2,849 research outputs found

    Domain Growth Kinetics in a Cell-sized Liposome

    Get PDF
    We investigated the kinetics of domain growth on liposomes consisting of a ternary mixture (unsaturated phospholipid, saturated phospholipid, and cholesterol) by temperature jump. The domain growth process was monitored by fluorescence microscopy, where the growth was mediated by the fusion of domains through the collision. It was found that an average domain size r develops with time t as r ~ t^0.15, indicating that the power is around a half of the theoretical expectation deduced from a model of Brownian motion on a 2-dimensional membrane. We discuss the mechanism of the experimental scaling behavior by considering the elasticity of the membrane

    Mitochondrial dysfunction leads to nuclear genome instability: A link through iron-sulfur clusters

    Get PDF
    Mutations and deletions in the mitochondrial genome (mtDNA), as well as instability of the nuclear genome, are involved in multiple human diseases. Here we report that in Saccharomyces cerevisiae, loss of mtDNA leads to nuclear genome instability, through a process of cell cycle arrest and selection we define as a cellular crisis. This crisis is not mediated by the absence of respiration, but instead correlates with a reduction in the mitochondrial membrane potential. Analysis of cells undergoing this crisis identified a defect in iron-sulfur cluster (ISC) biogenesis, which requires normal mitochondrial function. We found that down-regulation of non-mitochondrial ISC protein biogenesis was sufficient to cause increased genomic instability in cells with intact mitochondrial function. These results suggest mitochondrial dysfunction stimulates nuclear genome instability by inhibiting the production of ISC-containing protein(s), which are required for maintenance of nuclear genome integrity

    Lateral phase separation in mixtures of lipids and cholesterol

    Get PDF
    In an effort to understand "rafts" in biological membranes, we propose phenomenological models for saturated and unsaturated lipid mixtures, and lipid-cholesterol mixtures. We consider simple couplings between the local composition and internal membrane structure, and their influence on transitions between liquid and gel membrane phases. Assuming that the gel transition temperature of the saturated lipid is shifted by the presence of the unsaturated lipid, and that cholesterol acts as an external field on the chain melting transition, a variety of phase diagrams are obtained. The phase diagrams for binary mixtures of saturated/unsaturated lipids and lipid/cholesterol are in semi-quantitative agreement with the experiments. Our results also apply to regions in the ternary phase diagram of lipid/lipid/cholesterol systems

    Training and Onboarding initiatives in High Energy Physics experiments

    Full text link
    In this paper we document the current analysis software training and onboarding activities in several High Energy Physics (HEP) experiments: ATLAS, CMS, LHCb, Belle II and DUNE. Fast and efficient onboarding of new collaboration members is increasingly important for HEP experiments as analyses and the related software become ever more complex with growing datasets. A meeting series was held by the HEP Software Foundation (HSF) in 2022 for experiments to showcase their initiatives. Here we document and analyse these in an attempt to determine a set of key considerations for future experiments

    Morphology and Interaction between Lipid Domains

    Get PDF
    Cellular membranes are a heterogeneous mix of lipids, proteins and small molecules. Special groupings of saturated lipids and cholesterol form a liquid-ordered phase, known as `lipid rafts,' serving as platforms for signaling, trafficking and material transport throughout the secretory pathway. Questions remain as to how the cell maintains heterogeneity of a fluid membrane with multiple phases, through time, on a length-scale consistent with the fact that no large-scale phase separation is observed. We have utilized a combination of mechanical modeling and in vitro experiments to show that membrane morphology can be a key player in maintaining this heterogeneity and organizing such domains in the membrane. We demonstrate that lipid domains can adopt a flat or dimpled morphology, where the latter facilitates a repulsive interaction that slows coalescence and tends to organize domains. These forces, that depend on domain morphology, play an important role in regulating lipid domain size and in the lateral organization of lipids in the membrane.Comment: 7 pages, 4 figure

    Molecular motors robustly drive active gels to a critically connected state

    Full text link
    Living systems often exhibit internal driving: active, molecular processes drive nonequilibrium phenomena such as metabolism or migration. Active gels constitute a fascinating class of internally driven matter, where molecular motors exert localized stresses inside polymer networks. There is evidence that network crosslinking is required to allow motors to induce macroscopic contraction. Yet a quantitative understanding of how network connectivity enables contraction is lacking. Here we show experimentally that myosin motors contract crosslinked actin polymer networks to clusters with a scale-free size distribution. This critical behavior occurs over an unexpectedly broad range of crosslink concentrations. To understand this robustness, we develop a quantitative model of contractile networks that takes into account network restructuring: motors reduce connectivity by forcing crosslinks to unbind. Paradoxically, to coordinate global contractions, motor activity should be low. Otherwise, motors drive initially well-connected networks to a critical state where ruptures form across the entire network.Comment: Main text: 21 pages, 5 figures. Supplementary Information: 13 pages, 8 figure

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore