391 research outputs found

    Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics

    Get PDF
    A framework is introduced which explains the existence and similarities of most exact solutions of the Einstein equations with a wide range of sources for the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian formulation. This class includes the spatially homogeneous cosmological models and the astrophysically interesting static spherically symmetric models as well as the stationary cylindrically symmetric models. The framework involves methods for finding and exploiting hidden symmetries and invariant submanifolds of the Hamiltonian formulation of the field equations. It unifies, simplifies and extends most known work on hypersurface-homogeneous exact solutions. It is shown that the same framework is also relevant to gravitational theories with a similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for publication in Phys. Rev.

    Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths

    Get PDF
    We review observations of several classes of neutron-star-powered outflows: pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting directly with interstellar medium (ISM), and magnetar-powered outflows. We describe radio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures. Several of the 23 so far identified magnetars show evidence for continuous or sporadic emission of material, sometimes associated with giant flares, and a few possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Planck early results. VI. The High Frequency Instrument data processing

    Get PDF
    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857GHz with an angular resolution ranging from 9.9 to 4.4 . The white noise level is around 1.5 ÎŒK degree or less in the 3 main CMB channels (100–217 GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project

    Planck early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds

    Get PDF
    The integrated spectral energy distributions (SED) of the Large Magellanic Cloud (LMC) and SmallMagellanic Cloud (SMC) appear significantly flatter than expected from dust models based on their far-infrared and radio emission. The still unexplained origin of this millimetre excess is investigated here using the Planck data. The integrated SED of the two galaxies before subtraction of the foreground (Milky Way) and background (CMB fluctuations) emission are in good agreement with previous determinations, confirming the presence of the millimetre excess. In the context of this preliminary analysis we do not propose a full multi-component fitting of the data, but instead subtract contributions unrelated to the galaxies and to dust emission. The background CMB contribution is subtracted using an internal linear combination (ILC) method performed locally around the galaxies. The foreground emission from the Milky Way is subtracted as a Galactic Hi template, and the dust emissivity is derived in a region surrounding the two galaxies and dominated by Milky Way emission. After subtraction, the remaining emission of both galaxies correlates closely with the atomic and molecular gas emission of the LMC and SMC. The millimetre excess in the LMC can be explained by CMB fluctuations, but a significant excess is still present in the SMC SED. The Planck and IRAS–IRIS data at 100 ÎŒm are combined to produce thermal dust temperature and optical depth maps of the two galaxies. The LMC temperature map shows the presence of a warm inner arm already found with the Spitzer data, but which also shows the existence of a previously unidentified cold outer arm. Several cold regions are found along this arm, some of which are associated with known molecular clouds. The dust optical depth maps are used to constrain the thermal dust emissivity power-law index (ÎČ). The average spectral index is found to be consistent with ÎČ =1.5 and ÎČ =1.2 below 500 ÎŒm for the LMC and SMC respectively, significantly flatter than the values observed in the Milky Way. Also, there is evidence in the SMC of a further flattening of the SED in the sub-mm, unlike for the LMC where the SED remains consistent with ÎČ =1.5. The spatial distribution of the millimetre dust excess in the SMC follows the gas and thermal dust distribution. Different models are explored in order to fit the dust emission in the SMC. It is concluded that the millimetre excess is unlikely to be caused by very cold dust emission and that it could be due to a combination of spinning dust emission and thermal dust emission by more amorphous dust grains than those present in our Galaxy

    Planck early results XIV : ERCSC validation and extreme radio sources

    Get PDF
    Peer reviewe

    Planck early results. IX. XMM-Newton follow-up for validation of Planck cluster candidates

    Get PDF
    We present the XMM-Newton follow-up for confirmation of Planck cluster candidates. Twenty-five candidates have been observed to date using snapshot (∌10 ks) exposures, ten as part of a pilot programme to sample a low range of signal-to-noise ratios (4 < S/N < 6), and a further 15 in a programme to observe a sample of S/N > 5 candidates. The sensitivity and spatial resolution of XMM-Newton allows unambiguous discrimination between clusters and false candidates. The 4 false candidates have S/N ≀ 4.1. A total of 21 candidates are confirmed as extended X-ray sources. Seventeen are single clusters, the majority of which are found to have highly irregular and disturbed morphologies (about ∌70%). The remaining four sources are multiple systems, including the unexpected discovery of a supercluster at z = 0.45. For 20 sources we are able to derive a redshift estimate from the X-ray Fe K line (albeit of variable quality). The new clusters span the redshift range 0.09 <∌ z <∌ 0.54, with a median redshift of z ∌ 0.37. A first determination is made of their X-ray properties including the characteristic size, which is used to improve the estimate of the SZ Compton parameter, Y500. The follow-up validation programme has helped to optimise the Planck candidate selection process. It has also provided a preview of the X-ray properties of these newly-discovered clusters, allowing comparison with their SZ properties, and to the X-ray and SZ properties of known clusters observed in the Planck survey. Our results suggest that Planck may have started to reveal a non-negligible population of massive dynamically perturbed objects that is under-represented in X-ray surveys. However, despite their particular properties, these new clusters appear to follow the Y500–YX relation established for X-ray selected objects, where YX is the product of the gas mass and temperature
    • 

    corecore