220 research outputs found

    The brattleboro rat displays a natural deficit in social discrimination that is restored by clozapine and a neurotensin analog.

    Get PDF
    Cognitive deficits in schizophrenia are a major source of dysfunction for which more effective treatments are needed. The vasopressin-deficient Brattleboro (BRAT) rat has been shown to have several natural schizophrenia-like deficits, including impairments in prepulse inhibition and memory. We investigated BRAT rats and their parental strain, Long-Evans (LE) rats, in a social discrimination paradigm, which is an ethologically relevant animal test of cognitive deficits of schizophrenia based upon the natural preference of animals to investigate conspecifics. We also investigated the effects of the atypical antipsychotic, clozapine, and the putative antipsychotic, PD149163, a brain-penetrating neurotensin-1 agonist, on social discrimination in these rats. Adult rats were administered saline or one of the three doses of clozapine (0.1, 1.0, or 10 mg/kg) or PD149163 (0.1, 0.3, or 1.0 mg/kg), subcutaneously. Following drug administration, adult rats were exposed to a juvenile rat for a 4-min learning period. Animals were then housed individually for 30 min and then simultaneously exposed to the juvenile presented previously and a new juvenile for 4 min. Saline-treated LE rats, but not BRAT rats, exhibited intact social discrimination as evidenced by greater time spent exploring the new juvenile. The highest dose of clozapine and the two highest doses of PD149163 restored social discrimination in BRAT rats. These results provide further support for the utility of the BRAT rat as a genetic animal model relevant to schizophrenia and drug discovery. The potential of neurotensin agonists as putative treatments for cognitive deficits of schizophrenia was also supported

    Improving the Chile Industry of New Mexico Through Industry, Agriculture Experiment Station, and Cooperative Extension Service Collaboration: A Case Study

    Get PDF
    Chile growers and the Agricultural Research and Cooperative Extension Services at New Mexico State University have a long history of collaboration to sustain the chile industry. This case study identifies and documents the methodology of creating collaboration among the Agriculture Experimental Station, Cooperative Extension, and growers to solving local, regional, and global challenges in a specialty crop. A new paradigm has been created with the formation of a research-team approach with long-term funding guaranteed and the New Mexico Chile Growers Association\u27s direct involvement to determine the allocation of research funds to the team and other funding requests

    Spatial Variability of Electrical Conductivity of Desert Soil Irrigated with Treated Wastewater: Implications for Irrigation Management

    Get PDF
    Knowledge of spatial variability is important for management of land affected by various anthropogenic activities. This study was conducted at West Mesa land application site to determine the spatial variability of electrical conductivity (EC1:1) and suggest suitable management strategy. Study area was divided into five classes with EC increasing from class I to V. According to the coefficient of variation (CV), during 2009 and 2010, EC1:1 values for different classes were low to moderately variable at each depth. Semivariogram analysis showed that EC1:1 displayed both short and long range variability. Area coverage of classes I and II were much higher than classes III, IV, and V during 2009. However, during 2010 area coverage decreased from 26% to 14.91% for class II, increased from 12.11% to 22.97%, and 10.95% to 20.55 for classes IV and V, respectively. Overall area under EC1:1≥ 4 dS/m increased during 2009. Soil EC map showed EC classes IV (4.1–5 dS/m) and V (>5.1 dS/m) were concentrated at northwest and southeast and classes I and II were at the middle of the study plot. Thus, higher wastewater should be applied in the center and lower in the northwest and southwest part of the field

    Components of phenotypic variance of seed traits and germination characteristics of 20 ponderosa pine half-sib families

