with a disability weight, measuring disfigurement, itch, and pain caused by scabies, to produce years lived with disability (YLDs). With an assumed zero mortality from scabies, YLDs were equivalent to disability-adjusted life-years (DALYs). We estimated DALYs for 195 countries divided into 21 world regions, in both sexes and 20 age groups, between 1990 and 2015. Findings Scabies was responsible for 0·21% of DALYs from all conditions studied by GBD 2015 worldwide. The world regions of east Asia (age-standardised DALYs 136·32), southeast Asia (134·57), Oceania (120·34), tropical Latin America (99·94), and south Asia (69·41) had the greatest burden of DALYs from scabies. Mean percent change of DALY rate from 1990 to 2015 was less than 8% in all world regions, except North America, which had a 23·9% increase. The five individual countries with greatest scabies burden were Indonesia (age-standardised DALYs 153·86), China (138·25), Timor-Leste (136·67), Vanuatu (131·59), and Fiji (130·91). The largest standard deviations of age-standardised DALYs between the 20 age groups were observed in southeast Asia (60·1), Oceania (58·3), and east Asia (56·5), with the greatest DALY burdens in children, adolescents, and the elderly. Interpretation The burden of scabies is greater in tropical regions, especially in children, adolescents, and elderly people. As a worldwide epidemiological assessment, GBD 2015 provides broad and frequently updated measures of scabies burden in terms of skin effects. These global data might help guide research protocols and prioritisation efforts and focus scabies treatment and control measures. Funding Bill & Melinda Gates Foundation

    A phylogenetic classification of the world’s tropical forests

    Get PDF
    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition and dynamics. Such understanding will enable anticipation of region specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present the first classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (1) Indo-Pacific, (2) Subtropical, (3) African, (4) American, and (5) Dry forests. Our results do not support the traditional Neo- versus Palaeo-tropical forest division, but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar and India. Additionally, a northern hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern hemisphere forests

    Phylogenetic classification of the world\u27s tropical forests

    Get PDF

    Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo)

    Get PDF
    DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≄154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses

    An estimate of the number of tropical tree species

    Get PDF
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∌40,000 and ∌53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∌19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∌4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa

    The global abundance of tree palms

    Get PDF
    Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≄10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    The global abundance of tree palms

    Get PDF
    Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location: Tropical and subtropical moist forests. Time period: Current. Major taxa studied: Palms (Arecaceae). Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≄10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Conservation of chloroplast genome structure among vascular plants

    Full text link
    We have constructed the first physical map of a gymnosperm chloroplast genome and compared its organization with those of a fern and several angiosperms by heterologous filter hybridization. The chloroplast genome of the gymnosperm Ginkgo biloba consists of a 158 kb circular chromosome that contains a ribosomal RNA-encoding inverted repeat approximately 17 kb in size. Gene mapping experiments demonstrate a remarkable similarity in the linear order and absolute positions of the ribosomal RNA genes and of 17 protein genes in the cpDNAs of Ginkgo biloba , the fern Osmunda cinnamomea and the angiosperm Spinacia oleracea . Moreover, filter hybridizations using as probes cloned fragments that cover the entirety of the angiosperm chloroplast genome reveal a virtually colinear arrangement of homologous sequence elements in these genomes representing three divisions of vascular plants that diverged some 200–400 million years ago. The only major difference in chloroplast genome structure among these vascular plants involves the size of the rRNA-encoding inverted repeat, which is only 10 kb in Osmunda , 17 kb in Ginkgo , and about 25 kb in most angiosperms. This size variation appears to be the result of spreading of the repeat through previously single copy sequences, or the reverse process of shrinkage, unaccompanied by any overall change in genome complexity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46955/1/294_2004_Article_BF00418529.pd
    • 

    corecore