51 research outputs found

    Uniform Large-Area Free-Standing Silver Nanowire Arrays on Transparent Conducting Substrates

    Get PDF
    Arrays of silver nanowires have received increasing attention in a variety of applications such as surface-enhanced Raman scattering (SERS), plasmonic biosensing and electrode for photoelectric devices. However, until now, large scale fabrication of device-suitable silver nanowire arrays on supporting substrates has seen very limited success. Here we show the synthesis of free-standing silver nanowire arrays on indium-tin oxide (ITO) coated glass by pulsed electrodeposition into anodic aluminum oxide (AAO) templates. We use an in situ oxygen plasma cleaning process and a sputtered Ti layer to enhance the adhesion between the template and ITO glass. An ultrathin gold layer (2 nm) is deposited as a nucleation layer for the electrodeposition of silver. An unprecedented high level of uniformity and control of the nanowire diameter, spacing and length has been achieved. The absorption measurements show that the free-standing silver nanowire arrays possess tunable plasmonic resonances.publishe

    Nanostructured conformal hybrid solar cells: a promising architecture towards complete charge collection and light absorption

    Get PDF
    We introduce hybrid solar cells with an architecture consisting of an electrodeposited ZnO nanorod array (NRA) coated with a conformal thin layer (< 50 nm) of organic polymer-fullerene blend and a quasi-conformal Ag top contact (Thin/NR). We have compared the performance of Thin/NR cells to conventional hybrid cells in which the same NRAs are completely filled with organic blend (Thick/NR). The Thin/NR design absorbs at least as much light as Thick/NR cells, while charge extraction is significantly enhanced due to the proximity of the electrodes, resulting in a higher current density per unit volume of blend and improved power conversion efficiency. The NRAs need not be periodic or aligned and hence can be made very simply

    Translating advances in the molecular basis of schizophrenia into novel cognitive treatment strategies

    Get PDF
    The presence and severity of cognitive symptoms, including working memory, executive dysfunction and attentional impairment, contributes materially to functional impairment in schizophrenia. Cognitive symptoms have proven resistant to both first- and second-generation antipsychotic drugs. Efforts to develop a consensus set of cognitive domains that are both disrupted in schizophrenia and are amenable to cross-species validation (e.g. the NIMH CNTRICS and RDoC initiatives) are an important step towards standardisation of outcome measures that can used in preclinical testing of new drugs. While causative genetic mutations have not been identified, new technologies have identified novel genes as well as hitherto candidate genes previously implicated in the pathophysiology of schizophrenia and/or mechanisms of antipsychotic efficacy. This review comprises a selective summary of these developments, particularly phenotypic data arising from preclinical genetic models for cognitive dysfunction in schizophrenia, with the aim of indicating potential new directions for pro-cognitive therapeutics

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Genetic Overlap Between Alzheimer’s Disease and Bipolar Disorder Implicates the MARK2 and VAC14 Genes

    Get PDF
    Background: Alzheimer's disease (AD) and bipolar disorder (BIP) are complex traits influenced by numerous common genetic variants, most of which remain to be detected. Clinical and epidemiological evidence suggest that AD and BIP are related. However, it is not established if this relation is of genetic origin. Here, we applied statistical methods based on the conditional false discovery rate (FDR) framework to detect genetic overlap between AD and BIP and utilized this overlap to increase the power to identify common genetic variants associated with either or both traits. Methods: We obtained genome wide association studies data from the International Genomics of Alzheimer's Project part 1 (17,008 AD cases and 37,154 controls) and the Psychiatric Genetic Consortium Bipolar Disorder Working Group (20,352 BIP cases and 31,358 controls). We used conditional QQ-plots to assess overlap in common genetic variants between AD and BIP. We exploited the genetic overlap to re-rank test-statistics for AD and BIP and improve detection of genetic variants using the conditional FDR framework. Results: Conditional QQ-plots demonstrated a polygenic overlap between AD and BIP. Using conditional FDR, we identified one novel genomic locus associated with AD, and nine novel loci associated with BIP. Further, we identified two novel loci jointly associated with AD and BIP implicating the MARK2 gene (lead SNP rs10792421, conjunctional FDR=0.030, same direction of effect) and the VAC14 gene (lead SNP rs11649476, conjunctional FDR=0.022, opposite direction of effect). Conclusions: We found polygenic overlap between AD and BIP and identified novel loci for each trait and two jointly associated loci. Further studies should examine if the shared loci implicating the MARK2 and VAC14 genes could explain parts of the shared and distinct features of AD and BIP

    Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders.

