EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Mode reduction applied to initial post-buckling behavior

Citation for published version (APA):

Schreppers, G-JMA., & Menken, C. M. (1994). Mode reduction applied to initial post-buckling behavior. In G. M.
A. Kusters, & M. A. N. Hendriks (Eds.), DIANA computational mechanics : 1st international conference on
computational mechanics : proceedings, Delft, 1994 (pp. 287-296). Kluwer Academic Publishers.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://research.tue.nl/en/publications/4aebf02c-2a0f-4ece-992c-c20d82c7014a

MODE-REDUCTION APPLIED TO INITIAL POST-BUCKLING BEHAVIOR

G.M.A. SCHREPPERS
TNO Building and Construction Research, The Netherlands

and
Eindhoven University of Technology, Department of Mechanical
Engineering [

Abstract This paper presents a perturbation approach for analyzing the ( initial ) post-buckling behavior
of elastic structures. In this perturbation a small number of buckling modes is taken into account. This
approach results in a potential energy function which is defined in terms of amplitudes of the selected
modes. The post-buckling displacement field is solved from the reduced set of equilibrium equations
where the unknowns are the amplitudes of the Euler modes which are selected for the asymptotic
expansion. To perform this technique the segment PERTUR in module *EULER is designed in DIANA

6.0. The theory of this segment and two calculating examples are demonstrated.

1. Introduction

In general the equilibrium paths of thin-walled structures are capricious and may show
limit points with very strong curvatures as well as bifurcation points. Because of these
strong nonlinearities the incremental approach requires a large number of steps. In order
to keep the calculation time acceptable, mode-reduction is applied to the full system of
discretized equations. Further, the complex character of these structures, which is
generally difficult to predict, can be made more accessible for better understanding, when
the technique of mode-reduction is applied. Koiter [4] was the first one formulating the
perturbation approach for initial post-buckling analysis of continua. His theory considers
conservative systems exhibiting bifurcational buckling in the perfect case. The approach
does not allow for any physical nonlinearities, while geometrically nonlinear effects are
only taken partly into account. Such as Koiter already noticed the range of validity of this
approach around the critical point may be quite small. In the particular case that the
fundamental path has a cluster of bifurcation points just above the critical point, this may
be a serious limitation. In this case the respective buckling modes usually exhibit a strong
coupling to each other. These interaction effects should be taken into account by
considering the quadric and the cubic terms of the potential energy function. The
approach presented here is based on the formulation of Byskov and Hutchinson [1] which
is in fact a modification of the formulation of Koiter. In this approach there is no
limitation on the distance between the critical points. In the post-buckling displacements
however, it remains an asymptotic theory. Therefore, this method may be considered to
have a wider range of application than the original approach presented by Koiter.
However, there is no method known to ascertain the range of validity for this approach.
The mode-interaction is an essential aspect in the presented approach and therefore the
second-order fields must be calculated. In comparison to the wave-shaped deformations
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which occur in the buckling modes, the according second-order fields show waves with
the half wave-length. This property brings extra requirements with respect to the fineness
of the mesh-distribution. The combination of the mesh-distribution and the elemental
interpolation-functions must be suitable for describing the highly frequency wave shapes
of the second-order fields. For this special purpose elements with spline-function
interpolation are developped and applied in the examples underneath. The numerical
application of the theory can be used very suitable if there are not to many critical points
in between the relevant ones. A class of applications to which this may be of special
interest are e.g. the stiffened panels in aeronautical structures and prismatic profile beams
which can be used for construction of glasshouses.

