1,035 research outputs found

    Turbulent molecular clouds

    Full text link
    Stars form within molecular clouds but our understanding of this fundamental process remains hampered by the complexity of the physics that drives their evolution. We review our observational and theoretical knowledge of molecular clouds trying to confront the two approaches wherever possible. After a broad presentation of the cold interstellar medium and molecular clouds, we emphasize the dynamical processes with special focus to turbulence and its impact on cloud evolution. We then review our knowledge of the velocity, density and magnetic fields. We end by openings towards new chemistry models and the links between molecular cloud structure and star--formation rates.Comment: To be published in AARv, 58 pages, 13 figures (higher resolution figures will be available on line

    Theory of Cluster Formation: Effects of Magnetic Fields

    Full text link
    Stars form predominantly in clusters inside dense clumps of molecular clouds that are both turbulent and magnetized. The typical size and mass of the cluster-forming clumps are 1\sim 1 pc and 102\sim 10^2 - 103^3 M_\odot, respectively. Here, we discuss some recent progress on numerical simulations of clustered star formation in such parsec-scale dense clumps with emphasis on the role of magnetic fields. The simulations have shown that magnetic fields tend to slow down global gravitational collapse and thus star formation, especially in the presence of protostellar outflow feedback. Even a relatively weak can retard star formation significantly, because the field is amplified by supersonic turbulence to an equipartition strength. However, in such a case, the distorted field component dominates the uniform one. In contrast, if the field is moderately strong, the uniform component remains dominant. Such a difference in the magnetic structure is observed in simulated polarization maps of dust thermal emission. Recent polarization measurements show that the field lines in nearby cluster-forming clumps are spatially well-ordered, indicative of a rather strong field. In such strongly-magnetized clumps, star formation should proceed relatively slowly; it continues for at least several global free-fall times of the parent dense clump (tfft_{\rm ff}\sim a few ×105\times 10^5 yr).Comment: 8 pages, proceedings of Computational Star Formation (IAU 270

    Fourier phase analysis in radio-interferometry

    Get PDF
    Most statistical tools used to characterize the complex structures of the interstellar medium can be related to the power spectrum, and therefore to the Fourier amplitudes of the observed fields. To tap into the vast amount of information contained in the Fourier phases, one may consider the probability distribution function (PDF) of phase increments, and the related concepts of phase entropy and phase structure quantity. We use these ideas here with the purpose of assessing the ability of radio-interferometers to detect and recover this information. By comparing current arrays such as the VLA and Plateau de Bure to the future ALMA instrument, we show that the latter is definitely needed to achieve significant detection of phase structure, and that it will do so even in the presence of a fair amount of atmospheric phase fluctuations. We also show that ALMA will be able to recover the actual "amount'' of phase structure in the noise-free case, if multiple configurations are used.Comment: Accepted for publication in "Astronomy & Astrophysics

    Strong CH^+ J = 1–0 emission and absorption in DR21

    Get PDF
    We report the first detection of the ground-state rotational transition of the methylidyne cation CH^+ towards the massive star-forming region DR 21 with the HIFI instrument onboard the Herschel satellite. The line profile exhibits a broad emission line, in addition to two deep and broad absorption features associated with the DR 21 molecular ridge and foreground gas. These observations allow us to determine a ^(12)CH^(+)J = 1–0 line frequency of ν = 835 137 ± 3 MHz, in good agreement with a recent experimental determination. We estimate the CH^+ column density to be a few 10^(13) cm^(-2) in the gas seen in emission, and >10^(14) cm^(-2) in the components responsible for the absorption, which is indicative of a high line of sight average abundance [CH^+] /[H] > 1.2 × 10^(-8). We show that the CH^+ column densities agree well with the predictions of state-of-the-art C-shock models in dense UV-illuminated gas for the emission line, and with those of turbulent dissipation models in diffuse gas for the absorption lines

    Intermittency of interstellar turbulence: extreme velocity-shears and CO emission on milliparsec scale

    Full text link
    The condensation of diffuse gas into molecular clouds occurs at a rate driven largely by turbulent dissipation. This process still has to be caught in action and characterized. A mosaic of 13 fields was observed in the CO(1-0) line with the IRAM-PdB interferometer in the translucent environment of two low-mass dense cores. The large size of the mosaic compared to the resolution (4 arcsec) is unprecedented in the study of the small-scale structure of diffuse molecular gas. Eight weak and elongated structures of thicknesses as small as 3 mpc (600 AU) and lengths up to 70mpc are found. These are not filaments because once merged with short-spacing data, they appear as the sharp edges of larger-scale structures. Six out of eight form quasi-parallel pairs at different velocities and different position angles. This cannot be the result of chance alignment. The velocity-shears estimated for the three pairs include the highest ever measured far from star forming regions (780 km/s/pc). Because the large scale structures have sharp edges, with little or no overlap, they have to be thin CO-layers. Their edges mark a sharp transition between a CO-rich component and a gas undetected in the CO line because of its low CO abundance, presumably the cold neutral medium. We propose that these sharp edges are the first directly-detected manifestations of the intermittency of interstellar turbulence. The large velocity-shears reveal an intense straining field, responsible for a local dissipation rate several orders of magnitude above average, possibly at the origin of the thin CO-layers.Comment: 16 pages, 11 figures, Accepted for publication in Astronomy and Astrophysic

    Chemical probes of turbulence in the diffuse medium: the TDR model

    Full text link
    Context. Tens of light hydrides and small molecules have now been detected over several hundreds sight lines sampling the diffuse interstellar medium (ISM) in both the Solar neighbourhood and the inner Galactic disk. They provide unprecedented statistics on the first steps of chemistry in the diffuse gas. Aims. These new data confirm the limitations of the traditional chemical pathways driven by the UV photons and the cosmic rays (CR) and the need for additional energy sources, such as turbulent dissipation, to open highly endoenergetic formation routes. The goal of the present paper is to further investigate the link between specific species and the properties of the turbulent cascade in particular its space-time intermittency. Methods. We have analysed ten different atomic and molecular species in the framework of the updated model of turbulent dissipation regions (TDR). We study the influence on the abundances of these species of parameters specific to chemistry (density, UV field, and CR ionisation rate) and those linked to turbulence (the average turbulent dissipation rate, the dissipation timescale, and the ion neutral velocity drift in the regions of dissipation). Results. The most sensitive tracers of turbulent dissipation are the abundances of CH+ and SH+, and the column densities of the J = 3, 4, 5 rotational levels of H2 . The abundances of CO, HCO+, and the intensity of the 158 μ\mum [CII] emission line are significantly enhanced by turbulent dissipation. The vast diversity of chemical pathways allows the independent determinations of free parameters never estimated before: an upper limit to the average turbulent dissipation rate, ε\overline{\varepsilon} < 1023^{-23} erg cm3^{-3} s1^{-1} for nHn_H=20 cm3^{-3}, from the CH+ abundance; an upper limit to the ion-neutral velocity drift, uinu_{in} < 3.5 km s1^{-1}, from the SH+ to CH+ abundance ratio; and a range of dissipation timescales, 100 < τV\tau_V < 1000 yr, from the CO to HCO+ abundance ratio. For the first time, we reproduce the large abundances of CO observed on diffuse lines of sight, and we show that CO may be abundant even in regions with UV-shieldings as low as 5×1035 \times 10^{-3} mag. The best range of parameters also reproduces the abundance ratios of OH, C2H, and H2O to HCO+ and are consistent with the known properties of the turbulent cascade in the Galactic diffuse ISM. Conclusions. Our results disclose an unexpected link between the dissipation of turbulence and the emergence of molecular richness in the diffuse ISM. Some species, such as CH+ or SH+, turn out to be unique tracers of the energy trail in the ISM. In spite of some degeneracy, the properties of the turbulent cascade, down to dissipation, can be captured through specific molecular abundances

    Fragmented molecular complexes: The role of the magnetic field in feeding internal supersonic motions

    Get PDF
    A hierarchical structure for molecular complexes in their cold phase i.e., preceeding the formation of massive stars, was derived from extensive large scale CO(13)(J=1=0) observations: the mass is found to be distributed into virialized clouds which fill only a very low fraction approx. 01 of the volume of the complex and are supported against gravity by internal supersonic motions. An efficient mechanism was found to transfer kinetic energy from the orbital motions of the clouds to their internal random motions. The large perturbations of the magnetic field induced at the cloud boundaries by their interactions with their neighbors generate systems of hydromagnetic waves trapped inside the clouds. The magnetic field lines being closely coupled to the gas at the densities which prevail in the bulk of the clouds volume, internal velocity dispersion is thus generated. Some conclusions derived from this data are given
    corecore