90 research outputs found

    Mortality and other adverse outcomes in patients with type 2 diabetes mellitus admitted for COVID-19 in association with glucose-lowering drugs: a nationwide cohort study

    Get PDF
    Background: Limited evidence exists on the role of glucose-lowering drugs in patients with COVID-19. Our main objective was to examine the association between in-hospital death and each routine at-home glucose-lowering drug both individually and in combination with metformin in patients with type 2 diabetes mellitus admitted for COVID-19. We also evaluated their association with the composite outcome of the need for ICU admission, invasive and non-invasive mechanical ventilation, or in-hospital death as well as on the development of in-hospital complications and a long-time hospital stay. Methods: We selected all patients with type 2 diabetes mellitus in the Spanish Society of Internal Medicine's registry of COVID-19 patients (SEMI-COVID-19 Registry). It is an ongoing, observational, multicenter, nationwide cohort of patients admitted for COVID-19 in Spain from March 1, 2020. Each glucose-lowering drug user was matched with a user of other glucose-lowering drugs in a 1:1 manner by propensity scores. In order to assess the adequacy of propensity score matching, we used the standardized mean difference found in patient characteristics after matching. There was considered to be a significant imbalance in the group if a standardized mean difference > 10% was found. To evaluate the association between treatment and study outcomes, both conditional logit and mixed effect logistic regressions were used when the sample size was ≥ 100. Results: A total of 2666 patients were found in the SEMI-COVID-19 Registry, 1297 on glucose-lowering drugs in monotherapy and 465 in combination with metformin. After propensity matching, 249 patients on metformin, 105 on dipeptidyl peptidase-4 inhibitors, 129 on insulin, 127 on metformin/dipeptidyl peptidase-4 inhibitors, 34 on metformin/sodium-glucose cotransporter 2 inhibitor, and 67 on metformin/insulin were selected. No at-home glucose-lowering drugs showed a significant association with in-hospital death; the composite outcome of the need of intensive care unit admission, mechanical ventilation, or in-hospital death; in-hospital complications; or long-time hospital stays. Conclusions: In patients with type 2 diabetes mellitus admitted for COVID-19, at-home glucose-lowering drugs showed no significant association with mortality and adverse outcomes. Given the close relationship between diabetes and COVID-19 and the limited evidence on the role of glucose-lowering drugs, prospective studies are needed

    Fungal Planet description sheets: 1436–1477

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Argentina, Colletotrichum araujiae on leaves, stems and fruits of Araujia hortorum. Australia, Agaricus pateritonsus on soil, Curvularia fraserae on dying leaf of Bothriochloa insculpta, Curvularia millisiae from yellowing leaf tips of Cyperus aromaticus, Marasmius brunneolorobustus on well-rotted wood, Nigrospora cooperae from necrotic leaf of Heteropogon contortus, Penicillium tealii from the body of a dead spider, Pseudocercospora robertsiorum from leaf spots of Senna tora, Talaromyces atkinsoniae from gills of Marasmius crinis-equi and Zasmidium pearceae from leaf spots of Smilax glyciphylla. Brazil, Preussia bezerrensis from air. Chile, Paraconiothyrium kelleni from the rhizosphere of Fragaria chiloensis subsp. chiloensis f. chiloensis. Finland, Inocybe udicola on soil in mixed forest with Betula pendula, Populus tremula, Picea abies and Alnus incana. France, Myrmecridium normannianum on dead culm of unidentified Poaceae. Germany, Vexillomyces fraxinicola from symptomless stem wood of Fraxinus excelsior. India, Diaporthe limoniae on infected fruit of Limonia acidissima, Didymella naikii on leaves of Cajanus cajan, and Fulvifomes mangroviensis on basal trunk of Aegiceras corniculatum. Indonesia, Penicillium ezekielii from Zea mays kernels. Namibia, Neocamarosporium calicoremae and Neocladosporium calicoremae on stems of Calicorema capitata, and Pleiochaeta adenolobi on symptomatic leaves of Adenolobus pechuelii. Netherlands, Chalara pteridii on stems of Pteridium aquilinum, Neomackenziella juncicola (incl. Neomackenziella gen. nov.) and Sporidesmiella junci from dead culms of Juncus effusus. Pakistan, Inocybe longistipitata on soil in a Quercus forest. Poland, Phytophthora viadrina from rhizosphere soil of Quercus robur, and Septoria krystynae on leaf spots of Viscum album. Portugal (Azores), Acrogenospora stellata on dead wood or bark. South Africa, Phyllactinia greyiae on leaves of Greyia sutherlandii and Punctelia anae on bark of Vachellia karroo. Spain, Anteaglonium lusitanicum on decaying wood of Prunus lusitanica subsp. lusitanica, Hawksworthiomyces riparius from fluvial sediments, Lophiostoma carabassense endophytic in roots of Limbarda crithmoides, and Tuber mohedanoi from calcareus soils. Spain (Canary Islands), Mycena laurisilvae on stumps and woody debris. Sweden, Elaphomyces geminus from soil under Quercus robur. Thailand, Lactifluus chiangraiensis on soil under Pinus merkusii, Lactifluus nakhonphanomensis and Xerocomus sisongkhramensis on soil under Dipterocarpus trees. Ukraine, Valsonectria robiniae on dead twigs of Robinia hispida. USA, Spiralomyces americanus (incl. Spiralomyces gen. nov.) from office air. Morphological and culture characteristics are supported by DNA barcodes

    An ultrahot Neptune in the Neptune desert

    Get PDF
    About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet. All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky planets smaller than 2 R⊕. Such lack of planets of intermediate size (the ‘hot Neptune desert’) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(−2.9)% of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this ‘ultrahot Neptune’ managed to retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its origin and physical nature will be facilitated by the star’s brightness (V_(mag) = 9.8)

    Associations Between the Modified Food Standard Agency Nutrient Profiling System Dietary Index and Cardiovascular Risk Factors in an Elderly Population

    Get PDF
    BackgroundHelping consumers to improve the nutritional quality of their diet is a key public health action to prevent cardiovascular diseases (CVDs). The modified version of the Food Standard Agency Nutrient Profiling System Dietary Index (FSAm-NPS DI) underpinning the Nutri-Score front-of-pack label has been used in public health strategies to address the deleterious consequences of poor diets. This study aimed to assess the association between the FSAm-NPS DI and some CVD risk factors including body mass index (BMI), waist circumference, plasma glucose levels, triglyceride levels, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, and diastolic and systolic blood pressure.Materials and MethodsDietary intake was assessed at baseline and after 1 year of follow-up using a 143-item validated semi-quantitative food-frequency questionnaire. Dietary indices based on FSAm-NPS applied at an individual level were computed to characterize the diet quality of 5,921 participants aged 55–75 years with overweight/obesity and metabolic syndrome from the PREDIMED-plus cohort. Associations between the FSAm-NPS DI and CVD risk factors were assessed using linear regression models.ResultsCompared to participants with a higher nutritional quality of diet (measured by a lower FSAm-NPS DI at baseline or a decrease in FSAm-NPS DI after 1 year), those participants with a lower nutritional quality of diet (higher FSAm-NPS DI or an increase in score) showed a significant increase in the levels of plasma glucose, triglycerides, diastolic blood pressure, BMI, and waist circumference (β coefficient [95% confidence interval]; P for trend) (1.67 [0.43, 2.90]; <0.001; 6.27 [2.46, 10.09]; <0.001; 0.56 [0.08, 1.05]; 0.001; 0.51 [0.41, 0.60]; <0.001; 1.19 [0.89, 1.50]; <0.001, respectively). No significant associations in relation to changes in HDL and LDL-cholesterol nor with systolic blood pressure were shown.ConclusionThis prospective cohort study suggests that the consumption of food items with a higher FSAm-NPS DI is associated with increased levels of several major risk factors for CVD including adiposity, fasting plasma glucose, triglycerides, and diastolic blood pressure. However, results must be cautiously interpreted because no significant prospective associations were identified for critical CVD risk factors, such as HDL and LDL-cholesterol, and systolic blood pressure

    Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites

    Get PDF
    The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples.Peer reviewe

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Nucleoside/nucleotide reverse transcriptase inhibitor sparing regimen with once daily integrase inhibitor plus boosted darunavir is non-inferior to standard of care in virologically-suppressed children and adolescents living with HIV – Week 48 results of the randomised SMILE Penta-17-ANRS 152 clinical trial

    Get PDF

    The global abundance of tree palms

    Get PDF
    Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV : mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z ~ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z ~ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    corecore