145 research outputs found

    Interannual, summer, and diel variability of CH4 and CO2 effluxes from Toolik Lake, Alaska, during the ice-free periods 2010-2015

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eugster, W., DelSontro, T., Shaver, G. R., & Kling, G. W. Interannual, summer, and diel variability of CH4 and CO2 effluxes from Toolik Lake, Alaska, during the ice-free periods 2010-2015. Environmental Science: Processes & Impacts, 22(11), (2020): 2181-2198, doi: 10.1039/D0EM00125B.Accelerated warming in the Arctic has led to concern regarding the amount of carbon emission potential from Arctic water bodies. Yet, aquatic carbon dioxide (CO2) and methane (CH4) flux measurements remain scarce, particularly at high resolution and over long periods of time. Effluxes of methane (CH4) and carbon dioxide (CO2) from Toolik Lake, a deep glacial lake in northern Alaska, were measured for the first time with the direct eddy covariance (EC) flux technique during six ice-free lake periods (2010–2015). CO2 flux estimates from the lake (daily average efflux of 16.7 ± 5.3 mmol m−2 d−1) were in good agreement with earlier estimates from 1975–1989 using different methods. CH4 effluxes in 2010–2015 (averaging 0.13 ± 0.06 mmol m−2 d−1) showed an interannual variation that was 4.1 times greater than median diel variations, but mean fluxes were almost one order of magnitude lower than earlier estimates obtained from single water samples in 1990 and 2011–2012. The overall global warming potential (GWP) of Toolik Lake is thus governed mostly by CO2 effluxes, contributing 86–93% of the ice-free period GWP of 26–90 g CO2,eq m−2. Diel variation in fluxes was also important, with up to a 2-fold (CH4) to 4-fold (CO2) difference between the highest nighttime and lowest daytime effluxes. Within the summer ice-free period, on average, CH4 fluxes increased 2-fold during the first half of the summer, then remained almost constant, whereas CO2 effluxes remained almost constant over the entire summer, ending with a linear increase during the last 1–2 weeks of measurements. Due to the cold bottom temperatures of this 26 m deep lake, and the absence of ebullition and episodic flux events, Toolik Lake and other deep glacial lakes are likely not hot spots for greenhouse gas emissions, but they still contribute to the overall GWP of the Arctic.We acknowledge support received from the Arctic LTER grants NSF-DEB-1637459, 1026843, 1754835, NSF-PLR 1504006, and supplemental funding from the NSF-NEON and OPP-AON programs. W. E. acknowledges additional funding received from ETH Zurich scientific equipment grants 0-43350-07 and 0-43683-11. James Laundre is thanked for technical support, Jason Dobkowski for supervising deployment and removal of the float to and from the lake, and Randy Fulweber for his GIS support. Many thanks also go to Toolik Field Station staff members for support

    Discovery of a natural CO2 seep in the German North Sea: implications for shallow dissolved gas and seep detection

    Get PDF
    A natural carbon dioxide (CO2) seep was discovered during an expedition to the southern German North Sea (October 2008). Elevated CO2 levels of ∌10–20 times above background were detected in seawater above a natural salt dome ∌30 km north of the East-Frisian Island Juist. A single elevated value 53 times higher than background was measured, indicating a possible CO2 point source from the seafloor. Measured pH values of around 6.8 support modeled pH values for the observed high CO2 concentration. These results are presented in the context of CO2 seepage detection, in light of proposed subsurface CO2 sequestering and growing concern of ocean acidification. We explore the boundary conditions of CO2 bubble and plume seepage and potential flux paths to the atmosphere. Shallow bubble release experiments conducted in a lake combined with discrete-bubble modeling suggest that shallow CO2 outgassing will be difficult to detect as bubbles dissolve very rapidly (within meters). Bubble-plume modeling further shows that a CO2 plume will lose buoyancy quickly because of rapid bubble dissolution while the newly CO2-enriched water tends to sink toward the seabed. Results suggest that released CO2 will tend to stay near the bottom in shallow systems (<200 m) and will vent to the atmosphere only during deep water convection (water column turnover). While isotope signatures point to a biogenic source, the exact origin is inconclusive because of dilution. This site could serve as a natural laboratory to further study the effects of carbon sequestration below the seafloor

