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Abstract
A methodology for particle-resolved simulation cénde suspensions of flexible cylindrical particles
Newtonian liquid flow is described. It is basedtbe lattice-Boltzmann method for solving the liqdiow
and an immersed boundary method for imposing mm-ali the particle surfaces and providing the
distribution of liquid-solid interaction forces avéhe particle surfaces. These forces — along wathtact
forces — translate, rotate as well as bend thedytial particles. Verification tests have beerfgraned for
a single cylinder settling and deforming under ggaat a low Reynolds number. The method has been
applied to a clamped flexible cylinder in microchahflow for which experimental data are availalte.
then is used to investigate the behavior of hursladdflexible cylinders with length over diametespact
ratios of 4 and 6 in a container agitated by aneliep at a Reynolds number of 87 which implies laani
flow. The overall solids volume fraction is 15%. \Bteidy the effect of the bending stiffness of thetiples
on the solids suspension process, on the extgmartitle deformation as well as on the torque neglito

spin the impeller.
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stiffness.



Introduction

Fibrous materials are commonplace in a myriad pfiegtions. In the very common form of paper, blsba

— for example — as reinforced composite materiHlsahd for energy storage as “fiber supercapacif@is
Producing such materials often involves stages avkelids — in the form of fibers — are suspendddjind
and are transported as a dense two-phase flow. Bfodense fiber suspensions is also encountered in
biomass conversion where materials of a fibrouareafe.g. wood, waste from food crops) are prockkse
energy and materials production [3,4]. Thereforeedjcting the flow dynamics of fiber suspensions,
specifically in complex configurations as often rsa@e process equipment, has practical relevance. Th
approach to fiber suspension flow we have takereaent publications [5,6] is based on particle-re=th
simulation. Particles of cylindrical shape are pthtn a domain containing a Newtonian liquid. Tlogv of
liquid is simulated with a resolution much fineaththe size of the cylinders so that the no-slipd@mon
can be explicitly imposed at their surface andhygrodynamic forces and torques on the cylinderectly
calculated. These then induce translation andiootaif the cylinders and this motion is fed backthe
liquid as — updated — no-slip conditions. This vaayintimate dynamic coupling between liquid flondan
particle motion is established that directly takds account the (cylindrical) shape of the paeschs well
as the microstructure they are organized in.

The previous simulations assumed the cylindersetoidid [5,6]. In the present paper an approach is
outlined to include deformation of the cylindrigadrticles in the numerical procedure. The reasonlding
this is driven by applications —in many cases fbier materials processing are flexible — as welbgs
curiosity. Regarding the latter, we want to explargler what circumstances flexibility of particleas an
impact on the overall flow behavior, for instanae terms of directly measurable, macroscopic flow
quantities.

As we will see, our existing computational framekvdor particle-resolved simulations of dense
suspensions involving non-spherical rigid partid®&$], is well suited for an extension towards tjuée
deformation. Given that in our methodology no-sigmditions at particle surfaces are imposed throaigh

forcing variant of the immersed boundary methodM)B[7], the distribution of forces over the solid



surfaces is directly available in the simulatiohe$e forces, along with forces arising from conbettveen
particles and between particles and internalserfldw domain (baffles, impellers), are not onlgpensible
for particle motion (translation and rotation) lalso for particle deformation. This paper only ddass a
bending deformation. This is for simplicity but @lsince bending is the most significant deformaidn
slender cylindrical particles.

When it comes to direct simulations of solid-flifldw with rigid particles of non-spherical shape,
recent work has made major strides in the accuegesentation of the way particles dynamicallgiatt
with fluid [8,9]. There is limited literature onéhsubject of dense suspensions of deformable, ploersal
particles in fluid flow, the exception being degail simulations of blood flow: Direct simulations &fd
blood cells (RBC’s) suspended in plasma that ineltite deformability of its membranes have — for
instance — been reported by Wu & Aidun [10]. Theteformation of the RBC membrane is dealt with
through finite element analysis, while fluid flow solved by the lattice-Boltzmann method.

Experimental and computational progress on flexiliders in fluid flow has recently been reviewed
by du Roure et al [11] with an emphasis on micrpgcgystems. In one type of simulation approacbkrb
are represented by chains of connected spherek3|12]. This allows for very strong deformationstioé
fibers. It does, at the same time, not very acelyaepresent the actual shape of the fibers atherefore —
the way it interacts with the fluid. The immersesubdary method — as also used in this paper — é&as b
effectively implemented in parallel computer cdyeWiens and Stockie [15] and applied to flow epss
involving single and multiple slender flexible filse

The aim of this paper is to introduce and explaimetail an extension of previous work on particle-
resolved simulations of cylinder suspensions [5¢8yards particles with finite bending stiffness lwihe
deformed particle shape fully accounted for byIB&. We also aim for demonstrating the potentiatfoé
method for applications with complex flow condit®ohy showing results for dense suspension of hdsdre
of flexible cylinders in a non-trivial — albeit lanar — liquid flow generated by a revolving impell& has

been investigated how bending stiffness impact®¥eeall flow behavior of this system.