F«Ya'S a4

2. TL[UUl)’
The set of equations representing nodal equilibrium is written as

r(u)=f(u) (D

where r represents the internal force vector, f the external force vector and u represents
the vector of nodal degrees of freedom ( displacements ). A critical point is identified
with the vanishing of quadratic terms in the potential energy function. u®¥ is a critical
point in the space of possible displacement vectors and defined by the equation of nodal
equilibrium

r (0 + du)=f(u" + du) 2)

which must be valid for arbitrary "small’ 3u. Suppose a solution u”* from the linearized
equilibrium equation is known, i.e. u’” resulting from

K, un=f 3)

where K is the linear stiffness-matrix, with K being the geometrical stiffness-matrix,
critical points may be calculated by solving the condition

det (K, +AKg (u™))=0 (4)

where A is the load-parameter. The purpose of perturbation analysis is to calculate a post-
buckling displacement field u?? satisfying the equilibrium condition but w”® being
different from the primair path u=A u’”. It is assumed that there are' M coinciding or
nearly coinciding interacting modes. In consistancy with the DIANA Manual these modes

which will be noted by ¢;, k=1,..., M. The initial post-buckling displacement field
w?? is defined to be

u”b = Xul‘” + aijj)i +a; a;u;; &)
/

where u;; is called the second-order field, angf each g; is the amplitude of the respective
mode ¢;. In literature [3] it is shown that u;; must be calculated by solving the equation

(Kp+%, Kg (u™)) u;=1;; 6)
applying to the orthogonality conditions
(o) Kpuy=0, k=1,..,M (7)

where f;; is defined as the mode interaction load vector
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;= | (BY o+ Bz (6;)0;+Bfz (9;)0:)dVo ®)
Vo

with o;; being the stresses related to the interaction of modes i and j, G; being the stresses
related to mode i, B; being the linear strain-displacement matrix and By, being the
nonlinear strain-displacement matrix. Further, the energy potential can now be written as
a function of the load-parameter A and thf;/fmode amplitudes q; :

1 M Ay
P (a; X):—i > (1- —)-\7 arar+Aij a; aj ax +Ajju a; aj A 4 ®
=1
where
1
Ajp= ) j o;; & dVy (10)
Vo
1 1
Aju=—o Jcij e dVo—= u;i fy (11)
8y, 2

are the third order and fourth order potential constants, respectively. From the potential
energy function the nonlinear equilibrium equations after buckling can be derived. Points
of equilibrium are identified by terms of ; and A and can be calculated using a stepwise
generalized Newton-Raphson scheme. From these data the post-buckling displacement
field u,; can be derived by substitution in equation (5). In case of secondary bifurcation
the path of steepest decent is chosen. Summarizing the theory above, the following
actions should be taken subsequently when performing this initial post-buckling analysis :

1. Perform a linear elastic analysis

Perform an Euler stability analysis

Optional plot of buckling modes

Selection of relevant modes

Solving for the second-order fields

Computation of the potential coefficients A;j, and Ajju

Solution of the reduced set of equilibrium equations

© N oA~ WD

Optional plots of second-order fields or post-buckling displacement field

3. Discretization

Spline elements are characterized by a spline interpolation function in longitudional
direction. These elements have similar properties as flat shell elements, i.e. they can
combine plane stress effects with plate bending effects. Spline elements are specially
developped for slimline prismatic constructions. These elements must fullfill the
following conditions : They must be plane, that is to say, the coordinates of the element
nodes must be in one plane. Further, the thickness should be small in relation to the
dimension of the element. In addition, spline elements are characterized by the following
properties : The basic variables are Cauchy stresses. The displacements perpendicular to
the face do not vary along the thickness, and the width of the element in transverse
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direction is uniform. Finally, the number of nodes in longitudional direction must be
specified by the user, where the nodal distribution in longitudional direction is not
necessarily equidistantial.

n+2
Uy
: U x
2n ' iort, " \o/ T Uy ~—g”” Gyy
Wt n+1 ny
2n+1 “ N 3 u (b Gxx
AR Y y

2n;|_2 “, Se(?jlcn\‘ \‘." y o _ ux 4 \ . q)x
sectiont, = g ! b, "‘% z "
* ux,x q)x,x

y “n
1 membrane  plate
7z X (a) topology (b) displacements (c) stresses

Figure 1. SPLIN2 element

The element is built up from n sections as is shown in the figure 1.

