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SUMMARY

Mutations and deletions in the mitochondrial genome (mtDNA), as well as 

instability of the nuclear genome, are involved in multiple human diseases. Here we 

report that in Saccharomyces cerevisiae, loss of mtDNA leads to nuclear genome 

instability, through a process of cell cycle arrest and selection we define as a cellular 

crisis. This crisis is not mediated by the absence of respiration, but instead correlates with 

a reduction in the mitochondrial membrane potential. Analysis of cells undergoing this 

crisis identified a defect in iron-sulfur cluster (ISC) biogenesis, which requires normal 

mitochondrial function. We found that down-regulation of non-mitochondrial ISC protein 

biogenesis was sufficient to cause increased genomic instability in cells with intact 

mitochondrial function. These results suggest mitochondrial dysfunction stimulates 

nuclear genome instability by inhibiting the production of ISC-containing protein(s), 

which are required for maintenance of nuclear genome integrity.
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INTRODUCTION

Nuclear genome instability, a hallmark of cancer, is thought in many cases to be 

an early event in tumorigenesis (Nowell, 1976). One form of genomic instability that 

plays an important role in tumor progression is loss of heterozygosity (LOH). In a 

heterozygous situation, where one functional dominant allele is “covering” the phenotype 

of a defective recessive allele, loss of the functional allele can have grave consequences 

and is frequently a means by which tumor suppressor genes are inactivated in cancer 

(Brown, 1997)

Normal mitochondrial function appears to be important for nuclear genome 

integrity. In yeast, defects in mitochondrial function are associated with increased levels 

of genetic change in the nuclear genome (Flury et al., 1976; Rasmussen et al., 2003), and 

reactive oxygen species originating in mitochondria are thought to be a major source of 

endogenous nuclear DNA damage (Huang and Kolodner, 2005). However, the 

connections between mitochondrial function and nuclear genome integrity are poorly 

understood.

Mitochondria are required for cellular energy production via oxidative 

phosphorylation, and the conserved processes of iron metabolism (Lill and Muhlenhoff, 

2008), programmed cell death (Eisenberg et al., 2007), the production of reactive oxygen 

(Boveris et al., 1972), and intermediary metabolism (Jones and Fink, 1982). In both yeast 

and humans, the mtDNA encodes a small fraction of the ~1000 proteins that function in 

the mitochondria (Sickmann et al., 2003). In Saccharomyces cerevisiae, the mtDNA 

encodes components of the mitochondrial translational apparatus, as well as protein 

subunits of respiratory complexes III, IV and V (Contamine and Picard, 2000). These 
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proteins reside in the inner mitochondrial membrane, where they are involved in 

respiration and the formation of the electrochemical potential across the membrane.

However, the nuclear genome encodes the remaining subunits of complexes III, IV and V 

(Tzagoloff and Dieckmann, 1990), and the proteins required for all other aspects of 

mitochondrial function (Sickmann et al., 2003). The nuclear-encoded gene products must 

be imported into the mitochondria post-translationally (Rehling et al., 2004).

The mtDNA is required for respiration, but is dispensable for the viability of 

budding yeast (Nagley and Linnane, 1970), and some human cell types (King and 

Attardi, 1989). Although the mtDNA is dispensable in these cases, the mitochondria 

themselves are essential for cell viability. The inner mitochondrial electrochemical 

membrane potential, which is required for mitochondrial protein import, biogenesis, and 

cellular viability, is normally maintained by respiration (Baker and Schatz, 1991).

However, in both yeast and human cells that lack mtDNA, the membrane potential is 

maintained through hydrolysis of ATP by the nucleus-encoded F1 subunit of ATP 

synthase (Buchet and Godinot, 1998; Giraud and Velours, 1997; Kominsky et al., 2002).

One essential function of the mitochondria is the synthesis of iron-sulfur clusters 

(ISCs), which serve catalytic and structural functions in many cellular proteins (Lill and 

Muhlenhoff, 2008). The initial reactions that assemble ISCs on protein scaffolds occur in 

the mitochondrial matrix, and they are subsequently incorporated into mitochondrial ISC-

containing proteins, or exported from the mitochondria for insertion into cytoplasmic and 

nuclear ISC-containing proteins (Lill and Muhlenhoff, 2008). Thus, assembly of all ISC-

containing proteins requires intact mitochondria in both yeast (Kispal et al., 1999) and 

humans (Biederbick et al., 2006). 
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It has been known for many years that the loss of expression from the mtDNA in 

yeast results in pleiotropic phenotypes that are not completely explained by the loss of 

respiration (Dujon, 1981). Specifically, cells that lack, or have severely rearranged, 

mtDNA display different mitochondrial morphologies (Church and Poyton, 1998), as 

well as different genetic requirements for viability (Kotylak and Slonimski, 1977) than 

respiration deficient cells with intact mtDNA. These observations suggest that loss of 

function of the mtDNA could affect mitochondrial pathways other than respiration.

Previously, we described the phenomenon of age-associated LOH in S. cerevisiae

in which a dramatic increase of genome instability occurs with delayed onset, during the 

pedigree analysis of yeast mother cells (McMurray and Gottschling, 2003). Here we 

present evidence that the LOH we observed is the result of mitochondrial dysfunction, 

and we provide an explanation for how these two events are linked. 

RESULTS

Mitochondrial dysfunction correlates with LOH events in pedigree analysis of 

individual yeast cells

In an earlier study using pedigree analysis, we reported an age-associated increase 

in LOH in the budding yeast S. cerevisiae (McMurray and Gottschling, 2003). Starting 

with naive mother cells, all the daughter cells produced by a single mother are allowed to 

form colonies. LOH at heterozygous marker genes located at the distal ends of 

chromosomes XII and IV are then detected by colony color phenotypes: LOH events that 

occur during the growth of colonies are visible as colored sectors in the colonies. We 

reported a striking increase in the number of LOH events occurring after ~25 mother cell 
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divisions, manifested as an increased frequency of colonies with greater than 1/8 sector of 

colony color.

In order to better understand the basis for this increase in LOH, we further 

characterized the colonies with LOH and discovered that many showed evidence of 

mitochondrial dysfunction. These colonies were small (Figure 1A) and were unable to 

respire (data not shown). In an examination of 40 mother cells, these colonies, known as 

“petites” (Ephrussi and Slonimski, 1955), occurred later in the lifespan of the mother.

Most long lived mother cells eventually gave rise to daughters that exclusively formed 

either petite colonies or were unable to form colonies (Figure S1 A & B). The most 

common spontaneous events that result in mitochondrial dysfunction in budding yeast are 

either mtDNA rearrangements [], or total loss of the mtDNA [], which prevent the 

production of mitochondria-encoded proteins (Dujon, 1981). We mated these respiratory-

deficient cells from seven independent pedigrees to a respiratory-deficient  strain (data 

not shown). The resulting cells failed to respire, indicating that the respiratory deficiency 

of the petite colonies was due to a lesion in the mtDNA (Stevens, 1981).

The nature of the mtDNA lesion was characterized by examining cytoplasmic 

DNA staining (Stevens, 1981) in the petite daughter colonies from 15 different pedigrees 

(Figure S1C). We found that the majority of petite colonies were entirely comprised of 

cells without mtDNA [] (89%, 114/128), and the remaining 11% of colonies contained 

a mix of cells with and without mtDNA []. Thus, mitochondrial dysfunction in 

pedigree analysis occured through damage to or loss of the mitochondrial genome.

It was evident that most nuclear LOH events occurred in colonies that also had 

mitochondrial dysfunction (Figure 1A, Figure S1A & B). Specifically, the frequency of 
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LOH events for loci on either chromosome XII or IV (Figure 1B) was much greater in 

colonies with mitochondrial dysfunction compared to those with normal mitochondria.

These results indicated that an increase in LOH correlated with mitochondrial 

dysfunction and that LOH was not further impacted by the number of cell divisions that 

the mother cell had undergone (Figure 1B). This suggested that mitochondrial 

dysfunction leads to increased LOH in the nuclear genome.