    Get PDF
    Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development

    The genetics of the mood disorder spectrum:genome-wide association analyses of over 185,000 cases and 439,000 controls

    Get PDF
    Background Mood disorders (including major depressive disorder and bipolar disorder) affect 10-20% of the population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives. Despite their diagnostic distinction, multiple approaches have shown considerable sharing of risk factors across the mood disorders. Methods To clarify their shared molecular genetic basis, and to highlight disorder-specific associations, we meta-analysed data from the latest Psychiatric Genomics Consortium (PGC) genome-wide association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; non-overlapping N = 609,424). Results Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for mood disorders. More genome-wide significant loci from the PGC analysis of major depression than bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder correlates strongly with recurrent and single episode major depressive disorder. Systems biology analyses highlight both similarities and differences between the mood disorders, particularly in the mouse brain cell-types implicated by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with educational attainment – positive in bipolar disorder but negative in major depressive disorder. Conclusions The mood disorders share several genetic associations, and can be combined effectively to increase variant discovery. However, we demonstrate several differences between these disorders. Analysing subtypes of major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum

    Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes

    Get PDF
    publisher: Elsevier articletitle: Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes journaltitle: Cell articlelink: https://doi.org/10.1016/j.cell.2018.05.046 content_type: article copyright: © 2018 Elsevier Inc

    Nanostrukturierte Grenzschichten in Hybridsolarzellen

    No full text
    Excitonic solar cells are an emerging technology which holds the great promise of generating clean and sustainable photovoltaic power at lower cost than conventional silicon solar cells. In excitonic solar cells, the light is absorbed by organic semiconductors and dye molecules, which typically exhibit higher exciton binding energies than inorganic semiconductors. Therefore, free charge carriers can be generated only at interfaces between donor and acceptor materials. These interfaces can provide sufficient energy to overcome the exciton binding energy, resulting in free charge carriers, which then have to be transported towards the external electrodes. Since typical exciton diffusion lengths in organic materials do not exceed 10 nm, a sophisticated design of the internal morphology of the photoactive layer is necessary in order to allow loss-free diffusion of excitons to the separating interface while simultaneously providing consistent pathways for charge transport.This requirement can be met when employing metal oxide semiconductors like TiO2 as acceptor materials in combination with absorbing organic donors in so-called hybrid solar cells. TiO2 is an abundant, non-toxic, and cheap material and there are several well-established strategies to cover large areas with TiO2 nanostructures. In hybrid solar cells, these structures are decorated with self-assembled monolayers of dye molecules and infiltrated with conducting polymers. This results in a nano-phase separated donor-acceptor structure, which provides short exciton diffusion pathways towards interfaces but works as a consistent charge transport network. A general overview of different types of excitonic solar cells is given in Chapter 2, while working mechanisms of hybrid solar cells and fabrication routes for TiO2 nanostructures are described in more detail in Chapter 3.Two of the main challenges in hybrid solar cell research are the optimization of 1) the interface between organic and inorganic compounds and 2) the nano-geometry of the metal oxide electrode, i.e., the internal morphology of the active film. Topic 1) is adressed in the first part of this thesis, where the impact of interfacial properties on the mechanisms of charge separation, collection, and recombination is investigated for hybrid solar cells based on TiO2 as the metal oxide electrode and polythiophene as the organic hole transporter. The introduction of a conducting polymer between photoactive film and metal top contact as interfacial layer is discussed in Chapter 5. This coating establishes an Ohmic contact between organic semiconductor and metal electrode, which is favorable for charge collection. Three different self-assembled monolayers of dye molecules and a thin coating of Sb2S3 as modifiers at the interface between TiO2 and polythiophene are presented in Chapter 6. Choice of the modifier allows to partly control charge recombination kinetics at the hybrid interface. In Chapter 7 fine-tuning of the properties of the TiO2-dye-polymer interface with pyridine derivatives is discussed. It is found that a combination of 4-tert-butylpyridine and 4-mercaptopyridine enhances photocurrent and photovoltage simultaneously.The second part of the thesis adresses topic 2). As a model system for excitonic photoactive layers with different donor-acceptor morphologies polymer:fullerene bulk heterojunction solar cells are investigated in Chapter 8. In this chapter, the kinetics of charge recombination and extraction are analyzed as a function of the internal morphology of the devices. Chapter 9 presents a synthesis route for large area fabrication of TiO2 nanotube arrays on transparent conducting oxides with good control over nanostructure dimensions like tube spacing, diameter, and wall thickness. These structures are highly interesting for applications in hybrid solar cells since they allow a donor-acceptor nano-geometry with fine phase separation, enabling efficient exciton separation by still providing direct pathways for charge transport

    Perspective : Hybrid solar cells: How to get the polymer to cooperate?

    No full text
    Lately, a lot of attention has been paid to metal oxide-organic hybrid solar cells. In these devices, conjugated polymers replace the typically transparent hole transporter as usually used in solid-state dye-sensitized solar cells in order to maximize the photon absorption efficiency. However, to unleash the full potential of hybrid solar cells it is imperative to push the photocurrent contribution of the absorbing polymer
    corecore