376 research outputs found

    A Case of Bowen’s Disease and Small-Cell Lung Carcinoma: Long-Term Consequences of Chronic Arsenic Exposure in Chinese Traditional Medicine

    Get PDF
    Chronic arsenic toxicity occurs primarily through inadvertent ingestion of contaminated water and food or occupational exposure, but it can also occur through medicinal ingestion. This case features a 53-year-old lifetime nonsmoker with chronic asthma treated for 10 years in childhood with Chinese traditional medicine containing arsenic. The patient was diagnosed with Bowen’s disease and developed extensive-stage small-cell carcinoma of the lung 10 years and 47 years, respectively, after the onset of arsenic exposure. Although it has a long history as a medicinal agent, arsenic is a carcinogen associated with many malignancies including those of skin and lung. It is more commonly associated with non–small-cell lung cancer, but the temporal association with Bowen’s disease in the absence of other chemical or occupational exposure strongly points to a causal role for arsenic in this case of small-cell lung cancer. Individuals with documented arsenic-induced Bowen’s disease should be considered for more aggressive screening for long-term complications, especially the development of subsequent malignancies

    Arsenic Cancer Risk Confounder in Southwest Taiwan Data Set

    Get PDF
    Quantitative analysis for the risk of human cancer from the ingestion of inorganic arsenic has been based on the reported cancer mortality experience in the blackfoot disease (BFD)–endemic area of southwest Taiwan. Linear regression analysis shows that arsenic as the sole etiologic factor accounts for only 21% of the variance in the village standardized mortality ratios for bladder and lung cancer. A previous study had reported the influence of confounders (township, BFD prevalence, and artesian well dependency) qualitatively, but they have not been introduced into a quantitative assessment. In this six-township study, only three townships (2, 4, and 6) showed a significant positive dose–response relationship with arsenic exposure. The other three townships (0, 3, and 5) demonstrated significant bladder and lung cancer risks that were independent of arsenic exposure. The data for bladder and lung cancer mortality for townships 2, 4, and 6 fit an inverse linear regression model (p < 0.001) with an estimated threshold at 151 μg/L (95% confidence interval, 42 to 229 μg/L). Such a model is consistent with epidemiologic and toxicologic literature for bladder cancer. Exploration of the southwest Taiwan cancer mortality data set has clarified the dose–response relationship with arsenic exposure by separating out township as a confounding factor

    Cyclooxygenase-2 Induction by Arsenite through the IKKβ/NFκB Pathway Exerts an Antiapoptotic Effect in Mouse Epidermal Cl41 cells

    Get PDF
    BACKGROUND: Arsenic contamination has become a major public health concern worldwide. Epidemiologic data show that long-term arsenic exposure results in the risk of skin cancer. However, the mechanisms underlying carcinogenic effects of arsenite on skin remain to be studied. OBJECTIVES: In the present study we evaluated cyclooxygenase-2 (COX-2) expression, the signaling pathways leading to COX-2 induction, and its antiapoptotic function in the response to arsenite exposure in mouse epidermal JB6 Cl41 cells. METHODS: We used the luciferase reporter assay and Western blots to determine COX-2 induction by arsenite. We utilized dominant negative mutant, genetic knockout, gene knockdown, and gene overexpression approaches to elucidate the signaling pathway involved in COX-2 induction and its protective effect on cell apoptosis. RESULTS: The induction of COX-2 by arsenite was inhibited in Cl41 cells transfected with IKKβ-KM, a dominant mutant inhibitor of kβ (Ikβ) kinase (IKKβ), and in IKKβ-knockout (IKKβ(−/−)) mouse embryonic fibroblasts (MEFs). IKKβ/nuclear factor κB (NFκB) pathway-mediated COX-2 induction exerted an antiapoptotic effect on the cells exposed to arsenite because cell apoptosis was significantly enhanced in the Cl41 cells transfected with IKKβ-KM or COX-2 small interference RNA (siCOX-2). In addition, IKKβ(−/−) MEFs stably transfected with COX-2 showed more resistance to arsenite-induced apoptosis compared with the same control vector–transfected cells. CONCLUSIONS: These results demonstrate that arsenite exposure can induce COX-2 expression through the IKKβ/NFκB pathway, which thereby exerts an antiapoptotic effect in response to arsenite. In light of the importance of apoptosis evasion during carcinogenesis, we anticipate that COX-2 induction may be at least partially responsible for the carcinogenic effect of arsenite on skin

    A Population-Based Case–Control Study of Urinary Arsenic Species and Squamous Cell Carcinoma in New Hampshire, USA

    Get PDF
    Background: Chronic high arsenic exposure is associated with squamous cell carcinoma (SCC) of the skin, and inorganic arsenic (iAs) metabolites may play an important role in this association. However, little is known about the carcinogenicity of arsenic at levels commonly observed in the United States. Objective: We estimated associations between total urinary arsenic and arsenic species and SCC in a U.S. population. Methods: We conducted a population-based case–control SCC study (470 cases, 447 controls) in a U.S. region with moderate arsenic exposure through private well water and diet. We measured urinary iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA), and summed these arsenic species (ΣAs). Because seafood contains arsenolipids and arsenosugars that metabolize into DMA through alternate pathways, participants who reported seafood consumption within 2 days before urine collection were excluded from the analyses. Results: In adjusted logistic regression analyses (323 cases, 319 controls), the SCC odds ratio (OR) was 1.37 for each ln-transformed microgram per liter increase in ln-transformed ΣAs concentration [ln(ΣAs)] (95% CI: 1.04, 1.80). Urinary ln(MMA) and ln(DMA) also were positively associated with SCC (OR = 1.34; 95% CI: 1.04, 1.71 and OR = 1.34; 95% CI: 1.03, 1.74, respectively). A similar trend was observed for ln(iAs) (OR = 1.20; 95% CI: 0.97, 1.49). Percent iAs, MMA, and DMA were not associated with SCC. Conclusions: These results suggest that arsenic exposure at levels common in the United States relates to SCC and that arsenic metabolism ability does not modify the association