Loss of mtDNA leads to nuclear genome instability

In order to test whether loss of mtDNA could lead to LOH in the nuclear genome, 

mtDNA was eliminated by two independent methods. First, a dominant-negative 

mutation was created in the S. cerevisiae nuclear-encoded mitochondrial DNA 

polymerase gene, MIP1 (Foury, 1989; Jazayeri et al., 2003). This dominant negative 

allele (MIP1DN) was placed under control of a promoter that allowed it to be induced by 

addition of estradiol (Gao and Pinkham, 2000). Expression of the MIP1DN allele for 6-7 

hours caused rapid and complete loss of the mtDNA from cells, as measured by the 

absence of DAPI staining in the cytoplasm (Figure S2 (Stevens, 1981)) and their inability 

to respire (data not shown). Strikingly, the petite colonies that formed after the transient 

expression of MIP1DN displayed a very large number of nuclear LOH events at the 

chromosome XII and IV loci (Figure 1C & D). 

Similar results were obtained by a second method for eliminating mtDNA. Cells 

were exposed to a transient low-dose treatment of ethidium bromide, a cationic, lipophilic 

DNA-intercalating agent that preferentially eliminates mtDNA (Ferguson and von 

Borstel, 1992). Colonies that formed after the ethidium bromide pulse had highly 

elevated levels of LOH events on chromosomes IV and XII (Figure 1C & D). LOH 
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events following mtDNA loss by either treatment were found to be due to recombination, 

not chromosome loss or locus specific mutation (Figure S3). Taken together, these results 

indicate that loss of mtDNA leads to nuclear genome instability.

Loss of mtDNA leads to a progressive growth defect and cell cycle arrest

In addition to exhibiting LOH, we noticed that the petite colonies were highly 

variable in size, whether arising spontaneously in the pedigree analysis or due to either of 

the treatments mentioned above (Figures 1A & C). We investigated this heterogeneity 

further, to determine whether there was any relationship between colony size and the 

observed increase in LOH. Cell growth was analyzed immediately after mtDNA 

elimination by ethidium bromide treatment or expression of the MIP1DN allele. Cells were 

analyzed under dilute culture conditions so that they did not enter into the diauxic shift or 

stationary phase (DeRisi et al., 1997). The newly created  cells initially divided at a rate 

similar to cells (75 minutes vs 66 minutes per doubling, respectively), but this was 

followed by a progressive slowing of growth such that after 30 hours, the culture doubled 

once every ~400 minutes (Figure 2A & B). This was in marked contrast to  cells, 

which retained a rapid doubling time.

A slow growth rate in culture could result from a high frequency of cell death, cell 

cycle arrest, and/or a slower cell cycle. In order to distinguish between these possibilities, 

individual cells were micromanipulated onto plates at different times after mtDNA loss.

Immediately after mtDNA loss, nearly all cells divided and formed colonies (Figure 3C). 

However, over time, more and more cells could not form colonies (Figure 3C). By 22 

hours, 60% of the cells in these cultures were permanently arrested as unbudded cells 

(Figure 3C) and had a G1 DNA content (Figure S4). Interestingly, these arrested cells 
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were metabolically active even after 30 hours, as measured by their ability to exclude the 

vital dye phloxine B (Figure S4) (Severin and Hyman, 2002). Thus, at least part of the 

progressive slowing in culture growth rate following loss of mtDNA results from a 

gradual accumulation of G1 arrested cells. This suggests that after actively growing cells 

lose their mtDNA, many of the cells arrest, while those that go on to divide display high 

levels of nuclear genome instability. 

Spontaneous genetic changes suppress inviability of cells lacking mtDNA

Colonies that did form from cells following loss of mtDNA were of variable size, 

and repeated passaging of cells resulted in clones that showed improved growth despite 

the continued absence of the mtDNA (data not shown). These clones remained unable to 

respire and grew slower than cells with intact mtDNA, but they formed colonies more 

readily, grew faster, and displayed fewer nuclear LOH events than cells within the first 

30 hours following loss of their mtDNA (data not shown). This suggested that the cells 

made compensations for the loss of the mtDNA to achieve improved growth and 

relatively stable nuclear genomes.

To test whether the compensation was the result of genetic changes in the nuclear 

genome, haploid cells were transiently treated with ethidium bromide, which caused the 

same kinetics of slow growth and increased number of arrested cells as seen in the 

diploid cells described above (data not shown). Four independent haploid clones that 

arose showing stronger growth were selected for further analysis. These cells were 

crossed to an isogenic partner strain with intact mtDNA, the diploid was sporulated, and 

the meiotic progeny were analyzed for growth after eliminating mtDNA. In all four cases, 

the ability to grow well in the absence of the mtDNA segregated as either one nuclear 
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locus (three cases – Figure S5) or two unlinked loci (one case – Figure S5). Four of five 

suppressor alleles were recessive and each recessive allele complemented the others in a 

diploid, indicating that they were in different nuclear genes (data not shown). Each of 

these spontaneous suppressor alleles showed improved growth during the ~40 hours 

following mtDNA loss, relative to wild-type cells (Figure 2D; three single locus 

suppressors are displayed), though each had a different kinetic growth profile following 

mtDNA elimination. Taken together, these observations indicate that following loss of 

mtDNA, there is a progressive loss of viability and a selection for nuclear mutations that 

improve growth in the absence of mtDNA. During this process, there is a large increase 

in the frequency of recombination events in the nuclear genome. We define this 

phenomenon of progressive slow growth, cell cycle arrest, and nuclear genomic 

instability, as the “crisis” that follows the loss of mtDNA.

The crisis following mtDNA loss is not a general consequence of respiratory 

deficiency

We next asked whether the crisis observed upon mtDNA loss was a consequence 

of respiratory deficiency. To address this question deletions in three different nuclear 

genes required for respiration at different steps of the electron transport chain were made. 

Cat5 is required for the synthesis of Coenzyme Q, which transfers electrons to complex 

III (Jonassen et al., 1998), Rip1 is an integral component of electron chain complex III 

(Lange and Hunte, 2002), and Cox4 is required for the function of electron transport 

complex IV (Koerner et al., 1985). Consistent with previous reports, we found that there 

was no defect in growth in any of these three respiratory mutants (Figure 3B-D), despite 

the fact that each one eliminates the ability to respire (Francis et al., 2007). In addition, 
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none of the mutants had increased LOH events compared to wild type cells (Figure 3A).

Yet, after eliminating the mtDNA, each mutant behaved like the wild-type and 

experienced the crisis marked by a progressive growth decline and increased nuclear 

LOH (Figure 3A-D). These observations showed that respiratory deficiency was not 

sufficient to cause the crisis nor increased LOH, and suggested that loss of the mtDNA 

has additional effects beyond eliminating the ability to respire. 

Loss of the inner mitochondrial membrane electrochemical potential correlates with 

the crisis

In addition to loss of respiration, the loss of mtDNA in mammalian (Jazayeri et 

al., 2003) or yeast cells (Dunn and Jensen, 2003; Pringle et al., 1989) results in a 

reduction of the inner mitochondrial membrane electrochemical potential (∆). This 

potential is required for the import of proteins into the mitochondrial matrix in all cells 

(Schleyer et al., 1982). In respiring cells the ∆ is normally generated through the 

reactions of electron transport and oxidative phosphorylation. But in  cells, these 

reactions do not occur due to the absence of complex III, IV and the F0 component of 

ATP synthase. Instead, it is thought that ∆ is generated through the efforts of the 

mitochondrial adenine nucleotide translocator and the F1 ATP synthase, both of which 

are encoded by the nuclear genome (Dupont et al., 1985; Giraud and Velours, 1997; 

Kominsky et al., 2002). However, this alternate mode appears to produce a lower ∆

than that achieved through electron transport and oxidative phosphorylation in  cells 

(Dupont et al., 1985)

We hypothesized that reduction in the ∆contributed to the crisis after loss of 

mtDNA. We tested this idea by examining  cells carrying a mutation that increases ∆
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The ATP1-111 allele encodes a hyperactive F1 ATP synthase that generates a larger ∆

in  cells than wild-type cells do when they are  (Francis et al., 2007). When mtDNA 

was eliminated from ATP1-111/ATP1-111 diploid cells there was no detectable crisis, as 

was evident by robust growth (Figure 4A), the absence of cell cycle arrest (data not 

shown) and reduced nuclear LOH (Figure 4B). Thus, the ATP1-111 allele prevented the 

crisis upon mtDNA loss, suggesting that a reduction in ∆ does indeed contribute to the 

crisis.

To obtain additional evidence for the importance of ∆ in the crisis, a cell 

biological assay was carried out with the various alleles described above. Consistent with 

previous reports (Dunn and Jensen, 2003; Pringle et al., 1989), we found that the 

mitochondria of cells with no mtDNA stain less brightly with DiOC6 (Figure S6), which 

concentrates in the mitochondrial matrix, based on the magnitude of the inner 

mitochondrial membrane potential (Pringle et al., 1989). However, we noticed that there 

was less cellular uptake of the dye into these cells (Figure S6). Therefore, as a second 

approach to assess ∆ in vivo, we examined the import of fluorescently tagged proteins 

into the mitochondrial matrix (Swayne et al., 2007). Nuclear-encoded proteins that go 

into the matrix require ∆ (Schleyer et al., 1982). By contrast, outer mitochondrial 

membrane proteins do not depend on the inner mitochondrial membrane potential for 

their localization (Gasser and Schatz, 1983). We used a chimeric fusion protein 

containing the inner mitochondrial membrane targeting pre-sequence of Cox4 and 

mCherry, a monomeric red fluorescent protein (preCox4-Cherry) (Shaner et al., 2004) as 

a reporter for matrix targeted protein, and a fusion of the outer mitochondrial membrane 

protein Tom70 with green fluorescent protein (Tom70-GFP). 
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In cells with intact mtDNA, preCox4-Cherry co-localized to reticular structures 

with Tom70-GFP as expected (Figure 4C). But in cells with no mtDNA, preCox4-Cherry 

showed diffuse cytoplasmic localization. While the structure of the mitochondria, as 

shown by Tom70-GFP localization, was altered in these cells, the Tom70-GFP still 

localized to discrete sub-cellular structures (Figure 4C). 

Similar to the crisis following the loss of the mtDNA, impaired protein import is 

not a general consequence of respiratory deficiency, because mitochondrial localization 

of preCox4-Cherry was not altered in cells that are unable to respire due to deletions of 

CAT5, RIP1 or COX4 (Figure S7). Furthermore, the ATP1-111 mutation significantly 

increased the number of cells with mitochondrial localization of preCox4-Cherry; it went

from 12% (7/41 cells) in ATP1  cells to 67% (44/66 cells) in ATP1-111  cells (p < 

0.0001, Figure 4C). This is consistent with the ATP1-111 mutation increasing ∆ in 

cells, and that it is this increase in ∆ that prevents the crisis following mtDNA loss.

Taken together, these data suggest that there is a reduction in ∆ following the loss of 

mtDNA, and that this leads to the cellular crisis, which includes increased nuclear 

genomic instability. 

Loss of mtDNA leads to a transcriptional signature of iron starvation

We also employed expression profiling as an independent approach to understand 

the relationship between mitochondrial dysfunction and LOH. Expression array analysis 

revealed that a large number of genes were differentially expressed 27 hours after 

mtDNA loss: 313 genes were up-regulated and 174 genes were down-regulated more 

than 2-fold (Table S1). The group of genes most highly affected matched the 

transcriptional signature of iron starvation (Puig et al., 2005). Up-regulated genes were 
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enriched for genes involved in iron assimilation that are induced in iron starvation 

conditions by the transcription factors Aft1 and Aft2 (16 of 18 genes, p=7.1x10-19, Figure 

5) (Puig et al., 2005). Down-regulated genes were enriched for iron-dependent genes 

whose messages are degraded during iron starvation (16 of 34 genes, p=4.63x10-16, 

Figure 5). Slight induction of a subset of the iron regulon occurred as early as 3 hours 

after mtDNA loss, but maximal induction of most genes did not occur until 24 hours 

later.

Iron sensing in yeast is mediated by the acquisition of iron from the environment 

(Puig et al., 2005), successful packaging of iron into iron-sulfur clusters in the 

mitochondria (Rutherford et al., 2005), and the export of ISCs from the mitochondria to 

the cytosol (Kispal et al., 1997). Cytoplasmic ISCs act as a signal to keep the iron regulon 

transcription factors Aft1 and Aft2 in the cytoplasm (Rutherford et al., 2005). Thus 

defects in iron availability or import, mitochondrial ISC biogenesis or mitochondrial ISC 

export, or Aft1/Aft2 localization could all potentially lead to an iron starvation response. 

We propose that the iron starvation response following mtDNA loss results from defects 

in mitochondrial iron import, ISC biogenesis, or ISC export, based on the following 

observations. First, loss of the mtDNA increased total cellular iron (Figure S8C), 

indicating that iron availability and import are not the cause of this response. Second, the 

expression profile of cells 27 hours following loss of the mtDNA closely resemble those 

of cells defective in mitochondrial ISC biosynthesis when an essential protein in this 

process, Yah1, is depleted (Hausmann et al., 2008) (p=7.6x10-82 for overlap of genes up-

regulated > 2 fold, p=1.3x10-43 for overlap of genes downregulated > 2-fold, Figure 5), or 

when export of ISCs from the mitochondria to the cytoplasm is reduced through 
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depletion of the transport protein Atm1 (Hausmann et al., 2008) (p=1.9x10-31 for overlap 

of genes upregulated > 2-fold, p=3.0x10-25 for overlap of genes downregulated > 2-fold, 

Figure 5). Third, restored mitochondrial protein import with the ATP1-111/ ATP1-111 

mutation largely suppressed activation of the iron regulon following loss of the mtDNA. 

Twenty-seven hours after mtDNA loss, the induction of the iron regulon in ATP1-111/ 

ATP1-111 cells most closely resembled that of wild-type cells 11 hours after they lost 

their mtDNA – before the crisis occurred (Figure 5). This suggests that the defect 

responsible for iron regulon induction is mitochondrial in origin. Finally, others have 

observed that mitochondrial ISC biogenesis is impaired in cells lacking mtDNA (Kaut et 

al., 2000), and in cells lacking a mitochondrial membrane potential (Kispal et al., 1999).

Taken together, these observations indicate that loss of the mtDNA leads to a defect in 

mitochondrial iron metabolism, and that this plays a role in causing the crisis and nuclear 

genome instability.

Increased intracellular iron levels are not required for the crisis or nuclear genome 

instability that follows mtDNA loss

Impaired ISC biogenesis has two major consequences for the cell. First, there is 

activation of the iron regulon, which increases iron uptake and leads to increased levels 

of free intracellular iron (Kispal et al., 1997; Kispal et al., 1999). Second, the function of 

ISC-containing proteins in both the mitochondrial compartment and throughout the cell is 

either reduced or lost. These proteins are involved in various mitochondrial, nuclear and 

cytoplasmic processes (Lill and Muhlenhoff, 2008). Because elevated levels of free iron 

can lead to cell cycle abnormalities (Philpott et al., 1998) and oxidative damage to 

biomolecules, including protein and DNA (Karthikeyan et al., 2002; Karthikeyan et al., 
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2003), we tested whether elevated cellular iron levels were responsible for the crisis that 

followed mtDNA loss. Cellular iron was increased following mtDNA loss (Figure S8C), 

and there was a commensurate increase in oxidative damage to cellular protein (Figure 

S8A), as has been previously observed with elevated iron in a mitochondrial ISC mutant 

(Karthikeyan et al., 2003).

To test whether this increase in cellular iron and oxidative damage was 

responsible for the crisis and the LOH following mtDNA loss, the AFT1 gene was 

deleted. AFT1 encodes a major activator of the iron regulon; without it, increases in iron 

uptake from the environment are abrogated (Yamaguchi-Iwai et al., 1995). As expected, 

aft1∆ cells did not experience an increase in cellular iron (Figure S8C), nor was there an 

increase in global protein oxidation, following loss of mtDNA (Figure S8B). However, 

the increase in nuclear LOH and slow growth following mtDNA loss persisted in aft1∆

cells (Figure S8D & E), though the kinetics of reduced growth rate (Figure S8E) and cell 

cycle arrest (data not shown) were slower compared to wild-type cells. This argues that 

while increased iron and oxidative damage may play a role in the crisis following 

mtDNA loss, they are not required for the increased nuclear genomic instability that 

occurs during the crisis. Therefore, the nuclear genomic instability following mtDNA 

loss could be a direct consequence of reduced function of ISC-containing proteins, rather 

than indirect consequences that follow iron regulon activation. 