    Ephemerality of discrete methane vents in lake sediments

    Get PDF
    Methane is a potent greenhouse gas whose emission from sediments in inland waters and shallow oceans may both contribute to global warming and be exacerbated by it. The fraction of methane emitted by sediments that bypasses dissolution in the water column and reaches the atmosphere as bubbles depends on the mode and spatiotemporal characteristics of venting from the sediments. Earlier studies have concluded that hot spots—persistent, high-flux vents—dominate the regional ebullitive flux from submerged sediments. Here the spatial structure, persistence, and variability in the intensity of methane venting are analyzed using a high-resolution multibeam sonar record acquired at the bottom of a lake during multiple deployments over a 9 month period. We confirm that ebullition is strongly episodic, with distinct regimes of high flux and low flux largely controlled by changes in hydrostatic pressure. Our analysis shows that the spatial pattern of ebullition becomes homogeneous at the sonar's resolution over time scales of hours (for high-flux periods) or days (for low-flux periods), demonstrating that vents are ephemeral rather than persistent, and suggesting that long-term, lake-wide ebullition dynamics may be modeled without resolving the fine-scale spatial structure of venting.National Science Foundation (U.S.) (1045193)United States. Department of Energy (DE-FE001399

    Spatial heterogeneity of benthic methane dynamics in the subaquatic canyons of the Rhone River Delta (Lake Geneva)

    Get PDF
    Heterogeneous benthic methane (CH4) dynamics from river deltas with important organic matter accumulation have been recently reported in various aquatic and marine environments. The spatial heterogeneity of dissolved CH4 concentrations and associated production and diffusion rates were investigated in the Rhone River Delta of Lake Geneva (Switzerland/France) using sediment cores taken as part of the Ă©LEMO Project. Benthic CH4 dynamics within the complex subaquatic canyon structure of the Rhone Delta were compared (1) between three canyons of different sedimentation regimes, (2) along a longitudinal transect of the ‘active' canyon most influenced by the Rhone River, and (3) laterally across a canyon. Results indicated higher CH4 diffusion and production rates in the ‘active' compared to the other canyons, explained by more allochthonous carbon deposition. Within the active canyon, the highest diffusion and production rates were found at intermediate sites further along the canyon. Stronger resuspension of sediments directly in front of the river inflow was likely the cause for the variable emission rates found there. Evidence also suggests more CH4 production occurs on the levees (shoulders) of canyons due to preferred sedimentation in those locations. Our results from the heterogeneous Rhone delta in Lake Geneva further support the concept that high sedimentary CH4 concentrations should be expected in depositional environments with high inputs of allochthonous organic carbon

    Sediment dynamics in the subaquatic channel of the Rhone delta (Lake Geneva, France/Switzerland)

    Get PDF
    With its smaller size, well-known boundary conditions, and the availability of detailed bathymetric data, Lake Geneva's subaquatic canyon in the Rhone Delta is an excellent analogue to understand sedimentary processes in deep-water submarine channels. A multidisciplinary research effort was undertaken to unravel the sediment dynamics in the active canyon. This approach included innovative coring using the Russian MIR submersibles, in situ geotechnical tests, and geophysical, sedimentological, geochemical and radiometric analysis techniques. The canyon floor/levee complex is characterized by a classic turbiditic system with frequent spillover events. Sedimentary evolution in the active canyon is controlled by a complex interplay between erosion and sedimentation processes. In situ profiling of sediment strength in the upper layer was tested using a dynamic penetrometer and suggests that erosion is the governing mechanism in the proximal canyon floor while sedimentation dominates in the levee structure. Sedimentation rates progressively decrease down-channel along the levee structure, with accumulation exceeding 2.6cm/year in the proximal levee. A decrease in the frequency of turbidites upwards along the canyon wall suggests a progressive confinement of the flow through time. The multi-proxy methodology has also enabled a qualitative slope-stability assessment in the levee structure. The rapid sediment loading, slope undercutting and over-steepening, and increased pore pressure due to high methane concentrations hint at a potential instability of the proximal levees. Furthermore, discrete sandy intervals show very high methane concentrations and low shear strength and thus could correspond to potentially weak layers prone to scarp failures

