22 research outputs found

    NEW MODE OF GENETIC TRANSFER IN STREPTOCCUS FAECALIS

    No full text

    Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation

    No full text
    The identification of natural bioactive compounds aimed at promoting optimal gut health and improving lipid metabolism is paramount in the prevention of chronic disease. In this review, we summarize basic science and clinical research examining the protective properties of milk sphingomyelin (SM) against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. Dietary SM dose-dependently reduces the intestinal absorption of cholesterol, triglycerides, and fatty acids in cell culture and rodent studies. Overall, rodent feeding studies show dietary milk SM, milk polar lipid mixtures, and milk fat globule membrane reduce serum and hepatic lipid concentrations. Furthermore, these hypolipidemic effects are observed in some supplementation studies in humans, although the extent of reductions in serum cholesterol is typically smaller and only one trial was conducted with purified SM. Dietary milk SM has been reported to affect the gut microbiota in rodent studies and its hydrolytic product, sphingosine, displays bactericidal activity in vitro. Milk SM may also improve gut barrier function to prevent the translocation of inflammatory gut bacteria-derived molecules. Current evidence from pre-clinical studies indicates that dietary milk SM has protective properties against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. The hypolipidemic effects of milk SM observed in animal studies have been reported in some human studies, although the magnitude of such effects is typically smaller. More research is warranted to clearly define how dietary milk SM influences lipid metabolism, gut microbiota, and inflammation in humans

    Guidelines of care for vascular lasers and intense pulse light sources from the European Society for Laser Dermatology

    No full text
    AimLasers and non-coherent intense pulse light sources (IPLS) are based on the principle of selective photothermolysis and can be used for the treatment of many vascular skin lesions. A variety of lasers has been developed for the treatment of congenital and acquired vascular lesions which incorporate these concepts into their design. Although laser and light sources are very popular due to their non-invasive nature, caution should be considered by practitioners and patients to avoid permanent side-effects. The aim of these guidelines is to give evidence-based recommendations for the use of lasers and IPLS in the treatment of vascular lesions. MethodsThese guidelines were produced by a Consensus Panel made up of experts in the field of vascular laser surgery under the auspices of the European Society of Laser Dermatology. Recommendations on the use of vascular lasers and IPLS were made based on the quality of evidence for efficacy, safety, tolerability, cosmetic outcome, patient satisfaction/preference and, where appropriate, on the experts' opinion. The recommendations of these guidelines are graded according to the American College of Chest Physicians Task Force recommendations on Grading Strength of Recommendations and Quality of Evidence in Clinical Guidelines. ResultsLasers and IPLS are very useful and sometimes the only available method to treat various vascular lesions. It is of a paramount importance that the type of laser or IPLS and their specific parameters are adapted to the indication but also that the treating physician is familiar with the device to be used. The crucial issue in treating vascular lesions is to recognize the immediate end-point after laser treatment. This is the single most important factor to ensure both the efficacy of the treatment and avoidance of serious side-effects
    corecore