Reduced function of cytoplasmic/nuclear ISC biogenesis leads to increased nuclear 

genome instability

Given these results, we next wanted to test whether loss of function in cellular 

ISC-containing proteins, occurring as a consequence of mtDNA loss, caused nuclear 
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genomic instability. To this end we constructed an allele that allowed us to directly 

control ISC insertion into cytoplasmic and nuclear proteins. Repression of the NAR1 gene 

only alters packaging of ISCs into non-mitochondrial proteins (Balk et al., 2004) without 

inducing the iron regulon (Rutherford et al., 2005) or altering ISC insertion into 

mitochondrial proteins (Balk et al., 2004). NAR1 is an essential gene, so we controlled its 

expression using the estradiol-inducible described above. When cells were switched from 

medium with high estradiol, where Nar1 is expressed, into medium with low levels of 

estradiol, where Nar1 is repressed, the culture showed a progressive decline in growth 

rate over the course of 24 hours (data not shown). Unlike cells that lost their mtDNA, 

these cells did not arrest in the G1 stage of the cell cycle (data not shown). However, 

colonies formed by these cells on low estradiol medium display an increased incidence of 

LOH in the nuclear genome at both chromosomes tested (Figure 6A & B), despite the 

fact that mitochondrial function remains intact (data not shown). Consistent with previous 

reports, we find that the iron regulon is not activated with reduced NAR1 function (Figure 

5) (Hausmann et al., 2008; Rutherford et al., 2005). These results show that reduced 

function of non-mitochondrial ISC containing proteins can cause nuclear genomic 

instability and suggest that loss or reduced function of these proteins plays a role in the 

crisis following loss of mtDNA. Other aspects of the crisis, such as G1-specific arrest, are 

likely to be mediated by additional, unknown processes that are affected by the loss of 

mtDNA. 

DISCUSSION

Mitochondrial dysfunction leads to nuclear genome instability
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We initially observed that nuclear genomic instability occurred with delayed onset 

in the pedigree analysis of individual cells (McMurray and Gottschling, 2003). Here we 

show that this increase in nuclear LOH is the result of damage to, and/or loss of, the 

mtDNA (Figure 1). Thus we have divided the phenomenon of age-associated LOH into at 

least two steps. First, cells lose mtDNA function over time – by a process that remains 

unknown – and second, the mtDNA loss results in a crisis that ultimately leads to 

increased nuclear genome LOH – which is the focus of this report. 

The loss of the mtDNA in rich medium with glucose leads to a cellular crisis that 

is manifested as a gradual reduction in growth rate, cell cycle arrest, and increased 

nuclear genome instability (Figures 1 and 2). Of the cells that “adapted” to the crisis, it 

appears that most, if not all, of the cells harbored altered nuclear genomes. This is 

supported by two observations: the amount of LOH was extremely high, even though 

only two independent loci from the entire genome were monitored; and greater than 25% 

of colonies had large sectors indicative of an LOH event at either of the loci (Figure 2). 

Secondly, viable clones arose that carried nuclear mutations allowing them to survive 

(Figures 2 and S5). 

Several years after the discovery that cytoplasmically inherited mutations could 

alter mitochondrial function (Ephrussi et al., 1949), a phenomenon was described in yeast 

cells with “extra-nuclear respiratory” mutations (James and Spencer, 1958). We believe 

this phenomenon to be the crisis following mtDNA loss that we report here. These 

mutants showed a loss of growth along with selection for nuclear mutations that allowed 

cells to survive (James and Spencer, 1958). We propose that our work now provides an 

explanation for these earlier observations. However, part of our work contrasts with more 
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recent studies that conducted expression analysis of cells lacking mtDNA: they did not 

observe activation of the iron regulon that we saw (Epstein et al., 2001; Traven et al., 

2001). We examined cells a short amount of time after mtDNA loss, whereas the other 

studies did not examine the cells until they had been passaged for many generations 

without mtDNA. Furthermore, there appears to be a number of genetic modifiers of the 

crisis that could also explain differences between studies (JRV and DEG, unpublished 

data); derivatives of the common lab strain S288C – which is the basis of the systematic 

gene-deletion mutant collection (Giaever et al., 2002) – were used in our study, while 

different strains were used in the other studies. 

Linking mtDNA loss to nuclear genome instability: A cascade involving iron-sulfur 

clusters 

We propose the following model to explain the connection between mtDNA damage and 

nuclear genomic instability we have found. In normal cells, iron sulfur clusters (ISCs) are 

formed in the mitochondria through the action of multiple nucleus-encoded proteins. 

Some of these ISCs are exported to the cytoplasm, where they repress inappropriate 

activation of the iron regulon and function in multiple proteins, including several known 

to be involved in nuclear genome maintenance (Figure 7A). Following mtDNA loss or 

damage, a reduction in the mitochondrial membrane potential leads to decreased protein 

import into the mitochondria, leading to a defect in either iron import into the 

mitochondria, ISC packaging in the mitochondria, or ISC export into the cytosol. This 

leads to activation of the iron regulon and decreased function of cellular ISC containing 

proteins (Figure 7B). The finding that repressed non-mitochondrial ISC packaging 

resulted in nuclear genome instability in the absence of iron regulon activation (Figure 
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7C) suggests that a primary defect in the function of these proteins explained the 

connection between mitochondrial dysfunction and the integrity of the nuclear DNA. It is 

notable that the repression of ISC biogenesis does not explain all aspects of the crisis 

following mtDNA loss, in particular the G1 specific arrest. Other mechanisms, associated 

with loss of respiration and/or iron regulon induction, may be responsible for these other 

phenotypes.

The full complement of ISC-containing proteins in S. cerevisiae is unknown.

Nevertheless, there are several nuclear genome integrity proteins that contain ISCs. These 

include Rad3, a helicase involved in nucleotide-excision repair (Rudolf et al., 2006); Pri2, 

a primase involved in lagging strand DNA synthesis and important in DNA double-strand 

break repair (Klinge et al., 2007); and Ntg2, a glycosylase involved in base-excision 

repair (Alseth et al., 1999). Future efforts may determine whether loss of mtDNA reduces 

the in vivo enzymatic activity of one or more of these candidate proteins, or yet to be 

identified proteins, to generate the increased LOH phenotype. However, if the activity of 

all three of these candidate proteins were attenuated, it could explain the high rate of 

genomic instability observed, as three DNA repair pathways would be compromised 

simultaneously.

Consequences of mtDNA damage: beyond the electron transport chain

Mitochondrial dysfunction and damage to the mtDNA is thought to play a role in 

many pathologies, and is proposed to be a driving force behind the aging process (Kujoth 

et al., 2007; Wallace, 2005). To explain the link between mitochondrial dysfunction and 

reduced cellular function, much attention has focused on the respiratory aspects of 

mitochondria – i.e., the electron transport chain – and its role in producing energy, or in 
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generating reactive oxygen species that can damage biomolecules (Dimauro and 

Davidzon, 2005; Wallace, 2005). The crisis that includes nuclear genome instability 

following mtDNA loss is not likely due to changes in respiration: mutations that simply 

block steps in electron transport and oxidative phosphorylation do not produce increased 

LOH (Figure 4). 

Another mitochondrial pathway connected to the electron transport chain and 

implicated in genome instability is programmed cell death, which has been reported to 

occur in yeast (Eisenberg et al., 2007), and is largely dependent upon the yeast caspase 

homolog MCA1 (Madeo et al., 2002). When MCA1 was deleted, neither the decline in 

growth rate nor the increase in nuclear LOH frequency following mtDNA loss were 

affected (Figure S9), suggesting that programmed cell death pathways are not involved in 

the crisis.

Another implication of our findings is that not all means of eliminating electron 

transport and oxidative phosphorylation are the same with respect to overall 

mitochondrial function, as has been observed several times before in yeast (Church and 

Poyton, 1998; Dagsgaard et al., 2001; Zhang and Moye-Rowley, 2001). Specifically, we

find that elimination of complex III or IV, which completely block respiration, did not 

produce the crisis phenotype.  Our results suggest that, in addition to its role in 

supporting respiration, some feature of the mtDNA is involved in maintaining 

mitochondrial function in the absence of respiration. Consistent with previous models 

(Dupont et al., 1985), we speculate that the components of the F0 ATP synthase complex 

encoded in the mtDNA carry out this function.

Further implications 
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We hypothesize that cells which survive the crisis pass through a hypermutable 

state, as has been reported in bacteria and eukaryotic cells that are placed under stressful 

conditions (reviewed in (Galhardo et al., 2007)). The stress we note in our study is 

initiated with mitochondrial dysfunction and manifests as nuclear genome instability. 

Genetically altered survivors that arise following mitochondrial dysfunction return to 

relatively normal levels of genome instability (data not shown).