It is important to experimentally validate the ppspd numerical procedure, preferably at the lefel o
individual particles and the way they deform undetl-defined flow conditions. Such detailed expezintal
work is relatively scarce [11]. In the current papgperimental work by Wexler et al [16] on a sefjber
bending in a micro channel flow has been used H@ purpose. We also have performed a number of
verifications - including checking grid effects as well as assggsvhat resolution is required for the
deformation calculations — for a single settlingjroyer at low Reynolds number. Given the need &tated
validation, a secondary aim of this paper is to ageg experimentalists to work on highly resolved

visualizations of flexible fibers in fluid flow.

Flow systems

We perform simulations in three-dimensional rectdagflow domains. They are bounded by solid, np-si

walls all around, except for one system that cassi$ a micro channel (Hele-Shaw cell) that hasnbee
simulated with periodic boundaries in the streamewd#ection. The domains are filled with a Newtonia

liquid with density p and kinematic viscosity . In addition, the domains contain one or moredsoli

cylindrical particles with diameted, length ¢, and densityp,>p (particle volume is denoted as

Vv, =17d?*¢ and mass am= pV,)- The cylinders are bendable, i.e. they have aibgrstiffnessEl , with

E Young’s modulus andl, the moment of inertia of the cross sectional acdathe cylinder

(1. =md*/64). Bending is the only allowed deformation; theirgérs cannot be stretched, compressed or

twisted.

Three flow configurations have been consideredis paper: (1) Single horizontally oriented flexabl
cylinders settling in a tall closed box have beé&mdied for the purpose of verifying the simulation
procedure. (2) A Hele-Shaw cell with one cylindathmone of its ends attached to a side wall — alaim
system has been considered in experiments [16jt-wh use for validation. (3) Multiple flexible aytlers
immersed in the liquid flow generated by a revadvimpeller have been studied as an example of g/ man

particle system in complex flow. The configuratiehgcluding nomenclature of dimensions and co@i#in



systems — are defined in Figure 1. In systems{d)(8) the effect of gravity is important; thereagty acts
in the negativez-direction: g=—ge,. The mixing tank is agitated by a pitched-bladéite (PBT) that
pumps in the downward (negatizedirection. The impeller has a diamelzmand maked revolutions per
unit time.

All three systems are being characterized in dinoatess terms. Where gravity is important, the

particles-fluid combination is characterized by firehimedes numbeAr = (y—1)gd®/v* with y=p,/p

the density ratio. The bending stiffness has beamdimensionalized asa:%. In the Hele-
pP{v—49

Shaw cell, that is operated at low Reynolds numbassous drag is combined with bending stiffnesthe

o U 0%d

dimensionless parametey = with U the superficial velocity in the cell. The Reynoldsmber

cs

associated with the impeller agitating the ligusddefined asRe= NDz/y. A Shields number reflects the

competition between agitation and net gravity actim the particlesd = NZDZ/(g(y—l)d). The overall

nVv
solids volume fraction in the mixing tank ($5>: HTp2 , with n the number of particles anHT? the

container volume (see Figure 1). The system’s gégme characterized by a number of size ratibg; t

most notable aspect ratio 4d , the cylinder’s length over its diameter.

Numerical methods

This paper extends the simulations on dense ligaliis suspensions with rigid particles of cylirditi
shape as discussed in [5,6] towards cylinders witimite bending stiffness. We begin this sectiathva
brief overview of the numerical approach (details[5]) and then zoom in on how bending has been
implemented as well as discuss the assumptionsraitdtions of the implementation.

Overview of the smulation procedure

The lattice-Boltzmann (LB) method [17,18] has besed as the fluid flow solver. It operates on darm,

cubic grid with spacing)\ . The flow variables (fluid velocityy and pressure) are derived from discrete



velocity distribution functions that are the primé variables of the method and are updated acogdi the
LB equation that involves a collision and a streagrstep [19]. The system discretely evolves in twith a
time stepAt. Flow variables are defined in the center of eadbic grid cell. The specific LB scheme used
in this work is due to [20,21].

In order to represent solid (that is, no-slip) aads inside the flow domain (particle surfaces el as
the impeller) an immersed boundary method (IBM) basn developed previously [22]. Solid surfaces are
defined by collections of closely spaced off-grimints (nearest neighbor spacing of these poinG5A ).

At these so-called marker points we determine e the fluid such that the local fluid velocitinéarly
interpolated from the lattice) closely approximaties local surface velocity so as to achieve np-dlhe
IBM thus provides us with the distribution of flugblid interaction forces over the solid surfaces.
Integrating the forces over the surface of eachigiargives the total hydrodynamic force and torguethat
particle that — along with other forces such awityaand contact forces — are used to integratditiear and
rotational equations of motion of each particlewNbat particles are deformable, the distributidriooces
over the patrticles will also be used to determhmrtbending deformation. This will be explainedniore
detail in the next sub-section.

