1,000 research outputs found

    Open-ended coaxial probe measurements of complex dielectric permittivity in diesel-contaminated soil during bioremediation

    Get PDF
    In the bioremediation field, geophysical techniques are commonly applied, at lab scale and field scale, to perform the characterization and the monitoring of contaminated soils. We propose a method for detecting the dielectric properties of contaminated soil during a process of bioremediation. An open-ended coaxial probe measured the complex dielectric permittivity (between 0.2 and 20 GHz) on a series of six soil microcosms contaminated by diesel oil (13.5% Voil /Vtot ). The microcosms had different moisture content (13%, 19%, and 24% Vw/Vtot ) and different salinity due to the addition of nutrients (22 and 15 g/L). The real and the imaginary component of the complex dielectric permittivity were evaluated at the initial stage of contamination and after 130 days. In almost all microcosms, the real component showed a significant decrease (up to 2 units) at all frequencies. The results revealed that the changes in the real part of the dielectric permittivity are related to the amount of degradation and loss in moisture content. The imaginary component, mainly linked to the electrical conductivity of the soil, shows a significant drop to almost 0 at low frequencies. This could be explained by a salt depletion during bioremediation. Despite a moderate accuracy reduction compared to measurements performed on liquid media, this technology can be successfully applied to granular materials such as soil. The open-ended coaxial probe is a promising instrument to check the dielectric properties of soil to characterize or monitor a bioremediation process

    In-Line Microwave Nondestructive Evaluation of Packaged Food Products via the Support Vector Machine Algorithm

    Get PDF
    This paper presents a novel approach based on electromagnetic waves (EM) to classify food packages that hold water as one of the main ingredients from the inside into contaminated or uncontaminated products. A non-destructive technique that can handle a real-time food production line is proposed to achieve this goal. This technique combines the operation of a microwave sensing system (MW) with a machine learning (ML) classifier. An accuracy of 100% has been obtained from training the aforementioned ML tool on a dataset constructed from the retrieved scattering parameters of about 500 measuring samples

    Incompressible image registration using divergence-conforming B-splines

    Get PDF
    Anatomically plausible image registration often requires volumetric preservation. Previous approaches to incompressible image registration have exploited relaxed constraints, ad hoc optimisation methods or practically intractable computational schemes. Divergence-free velocity fields have been used to achieve incompressibility in the continuous domain, although, after discretisation, no guarantees have been provided. In this paper, we introduce stationary velocity fields (SVFs) parameterised by divergence-conforming B-splines in the context of image registration. We demonstrate that sparse linear constraints on the parameters of such divergence-conforming B-Splines SVFs lead to being exactly divergence-free at any point of the continuous spatial domain. In contrast to previous approaches, our framework can easily take advantage of modern solvers for constrained optimisation, symmetric registration approaches, arbitrary image similarity and additional regularisation terms. We study the numerical incompressibility error for the transformation in the case of an Euler integration, which gives theoretical insights on the improved accuracy error over previous methods. We evaluate the proposed framework using synthetically deformed multimodal brain images, and the STACOM11 myocardial tracking challenge. Accuracy measurements demonstrate that our method compares favourably with state-of-the-art methods whilst achieving volume preservation.Comment: Accepted at MICCAI 201

    Microwave imaging device prototype for brain stroke 3D monitoring

    Get PDF
    This paper summarizes the development and the experimental testing of a scanning device, in the microwave range, to monitor brain stroke. The device comprehends 4 main sections: a sensors helmet, a switching matrix, a data acquisition part, and a control/processing core. The sensors in the helmet are 22 custom-made flexible antennas working around 1 GHz, placed conformally to the upper head part. A first validation of the system consists in the detection of a target in the head region. Experimental testing is performed on a single-cavity head phantom, while the target is a balloon mimicking the stroke. The shape of the balloon and phantom are extracted from medical images, and tissues properties are emulated with liquids that resemble their dielectric properties. A differential measurement approach senses the field on the antennas in two different situations, and from their difference computes a 3-D image through a singular value decomposition of the discretized scattering operator obtained from an accurate numerical model. The results verify the capabilities of the system on detecting and monitoring stroke evolution

    A low-complexity microwave scanner for cerebrovascular diseases monitoring

    Get PDF
    This work gathers the pathway from the design to the experimental testing of a microwave imaging prototype to monitor brain stroke in real-time conditions, approaching thus the electromagnetic inverse problem of retrieving a dielectric temporal variation within the head. To this end, it presents a low-complexity device consisting of twentytwo custom-made radiating elements working with a linear imaging algorithm based on distorted Born approximation and a truncated singular value decomposition, able to localize, identify and track the stroke evolution. The system is prototyped using a compact two-ports vector analyzer and electromechanical switching matrix. It is assessed experimentally via a mimicked hemorrhagic condition, demonstrating the system’s capabilities to follow up centimetric confined variations, retrieving 3-D maps of the studied cases in real-time

    A novel method for engineering autologous non-thrombogenic in situ tissue-engineered blood vessels for arteriovenous grafting

    Get PDF
    The durability of prosthetic arteriovenous (AV) grafts for hemodialysis access is low, predominantly due to stenotic lesions in the venous outflow tract and infectious complications. Tissue engineered blood vessels (TEBVs) might offer a tailor-made autologous alternative for prosthetic grafts. We have designed a method in which TEBVs are grown in vivo, by utilizing the foreign body response to subcutaneously implanted polymeric rods in goats, resulting in the formation of an autologous fibrocellular tissue capsule (TC). One month after implantation, the polymeric rod is extracted, whereupon TCs (length 6 cm, diameter 6.8 mm) were grafted as arteriovenous conduit between the carotid artery and jugular vein of the same goats. At time of grafting, the TCs were shown to have sufficient mechanical strength in terms of bursting pressure (2382 +/- 129 mmHg), and suture retention strength (SRS: 1.97 +/- 0.49 N). The AV grafts were harvested at 1 or 2 months after grafting. In an ex vivo whole blood perfusion system, the lumen of the vascular grafts was shown to be less thrombogenic compared to the initial TCs and ePTFE grafts. At 8 weeks after grafting, the entire graft was covered with an endothelial layer and abundant elastin expression was present throughout the graft. Patency at 1 and 2 months was comparable with ePTFE AV-grafts. In conclusion, we demonstrate the remodeling capacity of cellularized in vivo engineered TEBVs, and their potential as autologous alternative for prosthetic vascular grafts.Vascular Surger

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Charge separation relative to the reaction plane in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}= 2.76 TeV

    Get PDF
    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range η<0.8|\eta| < 0.8 are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge dependent azimuthal correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286

    A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio
    corecore