What aspects of our findings could extend beyond budding yeast to human 

disease?  The mitochondrial membrane potential of human cells is also reduced following 

the loss of mtDNA (Jazayeri et al., 2003). Additionally, both the essential role of the 

mitochondria in ISC biogenesis (Biederbick et al., 2006), and the role of ISC-containing 

proteins in nuclear genome stability, are conserved (Alseth et al., 1999; Klinge et al., 

2007; Rudolf et al., 2006). We speculate that non-respiratory functions of the 

mitochondria, including ISC biogenesis, could play a role in human disease that occurs as 

a consequence of mtDNA damage.
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EXPERIMENTAL PROCEDURES

Strain and plasmid construction

All strains used in this study and their genotypes are presented in Table S2 and all 

oligonucleotides used in plasmid and strain constructions are listed in Table S3. Plasmid 

and allele constructions are provided in supplemental materials.

Loss of heterozygosity assay

Log phase grown cells were treated either with 30 µg/ml ethidium bromide, 1µM 

estradiol, or no treatment in YEPD and grown for 6-7 hours. The cells were then 

centrifuged, washed once with fresh medium, and grown in log phase for another 12-14 

hours before plating ~200 cells/plate onto YEPD. Colonies were replicated to medium 

containing 0.1% lead nitrate (Cost and Boeke, 1996) after 5-7 days. All experiments were 

done in triplicate or quadruplicate, and all replicates behaved similarly. Confidence 

intervals of 95% were calculated by the Poisson distribution using data pooled from all 

replicates.

Growth rate measurements

Log phase cells were treated as described above in YEPD and grown for 6-7 

hours. Growth rates of cultures were measured by optical density at 660 nm in 96-well 

plates using a Powerwave XS plate reader (BioTek, Winooski, VT). In each experiment, 

each curve represents the mean of at least 3 independent cultures, plus or minus the 

standard deviation.

Microscopy
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All microscopy was carried out with a DeltaVision system (Applied Precision, 

LLC., Issaquah, WA) which has an Olympus IX70 inverted microscope equipped with a 

100X/1.40 objective. Images were deconvoluted using Softworx 3.4.3.

Cells were grown and treated as described above for 6 hours followed by washing in 

fresh medium, and 15 hours of growth in YEPD, and fixed. TOM70-GFP was visualized 

with the FITC filter. PreCOX4-Cherry was visualized with the RD-TR-PE filter. Twenty 

z-stacks were taken at an interval of 0.3 µm, and the resulting images were deconvoluted 

and projected onto one plane using the brightest point at each x,y position.

Microarrays

RNA expression arrays were carried out as previously described (Gardner et al., 

2005) using cultures grown in YEPD medium to an OD600 of about 1.0 in biological 

triplicate. Array data was normalized and analyzed using Genespring version 7.2 

(Agilent). Heat maps were generated using Java Treeview (Saldanha, 2004).
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Figure 1: Loss or damage to the mtDNA results in nuclear genomic instability. (A-B) 

Forty mother cells were analyzed by pedigree analysis. (A) left: Colonies produced by the 

1st through 37th daughter of a single representative mother cell are shown (daughter 13 

did not produce a colony). Right: The colonies from the left were replicated to media 

containing lead nitrate, which permits colony color development. Chromosome IV LOH 

results in a brown color, and chromosome XII LOH results in a red color. (B) The 

fraction of colonies that had at least a 1/8 sector of colony color are presented as a 

function of the number of cell divisions the mother cell went through. The data were 

classified as to whether the colony was normal or petite. Data are shown for LOH events 

that occurred on either the right arm of chromosome XII or IV. The difference in the 

LOH frequency between petite and normal cells for divisions 11-30 had a significance of 

p<0.0001 from chromosome XII and p<0.001 for chromosome IV.

(C) A wild-type (WT) strain was treated with or without a transient pulse of ethidium 

bromide (EtBr), and colonies grown from these cells were transferred to medium 

allowing visualization of LOH events. A derivative of the wild-type strain containing the 

dominant negative PGAL1-MIP1DN allele under control of the Gal4-EBD-VP16 (GEV) 

fusion protein was treated with or without a transient pulse of estradiol (E2), and grown 

as described above. (D) The treatments described in C were carried out on the WT strain 

or derivatives of this strain that contain the GEV activator, and/or the dominant negative 

PGAL1-MIP1DN as indicated. The percentage of colonies showing at least a 1/8 sector of 

LOH on chromosome XII and IV are presented. All error bars represent 95% confidence 

intervals and were calculated using the Poisson distribution.
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Figure 2: Loss of the mtDNA leads to a progressive decline in growth rate, cell cycle 

arrest, and selection for suppressor clones. (A) Growth rate of isogenic strains 

containing the GEV transcriptional activator, PGAL1-MIP1DN or both, following transient 

treatment with estradiol (E2). (B) Growth rate of the wild-type strain treated with or 

without a transient pulse of ethidium bromide. (C) The percentage of cells from (A) and 

(B) able to form a colony of at least 1mm in diameter after 8 days is presented on the left. 

The percentage of cells arrested as unbudded cells is presented on the right. Error bars 

represent 95% confidence intervals calculated using the binomial distribution. (D) 

Spontaneous [0] haploid suppressor mutants were back-crossed to isogenic cells with 

intact mtDNA. After sporulation, haploid [+] progeny of these crosses containing each 

suppressor allele were treated transiently with ethidium bromide and the growth rate was 

monitored as before.

Figure 3: The absence of respiration is not sufficient to cause the crisis and LOH.

(A) Wild-type cells (UCC1899) and derivatives with homozygous deletions for either 

COX4, RIP1 or CAT5 were treated as described in Figure 2A. (B-D) Growth rate of cells 

with or without transient treatment with ethidium bromide. Wild-type cells are compared 

to deletions of CAT5 (B), RIP1 (C) or COX4 (D).

Figure 4: A hyperactive F1 ATP synthase partially restores mitochondrial protein 

import and prevents the growth defect and nuclear genomic instability that results 

from mtDNA loss. (A) Growth rates of a wild-type diploid and a the ATP1-111/ATP1-

111 derivative, with or without transient ethidium bromide treatment . (B) The frequency 
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of LOH events in the strains from (A). (C) Localization of proteins to the outer 

mitochondrial membrane (Tom70-GFP, green) or the mitochondrial matrix (preCox4-

Cherry, red) in wild-type cells or ATP1-111/ATP1-111 derivative cells are presented.

Figure 5: Cells show a transcriptional signature of iron starvation following mtDNA 

loss. Levels of mRNA from WT cells 3, 11, 19 and 27 hours after mtDNA loss were 

compared to cells with intact mtDNA. mRNA from ATP1-111 mutants collected 27 hours 

after mtDNA loss was compared to mRNA of the same strain with intact mtDNA. mRNA 

was isolated from the NAR1 repressible strain 27 hours after a shift from 50 nM estradiol 

to 2 nM estradiol and compared to the same strain grown in 50 nM estradiol. Genes are 

arranged in order of their reported magnitude of induction (red) or repression (green) by 

iron starvation (Puig et al., 2005). Comparisons are made to published array data for 

depletion of the YAH1 and ATM1 genes (Hausmann et al., 2008).

Figure 6: Reducing ISC protein loading activity in the cytoplasm leads to nuclear 

genome instability. (A) A strain (UCC3970) with NAR1 expression controlled by 

estradiol (E2) was plated to media containing either 50 nM (NAR1 expressed) or 2 nM 

estradiol (NAR1 down-regulated) followed by replication to LOH indicator media. (B) 

The frequency of colonies showing at least 1/8 sector of LOH following plating of the 

strain in A (NAR1EST) and an isogenic strain without the estradiol regulated promoter 

(WT) to either low (2nM) or high (50nM) estradiol (E2). Error bars represent 95% 

confidence intervals calculated using the Poisson distribution. 
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Figure 7: Model to explain nuclear genomic instability following mtDNA loss. A) In 

normal cells, iron is packaged into iron-sulfur clusters (ISCs) in the mitochondria, and 

some ISCs are exported into the cytoplasm. The cytoplasmic ISCs inhibit iron regulon 

induction and are required for the function of proteins that maintain nuclear genome 

integrity. (B) Upon loss of the mtDNA, the mitochondrial membrane potential (∆) is 

reduced, which compromises mitochondrial iron import, ISC packaging, and/or export. 

