1,566 research outputs found

    Suspension of flexible cylinders in laminar liquid flow

    Get PDF
    Peer reviewedPostprin

    Mode reduction applied to initial post-buckling behavior

    Get PDF

    Mode-Reduction Applied to Initial Post-Buckling Behavior

    Full text link

    Uncertainty in geometry of fibre preforms manufactured with Automated Dry Fibre Placement (ADFP) and its effects on permeability

    Get PDF
    Resin transfer moulding is one of several processes available for manufacturing fibre-reinforced composites from dry fibre reinforcement. Recently, dry reinforcements made with Automated Dry Fibre Placement have been introduced into the aerospace industry. Typically, the permeability of the reinforcement is assumed to be constant throughout the dry preform geometry whereas in reality it possesses inevitable uncertainty due to variability in geometry. This uncertainty propagates to the uncertainty of the mould filling and the fill time, one of the important variables in resin injection. It makes characterisation of the permeability and its variability an important task for design of the resin transfer moulding process. In this study, variability of the geometry of a reinforcement manufactured using Automated Dry Fibre Placement is studied. Permeability of the manufactured preforms is measured experimentally and compared to stochastic simulations based on an analytical model and a stochastic geometry model. The simulations showed that difference between the actual geometry and the designed geometry can result in 50% reduction of the permeability. The stochastic geometry model predicts results within 20% of the experimental values

    Stress-strain characteristic of SFRC using recycled fibres

    No full text
    This paper presents work from a comprehensive study on the development of a flexural design framework for concrete reinforced with steel fibres that are recovered from used tyres. The experimental flexural behaviour of notched concrete prisms reinforced with these fibres is initially presented. For comparison purposes, prisms reinforced with industrially produced fibres are also considered. An attempt to adopt an existing RILEM design framework to derive appropriate tensile stress-strain blocks is made, but problems are identified with key parameters of the framework. The influence of crack propagation and location of neutral axis depth on the tensile stress distribution is examined. Following an analytical study, it is concluded that the uniaxial stress-strain model, proposed by RILEM overestimates the load-carrying capacity and should be modified by utilising more advanced analytical techniques. © RILEM 2006

    Eigen-transitions in cantilever cylindrical shells subjected to vertical edge loads

    Get PDF
    A thin cantilever cylindrical shell subjected to a transverse shear force at the free end can experience two distinct modes of buckling, depending on its relative thickness and length. If the former parameter is fixed then a short cylinder buckles in a diffuse manner, while the eigenmodal deformation of a moderately long shell is localised, both axially and circumferentially, near its fixed end. Donnelltype buckling equations for cylindrical shells are here coupled with a non-symmetric membrane basic state to produce a linear boundary-value problem that is shown to capture the transition between the aforementioned instability modes. The main interest lies in exploring the approximate asymptotic separation of the independent variables in the corresponding stability equations, when the eigen-deformation is doubly localised. Comparisons with direct numerical simulations of the full buckling problem provide further insight into the accuracy and limitations of our approximations

    On strength analysis of rotor couplings

    Full text link

    Fibrous roller-compacted concrete with recycled materials - Feasibility study

    Get PDF
    This paper presents fundamental work done to enable fibre reinforcement of roller-compacted concrete (RCC). Procedures for mixing and casting two types of steel fibres in RCC were developed. Fresh properties, uniaxial compressive and bending behaviour were examined in a pilot study dealing with cement content, fibre type and dosage. It was found that different fibre types and dosages require different moisture contents. It is concluded that low cement content (less than 300 kg/m3) steel-fibre-reinforced roller-compacted concrete (SFR-RCC) mixes do not have sufficient paste and are prone to fibre agglomeration, hence SFR-RCC mixes richer in paste and at optimum moisture content are recommended. Mixes with cement content of 300 kg/m3 coped better with fibre reinforcement. Despite causing some loss in compressive strength, fibres help enhance the flexural performance and even SFR-RCC mixes with recycled masonry and concrete aggregates performed equally well as natural aggregate mixes. A fullscale trial has been conducted to confirm the findings. This paper is followed by a companion paper dealing with a comprehensive parametric study leading to the development of σ-ε models for SFR-RCC
    corecore