In addition to the particles, also the impeller l@®n represented through the IBM. The bounding
walls of the flow domain are aligned with the grit. these walls the halfway bounce-back rule haanbe
applied to the velocity distribution functions [liijorder to achieve no-slip.

Given our interest in dense suspensions, it is a@egdethat collisions (between particles, between
particles and the impeller, and between particied he bounding walls) are frequent. In [5] we have
detailed our approach for particle-particle cotirss. Collision detection is based on the IBM marb@nts:
two marker points lying on two different particleriaces coming within a certain distance triggers a
repulsive elastic (spring) force between the pkasichat prevent them from overlapping. In additian
damping force proportional to the velocity diffecenof the two marker points gets activated to mimic
lubrication effects between the two closely spaselid surfaces. In the context of the discrete elam

method (DEM) this approach for collision detectisrknown as discrete function representation [23].



shown in [6], the method as developed for partpaeticle collisions can be straightforwardly extedd
towards collisions between a particle and the itepeals well as between a particle and a boundirly wa

To update the orientation of particles, quaternioage been used [24]: each particle is equippeld wit
a unit quaternionq:(qo,q) that fully defines the way it is oriented in thh@enensional space. After
updating the angular velocity, of each particle based on the Euler equationshi®idynamics of particle
rotation [25], the quaternions are updated accgrdino an exact solution [26]:
k1) _

" =(cos(1At) w, sir(3At))oq" where the indexk) denotes the time step number, and the symbol

the quaternion multiplication [24]. The same tineps as used in the LB method has been used faolite

particle updates.

Quaternions enable solving the dynamics of thendyical particles in a reference franig, x,,x;)
attached to the particle, see Figure 2. In thisrefce frame, the moment of inertia tensor of tigad|
particle is constant and diagonal with diagonal ponents|,,=imd? and I,,= I33:m(1—16d2+%2£2).
Transferring information between the inertial refere frame(x, Y, z) and a particle reference frame is
facilitated by the quaternion associated to theigar y:qo(o,x)oq with the vectorx defined in the

inertial frame andy defined in the particle frame, whilg= (qo,—q) [27].

Cylinderswith finite bending stiffness

The simulation procedure as sketched above has umssh for suspensions with rigid cylindrical pdetsc
[5,6]. The IBM as well as the collision algorithmopide us with the distribution of forces over thafaces
of the particles at any moment in time. With tm&rmation the deformation of non-rigid particleencbe
determined. This is explored in this paper formgtical particles with a finite bending stiffness.

In the terminology of structural mechanics [28} ttylinder is a beam with a bending stiffndsSis,
that is deflected by a distributed load (force peit length along the beand, (x,) and a,(x,) in the two

lateral directionsx, and x, respectively (see Figure 2), with the coordinate along the centerline of the



beam. The load in thex direction is irrelevant for bending; it would belevant for stretching or

compression which are, however, deformations nosicered in this study.
The force distribution over the cylinder surfacattis the result of the IBM and the particle cohtac
algorithm has three consequences: (1) it accekethé&eparticle (in a linear and angular sense)it @poses

net gravity; (3) it bends the particle. In tkgand x, direction this implies

du dw,s

b, (%) = a,(x,) +a dsz"‘xl at —9,(v-1) (1)
du , dw,,
by (%) = a5 ) +a |~ = x— " — g1 -1) @

with b,(x,) and b;(x) the total force per unit length at axial location in the x, and x; direction
respectively,a =m/¢ the mass per unit length of the cylinder,, and u,, components of the linear
velocity of the particlew,, andw,, angular velocity components, ag and g, gravitational acceleration
in the x, and x, direction respectively. Given that the particleeleration (linear and angular) is solved
separately in the simulation procedure, Eqgs. 1 &ll@w — at every moment in time for each partielehe
determination of the load distributios and a, that bend the particle.

In a quasi-static approximation, the load distitmg relate to bending momentsi, andM,

according to [28]

d*M, d*M,
a = a. = 3
dxf dx12 ®)

For freely moving particles both ends of the cylinére unconstrained. Then the boundary conditions

these two second-order ordinary differential edueti (ODE's) are that at, =—3¢ andx, =4/ the

bending moments are zer, (x, =+1/¢)=M,(x,==+

Nl
~
S——
I
o

The deflections of the beamvf and w;,) obey [28]

2 2
M2:Elcs—d b |\/|3:E|CS°"’Z3 @)
dx; dx;



in the limit of small deflections, i.e. ifRN2|<<d and|W3|<<d. Solving for w, and w, requires again two

boundary conditions each. Since the overall traiosizand rotation of the cylinder are updated blyisg
the dynamic equations of the cylinder in its emyir¢he deflections are not allowed to add adddalaverall

translation or rotation. Therefore the averagee#ithn as well as the average deflection gradiamstrbe