This results in iron regulon induction and nuclear genome instability. (C) Artificially 

reduced Nar1 function limits packaging of ISCs into proteins involved in nuclear DNA 

metabolism, leading to nuclear genome instability. In this case mitochondrial function is 

intact and the iron regulon is not induced. 
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Table S2. List of Yeast Strains Used in this Study 
 
STRAIN GENOTYPE SOURCE 

BY4743 MATa/MAT his3∆1/his3∆1 leu2∆0/leu2∆0 ura3∆0/ura3∆0 met15∆0/+ lys2∆0/+ (Brachmann et al., 

1998) 

BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 (Brachmann et al., 

1998) 

BY4742 MAT his3∆1 leu2∆0 lys2∆0 ura3∆0 (Brachmann et al., 

1998) 

UCC809 

 
MATa/MAT ade2∆::hisG/ade2∆::hisG leu2∆0/leu2∆0 lys2∆0/lys2∆0 met15∆::ADE2/met15∆::URA3 

trp1∆63/trp1∆63 ura3∆0/ura3∆0 arg8∆::LEU2/+ gdh1d::LYS2/+ sam2d::MET15/+ ho/ho∆::TRP1 

(McMurray and 

Gottschling, 2003) 
UCC793 MATa/MAT ade2∆::hisG/ade2∆::hisG leu2∆0/leu2∆0 lys2∆0/lys2∆0 trp1∆63/trp1∆63 ura3∆0/ura3∆0 

sam2∆::URA3/+ met15∆::ADE2/+ arg8∆::LEU2/+ gdh1∆::LYS2/+ 

(McMurray and 

Gottschling, 2003) 

UCC1726 MATa/MAT his3∆1/his3∆1 ura3∆0/ura3∆0 ade2∆::hisG/ade2∆::hisG lys2∆0/lys2∆0 leu2∆0/leu2∆0 
met15∆::ADE2/met15∆::LYS2 chrIV(1515634-1515738)::SpHIS5/chrIV(1515634-1515738)::MET15 

This study 

UCC1899 UCC1726 RAD52-eGFP-KanMX/RAD52-eGFP-KanMX This study 

UCC1924 UCC1726 RAD52-eGFP-KanMX/RAD52-eGFP-KanMX leu2∆0::pACT1-GAL4dbd-ER-VP16ad-NatMX/ 
leu2∆0::pACT1-GAL4dbd-ER-VP16ad-NatMX ho∆::URA3-pGAL1-MIP1DN/ho∆::URA3-pGAL1-MIP1DN 

This study 

UCC1932 UCC1726 RAD52-eGFP-KanMX/RAD52-eGFP-KanMX leu2∆0::pACT1-GAL4dbd-ER-VP16ad-
NatMX/leu2∆0::pACT1-GAL4dbd-ER-VP16ad-NatMX 

This study 

UCC3818 UCC1726 RAD52-eGFP-KanMX/RAD52-eGFP-KanMX cat5∆::LEU2/cat5∆::LEU2 This study 

UCC3820 UCC1726 RAD52-eGFP-KanMX/RAD52-eGFP-KanMX rip1∆::LEU2/rip1∆::LEU2 This study 

UCC3822 UCC1726 RAD52-eGFP-KanMX/RAD52-eGFP-KanMX cox4∆::LEU2/cox4∆::LEU2 This study 

UCC3857 UCC1726 RAD52-eGFP-KanMX/RAD52-eGFP-KanMX mca1∆::LEU2/mca1∆::LEU2 This study 

UCC3863 UCC1726 RAD52-eGFP-KanMX/RAD52-eGFP-KanMX rtg1∆::URA3/rtg1∆::URA3 This study 

UCC3970 UCC1726 RAD52-eGFP-KanMX/RAD52-eGFP-KanMX leu2∆0:: PACT1-GAL4dbd-ER-VP16ad-NatMX/ 
leu2∆0::PACT1-GAL4dbd-ER-VP16ad-NatMX URA3-PGAL1-NAR1/URA3- PGAL1-NAR1 

This study 

UCC3980 UCC1726 ATP1-111/ATP1-111 This study 

UCC3992 UCC1726 TOM70-eGFP-CaURA3/+ chrIV(446393-446394)::PTDH3-preCOX4-Cherry-hphMX/+ This study 

UCC3994 UCC1726 ATP1-111/ATP1-111 TOM70-eGFP-CaURA3/+ chrIV(446393-446394)::PTDH3-preCOX4-Cherry-
hphMX/+ 

This study 

UCC3996 UCC1726 TOM70-eGFP-KanMX/+ cat5∆/cat5∆ chrIV(446393-446394)::PTDH3-preCOX4-Cherry-hphMX/+ This study 

UCC3997 UCC1726 TOM70-eGFP-KanMX/+ rip1∆/rip1∆ chrIV(446393-446394)::PTDH3-preCOX4-Cherry-hphMX/+ This study 

UCC3998 UCC1726 TOM70-eGFP-KanMX/+ cox4∆/cox4∆ chrIV(446393-446394)::PTDH3-preCOX4-Cherry-hphMX/+ This study 

UCC3999 
 

UCC1726 aft1∆::hphMX/aft1∆::hphMX This study 
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S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115-132. 
McMurray, M. A., and Gottschling, D. E. (2003). An age-induced switch to a hyper-recombinational state. Science 301, 1908-1911. 
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Table S3. List of Oligonucleotides Used in this Study 