    A conduit dilation model of methane venting from lake sediments

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L06408, doi:10.1029/2011GL046768.Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the methane generated in organic-rich sediments underlying surface water bodies, including lakes, wetlands, and the ocean. The fraction of the methane that reaches the atmosphere depends critically on the mode and spatiotemporal characteristics of free-gas venting from the underlying sediments. Here we propose that methane transport in lake sediments is controlled by dynamic conduits, which dilate and release gas as the falling hydrostatic pressure reduces the effective stress below the tensile strength of the sediments. We test our model against a four-month record of hydrostatic load and methane flux in Upper Mystic Lake, Mass., USA, and show that it captures the complex episodicity of methane ebullition. Our quantitative conceptualization opens the door to integrated modeling of methane transport to constrain global methane release from lakes and other shallow-water, organic-rich sediment systems, and to assess its climate feedbacks.This work was supported by the U.S. Department of Energy (grants DE‐FC26‐06NT43067 and DE‐AI26‐05NT42496), an NSF Doctoral Dissertation Research grant (0726806), a GSA Graduate Student Research grant, and MIT Martin, Linden and Ippen fellowships

    Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.: An energetic advantage

    Get PDF
    We show that diurnally migrating Chaoborus sp. (phantom midge larvae), which can be highly abundant in eutrophic lakes with anoxic bottom, utilises sediment methane to inflate their tracheal sacs, which provides positive buoyancy to aid vertical migration. This process also effectively transports sediment methane bypassing oxidation to the upper water column, adding to the total methane outflux to the atmosphere

    Sediment Characteristics and Methane Ebullition in Three Subarctic Lakes

    Get PDF
    Ebullition (bubbling) from climate‐sensitive northern lakes remains an unconstrained source of atmospheric methane (CH4). Although the focus of many recent studies, ebullition is rarely linked to the physical characteristics of lakes. In this study we analyze the sediments of subarctic postglacial lakes and investigate how sediment properties relate to the large spatial variation in CH4 bubble flux, quantified over multiple years using bubble traps. The results show that the sediments from our lakes are rich in total organic carbon, containing 37 kg/m3 on average. This number is roughly 40% higher than the average for yedoma deposits, which have been identified as high CH4 emitters. However, the quantity of total organic carbon is not a useful indicator of high emissions from the study lakes. Neither is the amount of CH4 in the sediment a reliable measure of ebullition potential. Instead, our data point to coarse detritus, partly from buried submerged aquatic vegetation and redeposited peat as spatial controls on fluxes, often in combination with previously established effects of incoming solar radiation and water depth. The results once again highlight the climate sensitivity of northern lakes, indicating that biological responses to warmer waters and increased energy input and heating of organic sediments during longer ice‐free seasons can substantially alter future CH4 emissions

    Ebullition was a major pathway of methane emissions from the aquaculture ponds in southeast China

    Get PDF
    Aquaculture ponds are hotspots of carbon cycling and important anthropogenic sources of the potent greenhouse gas methane (CH4). Despite the importance of CH4 ebullition in aquatic ecosystems, its magnitude and spatiotemporal variations in aquaculture ponds remain poorly understood. In this study, we determined the rates and spatiotemporal variations of ebullitive CH4 emissions from three mariculture ponds during the aquaculture period of two years at a subtropical estuary in southeast China. Our results showed that the mean ebullitive CH4 flux from the studied ponds was 14.9 mg CH4 m−2 h−1 during the aquaculture period and accounted for over 90% of the total CH4 emission, indicating the importance of ebullition as a major CH4 transport mechanism. Ebullitive CH4 emission demonstrated a clear seasonal pattern, with a peak value during the middle stage of aquaculture. Sediment temperature was found to be an important factor influencing the seasonal variations in CH4 ebullition. Ebullitive CH4 fluxes also exhibited considerable spatial variations within the ponds, with 49.7–71.8% of the whole pond CH4 ebullition being detected in the feeding zone where the large loading of sediment organic matter fueled CH4 production. Aquaculture ponds have much higher ebullitive CH4 effluxes than other aquatic ecosystems, which indicated the urgency to mitigate CH4 emission from aquaculture activities. Our findings highlighted that the importance of considering the large spatiotemporal variations in ebullitive CH4 flux in improving the accuracy of large-scale estimation of CH4 fluxes in aquatic ecosystems. Future studies should be conducted to characterize CH4 ebullitive fluxes over a greater number and diversity of aquaculture ponds and examine the mechanisms controlling CH4 ebullition in aquatic ecosystems
    • 

    corecore