2 02
zero. Forw,: [ wdx,=0 and [ %dxlzo. The latter impliesw, (—¢/2)=w,(¢/2). The same
—2 —g2 OX

boundary conditions apply te, .
The sets of ODE’s (Egs. 3 & 4) are solved throuigitef differences. The cylinder is divided im

equally sized segments with lengttx, = ¢/n_. The second derivatives are discretized accordiregcentral

2

M., M, .—2M
Mz| _ Mot My, 2 +O(Axf) with i=1..n, and

scheme. As an example, fod, this readsOI 5 >
ax | AX;

the i-nodes located in the middle of each segment (sperd-3a). For each of the ODE'’s this leads to a

linear system of equations of size in the nodal values oM,,M,,w,,w, that is solved directly. The
bending loadsa, and a, are determined by first integrating the hydrodyitaend contact forces over each
segment of the cylinder so as to calculafeand b, and then apply Egs. 1 & 2.

Once we have calculated the deflectiomsand w;, for a cylinder, its shape in terms of marker p®int

needs to be adjusted in order to apply the IBM alt & collision detection and execution at thdazas of
the deformed cylinders. The marker points are grouped per segrfs2e Figure 3b) and the deflection is
dealt with as a translation and rotation per segnteigure 3 illustrates how this has been implermént

where — for clarity of illustration — in Figure 8ae only consider a deflectiow, in the x, direction.
Numerically solving Eq. 4 results in the nodal deflon valuesw,;. These are first translated into
edge deflection value\ss/z‘? (defined in Figure 3a) through linear interpolatiés well as using the boundary

conditions. Starting from the middle of the cylindat x =0), the edge locations on the centerline are

we —w
displaced byw’ in the x, direction and the segment centerline is rotatedrbgngleasin % .In
X




order to keep the segments on the deformed cerdefthe red line pieces in Figure 3a) connecteth wit

neighboring segments, the segments are also shiftéke x, direction. The same shift and rotation as

applied to the centerline segments is then alsdiegppo the marker points of each segment (wheee th
rotations again make use of quaternions). Figurest8ovs an example of how a deformed cylinder is
represented by marker points. Since the IBM as agltollision handling are using the marker poimtioe
deformed cylinder, the fluid-solid and solid-solid interawis are directly taking into account the evolving
shape of the cylindrical particles.

There are a number of assumptions and approxingtteat we would like to highlight here; most of
them have been adopted for simplicity and compuantati efficiency and therefore there is clearly rofmmn
future refinements of the methodolodi) Only bending as a deformation is allowéd) Equation 3 is
based on a quasi-static assumption. This impliaswie assume that fluctuations with which the defog

load (a,,a,) changes in time are slower than the eigen-flumina of the flexible beam. The load

fluctuations relate to flow time scales. An ordef magnitude estimate of the beam’s bending

. . /EI . o _ : .

eigenfrequencies if,,, = 7 [29]. We will be comparing time scales when distng the simulation
m

results. (3) Equation 4 is valid for small deerctionM|<<d and|W3| < d). As we will see from the

simulation results, this condition is challengiray the low end of the range of the flexibility parater

2
a:# and for the high end OB(:;WUE d

p<7_1>gd5 Elcs

as investigated in this paper. Two additional

approximations originate from the small-deflecti@ssumption(3a) In updating the equations of rotational
motion of the cylinders, the moment of inertia tnsf thenon-deformed cylinder has been use®b) The

velocity directly associated to deflections, ilee thange in deflection per unit timewg, /dt and dw,/dt),

is not considered when imposing no-slip by mearntbt@iBM.

Set-up of the simulations

10



Throughout this paper the same liquid, cylindemdiger and cylinder density have been used. Sirse al
gravitational acceleration has not been varied Attehimedes number is constant. It has value Ars4The

density ratio isy =1.25. Most simulations deal with cylinders witfid =4, except for one agitated tank
simulation that hag/d =6 as well as the cylinder in the Hele-Shaw celt ties an aspect ratio in line with

the available experimental data. The simulatioraigoon the impact the bending stiffness parameters

and y have on the behavior of the solid-liquid flow gyst Variation ofo is in the ranged.5< ¢ < 50 in

the settling simulations, anBi< o <150 in the mixing tank simulations; furthermot® * < y < 10*. The

flow of liquid in the mixing tank is laminar with fixed value of the impeller-based Reynolds number:
Re=87. The mixing tank simulations all have a Stsehumberd =9.08. The same flow geometry and
conditions have been applied in a previous papgtthét studied rigid cylinders in a mixing tank. An

overview of the dimensionless numbers used ingafer is given in Table 1.