 
OLIGO NAME SEQUENCE 

pACT1-AscI GTACGGCGCGCCGCCTCTACCTTGCAGACCCATATAATA 

pACT1-ApaI GTACGGGCCCTGTTAATTCAGTAAATTTTCGATCTTGG 

leu2d0-int1-PmeI GCTTCCAAGACACACTTGGTTTAAACACAGAGTACTTTATACGTAC 

leu2d0-int2-NotI GATCGCGGCCGCATGATTAGAGGTCAAGAGGGCT 

leu2d0-int3-SacII GATCCCGCGGCGACACGAAATTACAAAATGGA 

leu2d0-int4-PmeI GTATAAAGTACTCTGTGTTTAAACCAAGTGTGTCTTGGAAGCCG 

mip1-5-SpeI-2 TAGCACTAGTTAGTTGTTGAGCAACGAGGGA 

mip1-3-SalI TAGCGTCGACCAAATGCGAAAGCTAATGCAG 

mip1-D918A-1 CATTTCCATCCATGCTGAGATTAGATTTTTG 

mip1-D918A-2 CAAAAATCTAATCTCAGCATGGATGGAAATG 

Hocre-R ATGCTTTCTGAAAACACGACTATTCTGATGGCTAACGGTGAAAGATTGTACTGAGAGTGC 

Hocre-F GCAGATGCGCGCACCTGCGTTGTTACCACAACTCTTATGAGGTGATTACGCCAAGCGCGC 

5'pnar1-1 ATTAAGAGAGCAGGTGACTTTCTGG 

5'pnar1-2 GTATGGTGCACTCTCAGTACAATCGCTTTCTTGTACACTTATCTTGTCACT 

pGAL1-F1 AATCAAGTTTTTTGGGGTCG 

URA3-F1 TTTCCCCGTCAAGCTCTAAA 

pGAL1-pTCG-up TCGAGGAATTCGGCTAGAGGT 

pRS+ GATTGTACTGAGAGTGCACC 

3'pnar1-1 AACCTCTAGCCGAATTCCTCGAATGAGTGCTCTACTGTCCGAGTCT 

3'pnar1-2 CTCCAATGTTAAGCCGTAGTACTG 

atp1d5 CAGGCTGAAGAATTGGTCGAGTTCTCCTCTGGTGTTAAAGGTATGGCGATTGTACTGAGAGTGCACC 

atp1d3 CCATCCAAATGACCATTAACACCGGCATAAATCAATGGAACCTGTTCCTGTGCGGTATTTCACACCG 

CAT5rs1 ACGGGATTTTCAGGAAAAAAAACAATAGAAATCTATAAAACAGATTGTACTGAGAGTGCAC 

CAT5rs2 CTGGCATAACGCGACTGATGTATGCCACTTTCTGGTGGTTACTGTGCGGTATTTCACACCG 

gfp-rec1 CACTATTTGAAAGGTTTATCAATGCTTAAAACCTAGTTACGCAGTTCGAGTTTATCATTATCAATACTG 

mitored-1 GTGGCTGGCTTGAAAAATCTTATAGATTGACGTAGTGAAAGCATTTTGTTTGTTTATGTGTGTTTATTCG 

mitored-2 AGATTTTTCAAGCCAGCCACAAGAACTTTGTGTAGCTCTGGTCGACGGATCCCCGGG 

mitored-3 ATATGCATCAGCTTATTGGGTCCACCAAGAAATCCCCTCGGATCGATGAATTCGAGCTCG 

TOM70F5 TCAAGAAACTTTAGCTAAATTACGCGAACAGGGTTTAATGGGTGACGGTGCTGGTTTA 

TOM70R3 TTTGTCTTCTCCTAAAAGTTTTTAAGTTTATGTTTACTGTTCGATGAATTCGAGCTCG 

aft1d5 CTACGACAATGGAAGGCTTCAATCCGGCTGACATAGAACATGCGTCACCGGATTGTACTGAGAGTGCACC 

aft1d3 CATCTATATGCTAATCTTCTGGCTTCACATACTTCAACTCGCCGTTCACCTGTGCGGTATTTCACACCG 

cox4d5 CACCCATTTCGATTTTGATGTTGCCATACAAATAGATAACAAGCACAGATTGTACTGAGAGTGCACC 

cox4d3 GTAAAAGAGAAACAGAAGGGCAACTTGAATGATAAGATTAGTGATGGCTGTGCGGTATTTCACACCG 

rip1d5 CACTCTAACACTTATTAGGAAACCGAAAGGAGCAATAACAAACGATTGTACTGAGAGTGCACC 

rip1d3 GACAATAAAGATGTAGTTTTCGAGGACGAAAAACAAACCTAACCAACCTGTGCGGTATTTCACACCG 
 



SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Strain and plasmid construction

All strains used in this study and their genotypes are presented in Table S2 and all 

oligonucleotides used in plasmid and strain constructions are listed in Table S3. 

The Gal4-estrogen binding domain-VP16 (GEV) fusion protein was integrated at 

the genomic leu2∆0 allele by transforming the plasmid pAGL linearized with the 

restriction enzyme PmeI.  This plasmid was created in three steps.  First, pGEV-LEU2, 

which was a generous gift of Jennifer Pinkham (Gao and Pinkham, 2000), was partially 

digested with HindIII and NotI, and the fragment containing the GEV was cloned into a 

NotI/HindIII digested pRS40NAT (Andersen et al., 2008) to create plasmid pLND24 (a 

gift of Lazar Dimitrov – Gottschling lab). Next a genomic fragment containing the ACT1

promoter amplified with the primers pACT1-apaI and pACT1-ascI were cloned between 

the ApaI and AscI sites of pLND24 to make pACT1-GEV.  Finally, a fusion PCR product 

between the following two fragments made using a genomic template:  (1) primers 

leu2d0-int1-pmeI and leu2d0-int2-notI (2) primers leu2d0-int3-sacII and leu2d0-int4-

pmeI was generated and cloned into the NotI and SacII sites of pACT1-GEV. 

The MIP1 dominant negative allele was modeled after a dominant negative allele 

of the mammalian homolog, DNA polymerase  (Jazayeri et al., 2003); the catalytic 

aspartic acid 918 residue was replaced with alanine.  This allele was created by fusion 

PCR using the primers mip1-5-spe1-2, Mip1-D918A-1, Mip1-D918A-2, and mip1-3-sal1 

and the template pFL39-MIP1, which was a generous gift of Francoise Foury (Foury, 

1989).  This fragment was cloned between the SpeI and SacI sites of p416-GAL1
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(Mumberg et al., 1994), and integrated at the HO locus using the primers HOcre-F and 

HOcre-R.

The GAL1 promoter was inserted in front of the genomic NAR1 gene by 

transformation with a fusion PCR made from the following 4 fragments: (1) primers 

5'pnar1-1 and 5'pnar1-2, using genomic DNA as a template; (2) primers pRS+ and 

URA3-F1, using pRS306 as a template (Brachmann et al., 1998); (3) primers pGAL1-F1 

and pGAL1-pTCG-up, using pTCG as a template (Singer et al., 1998); (4) primers 

3'pnar1-1 and 3'pnar1-2, using genomic DNA as a template.

The ATP1-111 allele was integrated by first replacing nucleotides 250-1475 of the 

ATP1 gene with URA3 using a PCR product made from the primers atp1d5 and atp1d3 

using pRS306 as a template, followed by transformation of this strain with the 

XbaI/BamHI fragment from pRS316-ATP1-111 and selection for strains that had lost the 

URA3 marker. The plasmid pRS316-ATP1-111 was a generous gift from Peter Thorsness 

(Francis et al., 2007).

The plasmid pBS35 containing the mCherry gene was provided by Roger Tsien 

(UCSD) through the Yeast Resource Center (Seattle, WA).  The heterochimeric fusion 

protein between the pre-sequence of COX4 and the mCherry protein was put under the 

control of the TDH3 promoter and integrated at an intergenic region near the centromere 

of chromosome IV by transforming a fusion PCR from primers gfp-rec1 and mitored1 

using genomic DNA as a template and primers mitored2 and mitored3 with pBS35 as a 

template.  One transformant that showed reduced expression and more mitochondria-

specific localization was used for all subsequent experiments.



Plasmids pKT209 and pKT127 (Sheff and Thorn, 2004) were used as template to 

fuse the enhanced green fluorescent protein to the 3’ end of the genomic copy of TOM70

using the primers TOM70F5 and TOM70R3.

Strains with gene deletions were generated by PCR-mediated gene replacement 

by homologous recombination (see Table S3 for oligos used).  Diploids homozygous for 

a given deletion were either created by knocking out one copy of the gene in a diploid 

cell, followed by sporulation, and mating the haploid strains carrying the deletion, or by 

knocking out each gene in the haploid parents, and subsequent mating.

Growth rate measurements

Growth rates of cultures were measured by optical density at 660 nm in 96-well plates 

using a Powerwave XS plate reader (BioTek, Winooski, VT) using a modification of the 

method reported previously (Toussaint and Conconi, 2006). In order to follow the growth 

rate of the same culture for a long period of time, a series of seven 4-fold dilutions of 

each original culture were made in final volumes of 100 µl.  The plate was grown at 30° 

with high, continuous shaking for 24-40 hours with absorbance reads every 10 minutes.  

Growth rates of individual wells were calculated when the path length-unadjusted 

absorbance for that well was between 0.02 and 0.25, and the doubling time was 

calculated by linear regression of the log2 transformed OD using a 110 minute sliding 

window.  Individual wells representing different dilutions of the same culture were 

subsequently averaged together when they both were in the required window.  In each 

experiment, each curve represents the mean of at least 3 independent cultures, plus or 

minus the standard deviation.



Supplemental microscopy

DiOC6 staining of live cells was performed as previously described (Pringle et al., 

1989) in synthetic complete medium with a concentration of 250 ng/ml DiOC6

(Molecular probes), using the FITC filter and an exposure time of 0.2 sec, taking 12 z-

slices 0.5 µm apart, and projecting these z-slices onto a single plane using the brightest 

point. Images were false colored using ImageJ software (v1.37, NIH).

Iron level assay

Fifty ml cultures were grown as described to an OD600 0.6 - 1.2.  Cells were 

washed 2 times with 50 ml nanopure water, and suspended in an equal volume of sample 

buffer (adapted from (Aguilaniu et al., 2001)):(20 mM Tris-Cl, pH 8, 10 mM MgCl2, 0.33 

M ammonium sulfate, 5% glycerol, 1X Roche protease inhibitor cocktail, 1% 2-

mercaptoethanol) with Triton X-100 added to a final concentration of 0.5%.  The cells 

were stored at -20°, thawed and lysed by vortexing with glass beads in a multi-vortexer 

for 30 min at 4°.  Protein levels were quantified using the Biorad protein quantitation kit, 

and iron levels were measured using the acid extraction and chelation method using 2-(5-

nitro-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino)phenol (Nitro-PAPS) as previously 

described (Molik et al., 2007).  Iron levels are reported as the mean of three independent 

replicates, with error bars representing the standard error of the mean.

Protein carbonylation assay

Cultures were grown as described above to an OD600 of 1 in biological duplicate, 

and were disrupted in sample buffer.  Identical amounts of total protein were then 

derivatized and detected using the Oxyblot™ protein oxidation detection kit (Chemicon 

International) using the manufacturer’s instructions.



