195 research outputs found

    Assessing the utility of geospatial technologies to investigate environmental change within lake systems

    Get PDF
    Over 50% of the world's population live within 3. km of rivers and lakes highlighting the on-going importance of freshwater resources to human health and societal well-being. Whilst covering c. 3.5% of the Earth's non-glaciated land mass, trends in the environmental quality of the world's standing waters (natural lakes and reservoirs) are poorly understood, at least in comparison with rivers, and so evaluation of their current condition and sensitivity to change are global priorities. Here it is argued that a geospatial approach harnessing existing global datasets, along with new generation remote sensing products, offers the basis to characterise trajectories of change in lake properties e.g., water quality, physical structure, hydrological regime and ecological behaviour. This approach furthermore provides the evidence base to understand the relative importance of climatic forcing and/or changing catchment processes, e.g. land cover and soil moisture data, which coupled with climate data provide the basis to model regional water balance and runoff estimates over time. Using examples derived primarily from the Danube Basin but also other parts of the World, we demonstrate the power of the approach and its utility to assess the sensitivity of lake systems to environmental change, and hence better manage these key resources in the future

    Methane fluxes from a small boreal lake measured with the eddy covariance method

    Get PDF
    Fluxes of methane, CH4, were measured with the eddy covariance (EC) method at a small boreal lake in Sweden. The mean CH4 flux during the growing season of 2013 was 20.1 nmol m(-2) s(-1) and the median flux was 16 nmol m(-2) s(-1) (corresponding to 1.7 mmol m(-2) d(-1) and 1.4 mmol m(-2) d(-1)). Monthly mean values of CH4 flux measured with the EC method were compared with fluxes measured with floating chambers (FC) and were in average 62% higher over the whole study period. The difference was greatest in April partly because EC, but not FC, accounted for fluxes due to ice melt and a subsequent lake mixing event. A footprint analysis revealed that the EC footprint included primarily the shallow side of the lake with a major inlet. This inlet harbors emergent macrophytes that can mediate high CH4 fluxes. The difference between measured EC and FC fluxes can hence be explained by different footprint areas, where the EC system sees the part of the lake presumably releasing higher amounts of CH4. EC also provides more frequent measurements than FC and hence more likely captures ebullition events. This study shows that small lakes have CH4 fluxes that are highly variable in time and space. Based on our findings we suggest to measure CH4 fluxes from lakes as continuously as possible and to aim for covering as much of the lakes surface as possible, independently of the selected measuring technique.Funding Agencies|Swedish Research Council FORMAS, project Color of Water (CoW); Swedish Research Council FORMAS, project Landscape Greenhouse Gas Exchange (LAGGE)</p

    Gas Transfer Velocities in Small Forested Ponds

    Get PDF
    Inland waters actively exchange gases with the atmosphere, and the gas exchange rate informs system biogeochemistry, ecology, and global carbon budgets. Gas exchange in medium- to large-sized lakes is largely regulated by wind; yet less is known about processes regulating gas transfer in small ponds where wind speeds are low. In this study, we determined the gas transfer velocity, k600, in four small ( \u3c 250 m2 ) ponds by using a propane ( C3H8 ) gas injection. When estimated across 12 h periods, the average k600 ranged from 0.19 to 0.72 m d-1 across the ponds. We also estimated k600 at 2 to 3 h intervals during the day and evaluated the relationship with environmental conditions. The average daytime k600 ranged from 0.33 to 1.83 m d-1 across the ponds and was best predicted by wind speed and air or air-water temperature; however, the explanatory power was weak (R2 \u3c 0.27) with high variability within and among ponds. To compare our results to larger water bodies, we compiled direct measurements of k600 from 67 ponds and lakes worldwide. Our k600 estimates were within the range of estimates for other small ponds, and variability in k600 increased with lake size. However, the majority of studies were conducted on medium-sized lakes (0.01 to 1 km2), leaving small ponds and large lakes understudied. Overall, this study adds four small ponds to the existing body of research on gas transfer velocities from inland waters and highlights uncertainty in k600, with implications for calculating metabolism and carbon emissions in inland waters

    Vegetation transitions drive the autotrophy-heterotrophy balance in Arctic lakes

    Get PDF
    “Arctic greening” will alter vegetation quantity and quality in northern watersheds, with possible consequences for lake metabolic balance. We used paleolimnology from six Arctic lakes in Greenland, Norway, and Alaska to develop a conceptual model describing how climate-driven shifts in terrestrial vegetation (spanning herb to boreal forest) influence lake autotrophic biomass (as chlorophyll and carotenoid pigments). Major autotrophic transitions occurred, including (1) optimal production of siliceous algae and cyanobacteria/chlorophytes at intermediate vegetation cover (dwarf shrub and Betula; dissolved organic carbon (DOC) range of 2–4 mg L21 ), below and above which UVR exposure (DOC; 4 mgL21 ), respectively limit algal biomass, (2) an increase in potentially mixotrophic cryptophytes with higher forest cover and allochthonous carbon supply. Vegetation cover appears to influence lake autotrophs by changing influx of (colored) dissolved organic matter which has multiple interacting roles—as a photoprotectant—in light attenuation and in macronutrient (carbon, nitrogen) supply

    Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.: An energetic advantage

    Get PDF
    We show that diurnally migrating Chaoborus sp. (phantom midge larvae), which can be highly abundant in eutrophic lakes with anoxic bottom, utilises sediment methane to inflate their tracheal sacs, which provides positive buoyancy to aid vertical migration. This process also effectively transports sediment methane bypassing oxidation to the upper water column, adding to the total methane outflux to the atmosphere

    Sediment Characteristics and Methane Ebullition in Three Subarctic Lakes

    Get PDF
    Ebullition (bubbling) from climate‐sensitive northern lakes remains an unconstrained source of atmospheric methane (CH4). Although the focus of many recent studies, ebullition is rarely linked to the physical characteristics of lakes. In this study we analyze the sediments of subarctic postglacial lakes and investigate how sediment properties relate to the large spatial variation in CH4 bubble flux, quantified over multiple years using bubble traps. The results show that the sediments from our lakes are rich in total organic carbon, containing 37 kg/m3 on average. This number is roughly 40% higher than the average for yedoma deposits, which have been identified as high CH4 emitters. However, the quantity of total organic carbon is not a useful indicator of high emissions from the study lakes. Neither is the amount of CH4 in the sediment a reliable measure of ebullition potential. Instead, our data point to coarse detritus, partly from buried submerged aquatic vegetation and redeposited peat as spatial controls on fluxes, often in combination with previously established effects of incoming solar radiation and water depth. The results once again highlight the climate sensitivity of northern lakes, indicating that biological responses to warmer waters and increased energy input and heating of organic sediments during longer ice‐free seasons can substantially alter future CH4 emissions

    Diel surface temperature range scales with lake size

    Get PDF
    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored

    Oxygen dynamics in permafrost thaw lakes: Anaerobic bioreactors in the Canadian subarctic

    Full text link
    Permafrost thaw lakes occur in high abundance across the subarctic landscape but little is known about their limnological dynamics. This study was undertaken to evaluate the hourly, seasonal, and depth variations in oxygen concentration in three thaw lakes in northern Quebec, Canada, across contrasting permafrost regimes (isolated, sporadic, and discontinuous). All lakes were well stratified in summer despite their shallow depths (2.7-4.0m), with hypoxic or anoxic bottom waters. Continuous automated measurements in each of the lakes showed a period of water column oxygenation over several weeks in fall followed by bottom-water anoxia soon after ice-up. Anoxic conditions extended to shallower depths (1m) over the course of winter, beginning 18-137 d after ice formation, depending on the lake. Full water column anoxia extended over 33-75% of the annual record. There was a brief period of incomplete spring mixing with partial or no reoxygenation of the bottom waters in each lake. Conductivity measurements showed the build-up of solutes in the bottom waters, and the resultant density increase contributed to the resistance to full mixing in spring. These observations indicate the prevalence of stratified conditions throughout most of the year and underscore the importance of the fall mixing period for gas exchange with the atmosphere. Given the long duration of anoxia, subarctic thaw lakes represent an ideal environment for anaerobic processes such as methane production. The intermittent oxygenation also favors intense methanotrophy and aerobic bacterial decomposition processes
    • 

    corecore