As the default spatial resolution of the simulasiotihe diameter of a cylinder spans 12 lattice isgac

d =12A. Grid sensitivity has been assessed previouslyaf] also in the settling and Hele-Shaw cell
simulations in the current paper. Here by comparmesults with the default resolution to those with
d =16A andd = 24A .The default number of segments when solving thmeling-related ODE’s (Egs. 3 &

4) for ¢/d =4 is n, =20. Also the sensitivity of this choice has beerestigated.
The T xT xH agitated tank has been discretized wikx ny x nz cubic cells withnx = ny = 251 and

nz=240. In this domain, the impeller is represented bgo#lection of marker points and associated

outward unit normal vectors at its surface. Thek®apoints revolve around tlzeaxis such that the impeller
makes one revolution in 4000 time steps=¢ 3/(400QAt)).

Collision detection and execution of collisions rfde-particle, particle-impeller as well as palg-
wall) is identical as in [6], including the valuekthe coefficients used in the elastic force aachging force

expressions. For completeness, Table 2 summarizeselastic and damping force expressions, the

parameters as used in the expressions and thatidefiof the relative location of the two markerimpis

11



between which the forces get activated. These aratdd on two different particles in case of aipler
particle collision; one of them is on the impelieicase of an impeller-particle collision.
For initialization of the simulations we first raomly distribute particles in a non-overlapping way

the TxT xH flow domain, without the impeller being presentheTnumber of particles has been chosen so

as to achieve a solids volume fraction<¢1> =0.148; if //d =4 there aren=411 particles in the tank, for

¢/d =6, n=274. The particles settle so that they eventualtyn a granular bed on the bottom. Then the
impeller is installed and is set to rotate. In fiist 4000 time steps the impeller speed rampsingatly,

after that it has its steady value Nf=1/(400Q\t).

Results

Single cylinder settling —verifications

A single cylinder with¢/d =4 is placed horizontally in a rectangular box filleith liquid and closed off

all around. At time zero — when cylinder and ligindve zero velocity — gravity is switched on and th
particle settles and while settling bends, seer€iguthat shows snapshots of particle locationsrape as
well as the liquid velocity magnitude contours irass sectional plane. Quickly (within one visctuse
d?/v) the particle bends to a steady shape. In the Imiganel of Figure 4, the segments constituting the
bended cylinder have been made visible. Upon appimg the bottom the cylinder rectifies itself whil
liquid is being squeezed out of the space betwetiorin and particle. This evolution is also showirigure

5 in terms of time series of the Reynolds numbeetaon the instantaneous settling velo&s, = u.d /v
and the deflection relative to the cylinder diametav/d with Aw the difference between the deflection at

the end points and in the middle of the cylindekw(=w(0)—w(¢/2) where it is reminded that

w(—¢/2)=w(¢/2) is a boundary condition). We observe a weak cogphetween settling speed and

deformation: the most flexible cylinder settlestéss. The change of shape affects the drag coafti@nd
therefore the settling velocity. The time it takes the particle to deform is shorter than the tifoeit to
reach a steady velocity. As expected, the defoonatirongly depends on the stiffness of the cylin@a a

12



more detailed note, it is interesting to see aeision of Aw when it gets close to the bottom. This is due to
lubrication forces acting on the cylinder in thespiwe z-direction near the middle of the cylinder being
larger than at its edges. It is easier for theitiqa escape the gap between the particle anddtierb near
the edges than near the middle. We note that #reseesolved lubrication forces: The inversion sagkace
well before the lubrication model mentioned pregigikicks in.

Figure 5 shows that the simulation domain is sigfitly tall so as to have plateau (steady) valoes f
Re, and Aw/d for a significant part of the trajectory. Thesatphu values we use for further analysis and
verification purposes. This has been summarizeignre 6 where steady state settling Reynolds numbe

and deformation are plotted agairist. The default spatial resolutiord & 12A for the LB method and
n, = 20 for the number of segments along the cylindecpimpared to a finer LB grid and finer and coarser

segment divisions. Steady state deformation ilgrompversely proportional to the bending stiffnedéshe
cylinder which is to be expected for the linearsatabehavior as implied by Eq. 4. Deviation framehrity
for the most flexible cylinder (for whicli/o = 2) is the result of feedback from the fluid flow: &h
significant deformation that occurs whéfw = 2 impacts the flow pattern around the cylinder whiab a
consequence, steers the deformation away fromttheglst line that signifies linearity (Figure 6, tbam
panel). The same feedback between deformationlawd¢sults in a slight (note the limitd@Re,)_range of
the upper panel of Figure 6) increase of settlpeesl with decreasing stiffness.

The numerical resolution has minor impact on theady-state deformation and settling speed. A
change inn; does — to a very good approximation — not affeetdettling speed (and for that reason these
data have been omitted in the upper panel of Figyrdt does affect the deformation in a systematic
manner: more segments results in increased deflematowever, differences between deformation for

n, =20 and 30 are less than 2%. It should be noted figasimulation method sets some limitation on the
number of segments. The length of each segment needs to be larger thdn(by a factor of 2 at least) in

order to have an appreciable number of marker pgiet segment to have a smooth and representatioe f

distribution along the length of the cylinder. Tt resolution has some effect on the settling spasalso

13



seen in a previous paper on hindered settlingp&ferences are, however, minor (less than 3% betwe
d=12A andd =16A).