DNA content analysis

DNA of cells fixed in 70% ethanol were stained with SYTOX Green (Invitrogen), 

as previously described (Foss, 2001), and DNA content was measured using a BD 

FACSCanto flow cytometer (BD Biosciences) and cell cycle profiles were analyzed 

using FlowJo software (Tree Star Inc.).
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SUPPLEMENTAL FIGURE & TABLE LEGENDS

Figure S1: mtDNA instability and loss of heterozygosity in pedigree analysis  

(A) Representation of pedigree analysis of forty mothers of the strain UCC809 arranged 

on the y-axis.  Circles represent daughter colonies, yellow color indicates “petite” non-

respiring colonies, red and black colored sectors in colonies represent LOH events at 

met15∆::ADE2 and sam2∆::MET15, respectively.  Dashed circles represent daughters 

that did not form visible colonies. (B) Representation of pedigree analysis of forty 

mothers of the strain UCC793 arranged on the y-axis.  Circles represent daughter 

colonies, yellow color indicates “petite” non-respiring colonies, brown, red and blue 

colored sectors in colonies represent LOH events at MET15, met15∆::ADE2 and 

sam2∆::URA3, respectively.  Dashed circles represent daughters that did not form visible 

colonies. (C) 15 mothers from the wild-type strain UCC809 were analyzed by pedigree 

analysis.  A sample of 128 non-respiring daughter colonies from these 15 pedigrees were 

stained with DAPI and scored for the presence or absence of cytoplasmic speckles, 

corresponding to the presence of mtDNA.  The 15 mother cells are arranged on the y-

axis, with each circle representing one daughter colony.  Yellow circles represent “petite” 

non-respiring colonies.  Colonies marked with a (+) have a fraction of cells with mtDNA 

staining.  Colonies marked with a (-) showed no mtDNA staining.  Dashed circles 

represent daughter cells that did not form visible colonies.  

Figure S2: Treatment with Ethidium Bromide or induction of the MIP1 dominant 

negative leads to rapid loss of the mtDNA. The wild-type strain (UCC1899) was grown 

in either the presence or absence of 30 µg/ml ethidium bromide for 7 hours.  The strain 
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(UCC1924) containing the GEV transcriptional activator and the PGAL1-MIP1DN allele 

was grown for 7 hours in the presence or absence of 1µM estradiol (E2).  Following 

treatments, cells were fixed in paraformaldehyde, permeablized, and stained with DAPI 

to visualize the mitochondrial DNA.

Figure S3: Nuclear LOH following mtDNA loss occurs through mitotic 

recombination. A strain (UCC768), which contains multiple heterozygous markers on 

the right arm of chromosome XII was treated with ethidium bromide and plated to detect 

LOH events at the MET15 locus (McMurray and Gottschling, 2003). Twenty-one clones 

that were homozygous for MET15 (white box) and 22 that were homozygous for 

met15∆::ADE2 were subsequently phenotyped for the presence of other genetic markers 

along the chromosome arm (i.e. URA3, HIS3, KanMX and TRP1). The results are 

schematically presented. 

Figure S4: Cells in the crisis following mtDNA loss are metabolically alive.  (A) A 

wild-type strain (UCC1899) was transiently treated with ethidium bromide, grown 

without nutrient limitation for 30 hours, and stained for 5 minutes with 0.4 µg/ml of the 

vital dye phloxine B, and visualized by brightfield and a TRITC filter fluorescence 

microscopy.  The same cells were heat killed by incubating 10 minutes at 65° and 

analyzed similarly.  (B) The same strain was either transiently treated (red) or mock-

treated (blue) with ethidium bromide and FACS analyzed for DNA content over time. 



3

Figure S5:  Spontaneous suppressors of the crisis following the loss of the mtDNA 

show Mendelian segregation. Spontaneous 0 suppressors derived from the haploid 

wild-type strains BY4741 (sup-1, sup-2) and BY4742 (sup-3, sup-4) were backcrossed to 

a [+] wild-type parent and the resulting diploids were sporulated.  Each [+] spore from 

each of two tetrads for these 4 mutants was transiently treated with ethidium bromide.  

Following treatment the cells were washed and three sequential 15-fold dilutions of each 

strain were placed onto plates and grown for 3 days. The upper left-hand panel contains a 

wild-type reference strain transiently treated with or without ethidium bromide.

Figure S6: Cells show reduced mitochondrial staining with the membrane potential 

sensitive dye DiOC6 following loss of the mtDNA. A wild-type strain (UCC3992) was 

transiently treated with or without ethidium bromide, followed by 14 hours of growth in 

synthetic complete medium. Cells were stained with 250 ng/ml DiOC6 in the same

medium, placed onto a 2% agarose pad made of synthetic complete medium with 

250ng/ml DiOC6, and visualized using the FITC fluorescence filter or by brightfield 

microscopy.

Figure S7:  Loss of respiratory function is not sufficient to impair mitochondrial

matrix protein import. Localization of proteins to the outer mitochondrial membrane 

(Tom70-GFP, green) or the mitochondrial matrix (preCox4-Cherry, red) in wild-type 

(UCC3992), cat5∆/cat5∆, cox4∆/cox4∆ or rip1∆/rip1∆ cells are presented. Cells were 

grown for 15 hours following their transient treatment with (No mtDNA) or without 

(Intact mtDNA) ethidium bromide. 
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Figure S8: Increased cellular iron is not required for nuclear genomic instability 

following the loss of the mtDNA.

(A) Oxidation of soluble protein was determined by carbonyl analysis.  Equal amounts of 

soluble cellular protein were loaded with two independent samples from the wild-type 

strain (UCC1899) grown in log phase, treated with 5mM hydrogen peroxide (H2O2) for 1 

hour. The same strain was also treated with a 6-hour pulse of ethidium bromide, followed 

by 27 hours of growth.  A derivative of this strain (UCC3970) with estradiol-controlled 

expression of the NAR1 gene (NAR1EST) protein was grown in 50 nM or 2nM estradiol 

(E2).  A gel with the same samples coomassie stained for total protein is below.  (B) The 

carbonyl analysis was repeated on a wild-type strain (UCC1726) and derivative 

containing a homozygous deletion of AFT1 that were treated with or without a 6-hour 

pulse of ethidium bromide, followed by 24 hours of growth. The same cells described in 

(B) had their total cellular iron levels measured (C), the frequency of LOH determined 

(D), and their growth rate measured (E).

Figure S9:  The yeast caspase Mca1 is not required for the crisis following mtDNA 

loss.  (A) A wild-type strain (UCC1899) and its isogenic mca1∆/mca1∆ derivative were 

transiently treated with or without ethidium bromide, and the growth rate was monitored 

as described in the Experimental Procedures.  (B) The LOH frequency was determined 

for strains from (A) that were transiently treated ethidium bromide and plated following 8 

hours of growth.

Table S1:  Expression data:

RNA microarray data was analyzed with GeneSpring software (v.7 Agilent). Each 
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experiment was performed in biological triplicate. For the wild-type strain (UCC1899), 

samples were collected at each time point (hours) after the transient treatment of cells 

with ethidium bromide and compared to the parental strain with intact mtDNA.  For the 

ATP1-111 strain (UCC3980) cells were collected 27 hours after the ethidium bromide 

treatment, and compared to the same strain with intact mtDNA.  For the NAR1 reduced 

expression samples, UCC3970 was shifted from 50 nM to 2 nM estradiol, grown for 27 

hours, and compared to the same strain grown in 50 nM estradiol.  Dyes were exchanged 

for each biological replicate to rule out dye-specific artifacts.  The numbers presented in 

this table are the mean of six hybridizations (2 dye-exchanges for each of 3 biological 

replicates) and the uncorrected t-test p values for each gene.  Data points, which were 

changed at least 2-fold and achieved significance at a false discovery rate of 5% by the 

Benjamini-Hochberg multiple testing correction are shaded in blue.

A number of genes expression changed in response to shift of the estradiol-

controlled NAR1 strain (UCC3970) to low estradiol are also seen in a isogenic strain 

containing the GEV transcriptional activator but without the GAL1 promoter controlling 

the NAR1 gene (data not shown).  These are primarily genes with Gal4 binding sites and 

were not included in our analysis. We have not seen significant transcriptional changes 

associated with different estradiol concentrations in the absence of the GEV (data not 

shown), indicating that the transcriptional changes observed are the result of the GEV 

induction.
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