    Get PDF
    Abstract A study was conducted to estimate phenotypic variance components of seed traits and seed vigor of 20 ponderosa pine seed lots. A high intraspecific within-group variation in seed germination and seedling growth has been observed in both half-sib and full-sib families of conifers. Some seed traits may influence seed lot quality and seedling survival. Wind-pollinated cones were collected from 20 ponderosa pine maternal trees, 10 cones per tree, in a stand located in Fort Defiance, Arizona. Air-dried seeds were sown under laboratory conditions, by using a completely randomized design to estimate components of phenotypic variance for seed weight (SW), seed coat weight (SCW), seed imbibition (IMB), five germination characteristics, and three Weibull parameters (a, b and c). About 80% of size classes had a seed weight (SW) e» 41 mg and e» 97% final germination. The within-plot (within- family) variance component for SW (64.5%) and IMB (70.4%) was higher than among-family variation (35.3 and 24.8%, respectively). The among-family component varied from 35.1% (Weibull parameter a) to 62.3% (Peak Value). Results suggest a significant maternal contribution and a high within-family genetic influence on seed quality and germination characteristics. Finally, heavier seeds (SW e» 60 mg), whose time of germination (TOG) occurred at day 3, increased 38.3% of their seed weight due to water absorption before reaching 50% germination; on the other hand, seeds whose SW was e» 45 mg and TOG = 7, showed 102.2% increase in SW before reaching 50% germination. Resumen Se realizó un estudio para estimar componentes de varianza de características y vigor de 20 lotes de semilla de pino ponderosa. En familias de hermanos completos y medios hermanos la varianza dentro de grupos es elevada para la germinación y crecimiento de plántulas de coníferas. Algunas características de semilla pueden influir en la calidad del lote y la supervivencia de plántulas. Diez conos de polinización abierta fueron colectados de cada uno de 20 árboles madre, en una población localizada en Fort Defiance, Arizona. Semillas secadas al aire fueron sembradas en el laboratorio, en un diseño completamente aleatorizado, para estimar las componentes de varianza fenotípica de: peso (SW) y cubierta de la semilla (SCW); imbibición de la semilla (IMB), cinco características germinativas y tres parámetro de Weibull (a, b y c). Un 80% de la semilla tuvo peso e» 41 mg y germinación e» 97%. La varianza dentro de progenie/dentro de familia para las características SW (64.5%) e IMB (70.4%) fue mayor que la varianza entre familias (35.3 y 24.8%, respectivamente). La varianza entre familias varió de 35.1% (parámetro a de Weibull) a 62.3% (Peak Value). Los resultados sugieren contribución materna y componente genética alta dentro de familias que influyen en la calidad y características germinativas de la semilla. Semillas con SW e» 60 mg y TOG=3, incrementaron 38.3% de su peso por agua absorbida para alcanzar 50% de germinación. Las semillas cuyo SW fue e» 45 mg and TOG = 7, mostraron un incremento de 102.2% en SW antes de completar 50% de germinación

    Fly Ash and Composted Biosolids as a Source of Fe for Hybrid Poplar: A Greenhouse Study

    Get PDF
    Soils of northwest New Mexico have an elevated pH and CaCO3 content that reduces Fe solubility, causes chlorosis, and reduces crop yields. Could biosolids and fly ash, enriched with Fe, provide safe alternatives to expensive Fe EDDHA (sodium ferric ethylenediamine di-(o-hydroxyphenyl-acetate)) fertilizers applied to Populus hybrid plots? Hybrid OP-367 was cultivated on a Doak sandy loam soil amended with composted biosolids or fly ash at three agricultural rates. Fly ash and Fe EDDHA treatments received urea ammonium nitrate (UAN), biosolids, enriched with N, did not. Both amendments improved soil and plant Fe. Heavy metals were below EPA regulations, but high B levels were noted in leaves of trees treated at the highest fly ash rate. pH increased in fly ash soil while salinity increased in biosolids-treated soil. Chlorosis rankings improved in poplars amended with both byproducts, although composted biosolids offered the most potential at improving Fe/tree growth cheaply without the need for synthetic inputs

    The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders

    Get PDF
    Understanding the neurochemical basis for cognitive function is one of the major goals of neuroscience, with a potential impact on the diagnosis, prevention and treatment of a range of psychiatric and neurological disorders. In this review, the focus will be on a biochemical pathway that remains under-recognised in its implications for brain function, even though it can be responsible for moderating the activity of two neurotransmitters fundamentally involved in cognition – glutamate and acetylcholine. Since this pathway – the kynurenine pathway of tryptophan metabolism - is induced by immunological activation and stress it also stands in an unique position to mediate the effects of environmental factors on cognition and behaviour. Targetting the pathway for new drug development could, therefore, be of value not only for the treatment of existing psychiatric conditions, but also for preventing the development of cognitive disorders in response to environmental pressures

    Evaluation of Spatial and Temporal Root Water Uptake Patterns of a Flood-Irrigated Pecan Tree Using the HYDRUS (2D/3D) Model