Hele-Shaw cell —comparison with experimental data

As already noted in théntroduction, experiments under well-defined conditions witlt@nplete set of
material properties the results of which could bedufor validation are rare. In this respect, tkgeemental
part of the work by Wexler et al [16] on a singtamped fiber deformed by the low-Reynolds numhmw f
in a microfluidic channel is very useful. Their ejpnental results have been presented in the fdrtheo
fiber's tip deflection as a function of the volumetflow rate in the channel. One of the foci okth
experimental work is the effect of confinement agsult of which the channel widiV (see Figure 1b) is
only slightly larger than the width of the fibernAmportant detail of the experiment is that theefs have a
rectangular cross section, where our interest fbers with a circular cross section.

For a meaningful comparison between experimentsandlation we have translated the experimental
data in dimensionless terms where the differena@@ass sectional shape between simulation and iexpet
requires some caution. We defweas the size of the fiber’s cross section in strgise direction andg as its
size in transverse direction. The fiber’s lengtfeis before) denoted b§. Given the narrow confinement we
give our simulated cylindrical fiber a diametdr=s and make sure that in the simulations we match the

experimental aspect raticgW =0.85 and//S=0.60. The default length of the channellis= 2S. In the

flow direction we have periodic boundary conditioB®me cases have been repeated with3S and no

significant differences with the default length ee@bserved. The experimental bending parametefiisedl

_pJ ’s

as y. with U :WES andQ the volumetric flow rate as specified in the expental paper [16].

exp
cs

We realize that for the experimental fibkg :ﬁzs. The rational for comparing experimental data vath

specific value of x,,, with simulation data having the same valyeis that we expect the hydrodynamic

force to scale with the superficial velocity ané frontal area which i¢d for the round fiber ands for the

rectangular one so that the bending moment scalé&laand ¢°s respectively.

14



Figure 7 shows — in a double logarithmic way ae aisplayed in the experimental paper [16] — the

comparison between experiment and simulation inedsionless termsx(,, and y versus the fiber tip

deflection that has been scaled with the lengttheffiber: w,/¢) . The experimental data points have been
obtained from the data set denotedl= 22y m,h= 24%L n” in Figure 3 of Reference [16]. For this data set
the aspect ratio of the fiber §¢=d/¢ = 4.3. The uncertainty in the experimental points inuk&7 is due

to the uncertainty in Young’s modulus in the expemts that is reported & =63+ 22 kPa [16]. The
simulations have been conducted at a fixed flove rahd therefore fixed channel Reynolds number
Re, =UW/v ~ 0.1. The bending parametar has been varied by varyirigl . (over almost three orders of
magnitude). As in the experiments, the simulatisimsw a linear and a non-linear regime with theditaon
occurring aty ~10 2. The primary reason for the non-linear regimeeisdback of the fiber deformation on
the fluid flow and thus can — in principle — be wapd by a linear elastic model for fiber bendikige
observe reasonable agreement between simulatiolisresnd experimental data with, however, consikten

lower deflection in the simulations. In the lineagime the deviations are within the error margiat is the
result of uncertainty in Young’s modulus in the esxment. This is not the case for the non-linegime
that has larger deformations. We here likely owgrghe limit of small deformatiodsv3| < d that is part of
the modeling approach. Also, and this is the case the entire parameter range, there is the difies in
cross sectional shape of the experimental and ctatipoal fiber with consequences for the hydrodyicam
force distribution and therefore deflection. We dot expect, however, that this is an effect thad ha
consequences beyond the error margins due to amdgrin Young’s modulus making it hard to assess
conclusively.

There only are minor differences between simulatesults withd =16A and 24A. On one hand,

this is not surprising given the relatively simflev geometry and low value oReg, . On the other hand,

the narrow gap between fiber and channel side waks require proper resolution.
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In conclusion, this test case of a fiber bendingnioro channel flow has provided some confidence in
the simulation approach. However, experimental dedion under more challenging circumstances —
specifically involving assemblies of many particlesemains very desirable.

Flexible cylindersin agitated flow

The system we are looking into now is far more clicaged than the ones in the previous sub-sectihns.
involves many flexible cylinders agitated by a rtamial — albeit laminar — flow generated by a risiog
impeller. This system is, however, a logical cométion of the simulations on agitatemyid cylinders
discussed in [6] now using the methodologies fdaronoucing flexibility as described (and to someelev
verified and validated) in the previous sectiongha& current paper. The main independent variabtbi®
set of simulations is the bending stiffness. Thigdsosrolume fraction, Archimedes number, impellased
Reynolds number and Shields number have all beph danstant. Most simulations have cylinders with

¢/d =4; one simulation hag/d =6. The initial condition is shown in Figure 8: ramdanultilayers of

cylinders on the bottom of the container, sliglignded under their own weight.
At time zero the impeller is inserted and set t@ate In Figure 9 the evolution of what follows is
monitored in terms of the average verticgl fosition of the particles, as well as the averdg®rmation.

Differently from the one-cylinder settling and macchannel cases with deformation in one directioly,o

here deformation of particieAw" is defined asAw') = \/(vvg) (0)—wi) (¢/ 2))2 +(V\/3i) (0)—wy (¢ 2))2 and

average deformation implies averaging over allipad. We observe a development towards a dynamic

steady state over a period of at least 100 impedeolutions. With respect to the average vertpzticle

position <zp> there is no significant difference between theows //d = 4 cases. They all evolve towards

a steady value o(zp>m0.36H . The longer {/d =6) particles get suspended slightly faster and — on

average — to a slightly higher vertical level. Ttiend with aspect ratio was also observed fodrayillinders
[6]. Average deformation initially develops quicklpteady state values — obviously — depend on the

stiffness parameter .
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Impressions of the solids suspension process aen @i Figure 10. The upper row is a time sequence
with initially particles being drawn to the impellffom underneath due to the pressure distributidnced
by the swirling flow with minimum pressure underetimpeller. Particles can be seen to be strongly
deformed by the impeller in Figure 10b. The dynast@ady state is one characterized by partial sisepe
(Figure 10c) as anticipated by the Shields numladwesof # =9.08 [30] and the average vertical particle
location being well belowH/2 (see Figure 9). The impressions in the lower rdvpanels of Figure 10
clearly illustrate the effect of bending stiffneasd cylinder length on the levels of deformationtioé
particles.

Partial suspension of particles is also witnesseth fthe vertical solids volume fraction profiles in
Figure 11. Layering of particles is observed clpsabove the bottom. There are no clear, systematic
differences between the profiles except for theosddayering peak above the bottom being much weake
for ¢/d =6 which indicate that these longer particles ar@pended better, and the fact that the minimpim
at the level of the impellerz(~ H/2) is less pronounced for the most flexible partichéth ¢/d = 4 as well
as for the particles witti/d = 6.

In Figure 12 we focus on the way deformation otipkas is distributed. In the top panel as prohkgpbil
distribution functions (pdf's) which have been eclied over the entire tank volume as well as ovéna
period of 25 impeller revolutions; in the bottomnphaas the average deformation as a function dfcaér
position of the particle centers. From the pdf'ssitclear that many particles deform strongly amweh
deformations Aw of the order of the particle diametdr The fraction of particles deforming strongly
increases more than proportionally with decreasingwith o varying by 1 to 2 orders of magnitude the
variations in the pdf's exceed 2 orders of magrétuthe average level of deformation is clearly dedp
with local flow conditions: it peaks at the heigiitthe impeller, more precisely directly above atiectly
below the impeller. With deformation of the ordémparticle diameted, extending the simulation procedure
beyond the small deformation limikw < d is an important next step. The results in Figltesiow that —

specifically if 0 <50 (¢/d = 4) — this condition is not satisfied.
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The two panels of Figure 12 indicate that the defdion levels of the simulation with

¢/d =4& o =5 and the one with{/d =6 & o =50 are comparable, as also seen in the time serigigime

9. Deflection of a linear elastic beam subjected tertain load is proportional % [28]. With (6/4)4 ~5

we thus expect comparable deformations for the ¢ames. As we observed in Figure 11, the two cases
showed a slightly higher solids volume fractionghet level of the impeller hinting that (stronggXibility
has consequences for the way particles interabttivé impeller.

In an overall sense, the interactions between ilmpahd particles and between impeller and fluid
have been quantified by measuring the torque eXxentethe impeller. In the conventional way of mixin

research [31], torque has been translated into p@wast and then into the dimensionless power number

Po: P= ZrNI" and Po= P/(pN3D5) with T the torque exerted on the impeller. The torqud, therefore

Po, can be divided in a fluid and a solids contidou The fluid contribution follows from integraty the
fluid-impeller interaction forces stemming from thH&M over the impeller surface, the solids conttibno
from integrating the contact forces between impelled the particles. Time series of Po are giveRigure

13 for the case with the most flexible particles=5) of aspect ratic?/d = 4 and for a case with the same

aspect ratio but much higher stiffness=€ 50). The two cases behave very differently. All fomne series
in Figure 13 fluctuate which is due to particle mant not due to turbulence given the modest impdiéesed
Reynolds number. The interaction between solidsimupeller for o =5 is very weak which we interpret as
the flexibility of the particles enabling them tardiely avoid contact with the impeller. This is yelifferent
for the 0 =50 particles. The torque fluctuations due to theseighas are much higher indicating many
more particle-impeller collisions. These differenca particle behavior of relatively stiff and fiele
particles has profound consequences for the fieliaked torque which is much higher for the flexible
particles.