4. Uniform compression of a supported square plate

In this example the buckling and post-buckling behavior of a thin square plate is analyzed.
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Figure 2 Thin plate ; Idealized model

As is shown in figure 2 the plate is subject@}% to a uniform compression. The plate is
supported along all the four edges, i.e. no out of plane displacements are allowed at the
edges. At the middle points of all four edges the displacements in the direction of the
respective edges is also prohibited. This example is derived from the DIANA User’s
Manual [2]. In the first step the linear elastic solution is calculated ( figure 3 ). Dashed
lines represent the undeformed configuration while solid lines concern the deformed
plate. In the second step the critical point and the appropriate buckling mode are
calculated ( figure 4 ). An analytical solution for the critical load in this problem is given
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Figure 3 Linear elastic displacements
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Figure 4 Buckling mode
by Timoshenko and Gere [5] as
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(12)

(13)

where b is the length of the plate, E is the Young’s modulus, t is the plate thickness and v
is Poisson’s ratio. Substituting the actual numerical values for the example yields
A7 =180.76 while the calculated value is equal to A = 180.72. Taking into account the
rather course mesh-distribution this is a very acceptable result. In the next step the
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Figure § Second-order field

second-order field is calculated, applying a perturbation for only the mode which is shown
above. In this case the second-order field is completely in plane. Axial shortening and
lateral contraction effects are shown in this mode. In the figures the nodes are connected
by straight lines, while in the model these boundaries are smooth spline functions.
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Figure 6 Post-buckling displacements

In the last step the equilibrium path in the post;{?buckling region is traced. A typical post-
buckling displacement field is shown in figure , where deformation effects resulting from
respectively the linear elastic deformation, the Euler buckling mode and the second-order
interaction mode can be recognized.
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5. Three point bending of T-beam

In this part the buckling behavior of a simply supported T-beam is studied. The beam is
loaded in bending by a concentrated transverse force at mid-span, in such a way that the
flange is in compression. As a consequence a nonperiodic buckle may occur locally. For
the chosen length and cross-section geometry of the beam in this example, the local and
global buckling modes occur at critical Ejbints which are very close to each other. Thus,

the above mentioned cluster of bifurcation points is present here.
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Figure 7 First local buckling mode
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Figure 8 Second local buckling mode

The figures 7 to 9 show a local mode at A =852.8, another local mode at A=868.0 and the
global mode at A=948.4 , respectively. The perturbation analysis is performed taking
these three modes into consideration. The post-buckling equilibrium equations are
formulated in terms of the respective amplitudes of these three modes. The strong
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interaction between the buckling modes in this region is showed by the following.

Rotaton: 120.0 deg
200ming:

mng:
(050,040) 4.0x

frine1,820E-11
Detorm x2.050E401

DIANA
/. | =5

Figure 10 Detail of post buckling deformations after 1 step

In figure 10 the post-buckling displacement field after one step is shown. This point is
still very close to the critical point and the deformations are similar to the pre-buckling
deformations. Note that the following two ﬁguﬁés have the same magnification factor for
the displacements than is defined for figure 10 During the first 10 steps the equilibrium
path follows the axis for the amplitude of buckling mode 1, while the amplitudes of the
modes 2 and 3 stay approximately zero. In this trajectorium the load increases from
A=852.8 to A=859.4 and the web is still plane.
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Figure 11 Detail of post buckling deformations after 10 steps
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Figure 12 Detail of post buckling deformations after 70 steps

In the 11th step the global buckling mode and the second local buckling mode start to
interfere in the post-buckling behavior, and the web is bending side-wards. From this
moment the flange is compressed at one side, while it is stretched at the other side. At the
stretching side the local buckles are eliminated by the interaction of the second local
mode, while at the same time at the compressive side the buckles increase as a result of
the interaction by this mode. During side-wards bending movement of the profile, the
load initially decreases to A=_858.0 and then again increases to A==859.2 at step 70.

6. Conclusions

Application of mode reduction to initial pots-buckling behavior may be a very efficient
tool. However, the selection of suitable buckling modes for the perturbation requires a
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good insight in the mechanical behavior of the structure. Using this analysis tool as a
black box is not advised.
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