    Biomarkers of Exposure: A Case Study with Inorganic Arsenic

    Get PDF
    The environmental contaminant inorganic arsenic (iAs) is a human toxicant and carcinogen. Most mammals metabolize iAs by reducing it to trivalency, followed by oxidative methylation to pentavalency. iAs and its methylated metabolites are primarily excreted in urine within 4–5 days by most species and have a relatively low rate of bioaccumulation. Intra- and interindividual differences in the methylation of iAs may affect the adverse health effects of arsenic. Both inorganic and organic trivalent arsenicals are more potent toxicants than pentavalent forms. Several mechanisms of action have been proposed for arsenic-induced toxicity, but a scientific consensus has not been achieved. Biomarkers of exposure may be used to quantify exposure to iAs. The most common biomarker of exposure for iAs is the measurement of total urinary arsenic. However, consumption of seafood containing high concentrations of organic arsenic can confound estimation of iAs exposure. Because these organic species are thought to be relatively nontoxic, their presence in urine may not represent increased risk. Speciation of urinary arsenic into inorganic and organic forms, and even oxidation state, gives a more definitive indication of the exposure to iAs. Questions still remain, however, as to how reliably the measurement of urinary arsenic, either total or speciated, may predict arsenic concentrations at target tissues as well as how this measurement could be used to assess chronic exposures to iAs

    Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli

    Get PDF
    In clostridia, n-butanol production from carbohydrates at yields of up to 76% of the theoretical maximum and at titers of up to 13 g/L has been reported. However, in Escherichia coli, several groups have reported butyric acid or butanol production from recombinant expression of clostridial genes, at much lower titers and yields. To pinpoint deficient steps in the recombinant pathway, we developed an analytical procedure for the determination of intracellular pools of key pathway intermediates and applied the technique to the analysis of three sets of E. coli strains expressing various combinations of butyrate biosynthesis genes. Low expression levels of the hbd-encoded S-3-hydroxybutyryl-CoA dehydrogenase were insufficient to convert acetyl-CoA to 3-hydroxybutyryl-CoA, indicating that hbd was a rate-limiting step in the production of butyryl-CoA. Increasing hbd expression alleviated this bottleneck, but in resulting strains, our pool size measurements and thermodynamic analysis showed that the reaction step catalyzed by the bcd-encoded butyryl-CoA dehydrogenase was rate-limiting. E. coli strains expressing both hbd and ptb-buk produced crotonic acid as a byproduct, but this byproduct was not observed with expression of related genes from non-clostridial organisms. Our thermodynamic interpretation of pool size measurements is applicable to the analysis of other metabolic pathways

    Deep diversification of an AAV capsid protein by machine learning.

    Get PDF
    Modern experimental technologies can assay large numbers of biological sequences, but engineered protein libraries rarely exceed the sequence diversity of natural protein families. Machine learning (ML) models trained directly on experimental data without biophysical modeling provide one route to accessing the full potential diversity of engineered proteins. Here we apply deep learning to design highly diverse adeno-associated virus 2 (AAV2) capsid protein variants that remain viable for packaging of a DNA payload. Focusing on a 28-amino acid segment, we generated 201,426 variants of the AAV2 wild-type (WT) sequence yielding 110,689 viable engineered capsids, 57,348 of which surpass the average diversity of natural AAV serotype sequences, with 12-29 mutations across this region. Even when trained on limited data, deep neural network models accurately predict capsid viability across diverse variants. This approach unlocks vast areas of functional but previously unreachable sequence space, with many potential applications for the generation of improved viral vectors and protein therapeutics

    Polymorphisms in Nucleotide Excision Repair Genes, Arsenic Exposure, and Non-Melanoma Skin Cancer in New Hampshire

    Get PDF
    Background: Arsenic exposure may alter the efficiency of DNA repair. UV damage is specifically repaired by nucleotide excision repair (NER), and common genetic variants in NER may increase risk for non-melanoma skin cancer (NMSC). Objective: We tested whether polymorphisms in the NER genes XPA (A23G) and XPD (Asp312Asn and Lys751Gln) modify the association between arsenic and NMSC. Methods: Incident cases of basal and squamous cell carcinoma (BCC and SCC, respectively) were identified through a network of dermatologists and pathology laboratories across New Hampshire. Population-based controls were frequency matched to cases on age and sex. Arsenic exposure was assessed in toenail clippings. The analysis included 880 cases of BCC, 666 cases of SCC, and 780 controls. Results: There was an increased BCC risk associated with high arsenic exposure among those homozygous variant for XPA [odds ratio (OR) = 1.8; 95% confidence interval (CI), 0.9–3.7]. For XPD, having variation at both loci (312Asn and 751Gln) occurred less frequently among BCC and SCC cases compared with controls (OR = 0.8; 95% CI, 0.6–1.0) for both case groups. In the stratum of subjects who have variant for both XPD polymorphisms, there was a 2-fold increased risk of SCC associated with elevated arsenic (OR = 2.2; 95% CI, 1.0–5.0). The test for interaction between XPD and arsenic in SCC was of borderline significance (p < 0.07, 3 degrees of freedom). Conclusions: Our findings indicate a reduced NMSC risk in relation to XPD Asp312Asn and Lys751Gln variants. Further, these data support the hypothesis that NER polymorphisms may modify the association between NMSC and arsenic
    corecore