    Full text link
    Quantitative information about the spatial and temporal patterns of compensatory root water uptake (RWU) in flood-irrigated pecan orchard is limited. We evaluated spatio-temporal compensated and uncompensated RWU patterns of mature pecan tree in a silty clay loam orchard using the HYDRUS (2D/3D) model. HYDRUS (2D/3D) simulations, which agreed well with measured water contents and temperatures at different soil depths and horizontal distances from the tree trunk, suggested that while both compensated and uncompensated RWU varied with soil depth they did not do so laterally because of similar spatial vertical distributions of root length density (RLD) for the under-canopy and the tree canopy dripline locations. Considering compensated RWU resulted in an increase in actual transpiration by 8%, and a decrease in evaporation and drainage by 5% and 50%, respectively, during a growing season. Simulated transpiration and relative transpiration (a ratio between actual and potential transpiration) values were correlated with measured transpiration and plant-based water stress indicators (stem and leaf water potentials), respectively. Overall, our results of the spatio-temporal compensatory RWU provide support to use HYDRUS (2D/3D) as a tool for managing efficient water use of pecan. © 2013 American Society of Civil Engineers. ASCE/AUGUST 2013

    Recent methods for polygenic analysis of genome-wide data implicate an important effect of common variants on cardiovascular disease risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditional genome-wide association studies are generally limited in their ability explain a large portion of genetic risk for most common diseases. We sought to use both traditional GWAS methods, as well as more recently developed polygenic genome-wide analysis techniques to identify subsets of single-nucleotide polymorphisms (SNPs) that may be involved in risk of cardiovascular disease, as well as estimate the heritability explained by common SNPs.</p> <p>Methods</p> <p>Using data from the Framingham SNP Health Association Resource (SHARe), three complimentary methods were applied to examine the genetic factors associated with the Framingham Risk Score, a widely accepted indicator of underlying cardiovascular disease risk. The first method adopted a traditional GWAS approach - independently testing each SNP for association with the Framingham Risk Score. The second two approaches involved polygenic methods with the intention of providing estimates of aggregate genetic risk and heritability.</p> <p>Results</p> <p>While no SNPs were independently associated with the Framingham Risk Score based on the results of the traditional GWAS analysis, we were able to identify cardiovascular disease-related SNPs as reported by previous studies. A predictive polygenic analysis was only able to explain approximately 1% of the genetic variance when predicting the 10-year risk of general cardiovascular disease. However, 20% to 30% of the variation in the Framingham Risk Score was explained using a recently developed method that considers the joint effect of all SNPs simultaneously.</p> <p>Conclusion</p> <p>The results of this study imply that common SNPs explain a large amount of the variation in the Framingham Risk Score and suggest that future, better-powered genome-wide association studies, possibly informed by knowledge of gene-pathways, will uncover more risk variants that will help to elucidate the genetic architecture of cardiovascular disease.</p

    Long-Term Continuous Corticosterone Treatment Decreases VEGF Receptor-2 Expression in Frontal Cortex

    Get PDF
    Objective: Stress and increased glucocorticoid levels are associated with many neuropsychiatric disorders including schizophrenia and depression. Recently, the role of vascular endothelial factor receptor-2 (VEGFR2/Flk1) signaling has been implicated in stress-mediated neuroplasticity. However, the mechanism of regulation of VEGF/Flk1 signaling under longterm continuous glucocorticoid exposure has not been elucidated. Material and Methods: We examined the possible effects of long-term continuous glucocorticoid exposure on VEGF/Flk1 signaling in cultured cortical neurons in vitro, mouse frontal cortex in vivo, and in post mortem human prefrontal cortex of both control and schizophrenia subjects. Results: We found that long-term continuous exposure to corticosterone (CORT, a natural glucocorticoid) reduced Flk1 protein levels both in vitro and in vivo. CORT treatment resulted in alterations in signaling molecules downstream to Flk1 such as PTEN, Akt and mTOR. We demonstrated that CORT-induced changes in Flk1 levels are mediated through glucocorticoid receptor (GR) and calcium. A significant reduction in Flk1-GR interaction was observed following CORT exposure. Interestingly, VEGF levels were increased in cortex, but decreased in serum following CORT treatment. Moreover, significant reductions in Flk1 and GR protein levels were found in postmortem prefrontal cortex samples from schizophrenia subjects. Conclusions: The alterations in VEGF/Flk1 signaling following long-term continuous CORT exposure represents a molecula
    corecore