Time-averaged power number results are shown iar€igy4. The total power (fluid plus solids power)

for //d =4 decreases witlr for o <50 and foro >50 gets independent of the stiffness parameter. The

single data point for//d =6 shows — as also seen in Figure 12 — results cahlgato the case with
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¢/d=4& o =5. The total torque (or total power) is a measurajiantity. The simulations suggest that it
depends on the flexibility of the particles if thaye sufficiently flexible. An experiment along #®lines
would be an interesting test for the simulatioresspnted in this paper.

The time series on power / torque in Figure 13 pi®ws with some insight in the time scales of
fluctuations induced by the revolving impeller aslivas by particle motion. An order of magnitudéreate

of the fluctuation time scale based on what weisdégure 13 ist,,, ~0.YN which is equivalent to 400

°m

time steps 400At ). The time scale of bending dynamics is estimated,,, =1/ f,.. = which is —

for a mid-range stiffness coefficient of =50 — of the same order of magnitude as the flow tsoale,

casting into some doubt the validity of the quaatis assumption underpinning Eq. 3.

Summary and conclusions

A methodology for highly resolved flow simulationflexible cylindrical particles suspended in ligihas
been introduced. It is an extension of previouskwam particle-resolved simulations with rigid cyders.
Based on the way the hydrodynamic forces and prititeraction forces are distributed along thegtrof
the cylinders, bending moments and subsequentlgaliens have been calculated based on linearielast
theory and a quasi-static assumption.

For the relatively simple case of a cylinder segtlhorizontally in a closed container at low Reysol
number a series of verification tests have beefopeed. They show only a weak dependency on the
numerical parameters of the settling speed antktred of bending of the particle. It is also clé@m these
simulations that the particle deformation is fedkto the fluid flow and that the settling speedreases —
albeit modestly — with increasing deformation. Wenahave reproduced — with a fair level of agreermen
experimental results on bending of a clamped fibenicro channel flow [16], including the transitidrom
a linear to a non-linear regime which is the restilteedback of the fiber shape on the flow in thannel

and drag force on the fiber.
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To demonstrate the feasibility of the numerical rapph to many particle systems in complex flow,
flexible cylinders were placed in an agitated tamlan overall solids volume fraction of 0.15. Thggtation
was such that a laminar flow with an impeller-bags/nolds number of 87 was generated. We mainly
investigated how the system responds to a chantfeibending stiffness of the cylinders. In theifdity

range considered, the deflection of th& =4 cylinders is of the order of the diametkof the cylinders

with deflection being on average strongest nearirtigeller. The levels of solids suspension as measu
through the time-averaged vertical location of plagticles and the vertical solids volume fractioofipe do
not depend strongly on the flexibility of the palis.

The torque required to spin the impeller and they wtais distributed over a fluid and a solids
contribution does depend significantly on the bagdstiffness. The resulting total power numberighér
when the particles are more flexible and thennsost completely due to the fluid. For more rigidtjdes a
significant portion of the torque is required faredt particle-impeller interactions.

We have shown that the assumptions of small defitomand quasi-static deflection are not fully
satisfied under many of the conditions investigaitedhis paper. Refining the simulation procedure t
alleviate restrictions on the applicability of tbemputational method is left for future work. We dot
expect conceptual issues in this respect. Includiyrmgamics in the bending process to overcome thasigu
steady assumption requires adding time-dependemisten the structural equations where accurate time
stepping needs careful attention. Also theory &mgé deflections — still based on linear elasti¢emial — is
well developed [28] and amenable for implementatiomumerical procedures. Inspiration can also be
obtained from research on fluid-structure inte@ctt{FSI) where solid and fluid mechanics solvers ar
coupled to study large deformation of structuredaurthe influence of fluid flow over a very widenge of
Reynolds numbers, from creeping flow [32], to imiediate [33] to high Reynolds numbers [34].

In light of this, however, it is (more) importart further work on experimental validation in order
test the simulation procedure and see if refinemémtthe procedure have sizeable effects in thiet rig
direction. It is realized, however, that creatimg flow systems experimentally with particle of thery

specific properties and dimensions we have beegstigating is not an easy task.
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An extension in a different direction is assessnudrgarticle breakage probabilities [35]. Giventtha
we now have a method to determine the mechaniedl ém cylindrical particles in complex flow of dens
suspensions, we can assess probability of breatdagginders having a certain strength. The simafet
could actually perform the breakage event and Hirstgfrom a certain cylinder length (distribution)make
predictions of a resulting length distribution asiaction of agitation conditions.
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Figures

Figure 1. Flow configurations. (a) Top and side view of giegle cylinder (with diametett and length?)
settling in a fully closed container of dimensioBdx 8d x 11 ; (b) side and front view of micro channel
with a cylinder clamped to the bottom; (c) top &tk view of the stirred tank with down-pumpingcpied-
blade turbine. Cartesian coordinate systems asateti. Gravity is pointing in the negatizelirection for
the settling system (a) and mixing tank (c).

D=0.53T
A y
X A
, S R
-9: d =.9
8 WU, K a
g |G
Qlz ¢ | T
! |
T—»X |
© N .
L
3
— 018D )| |
3 3 S
- S = — |
T
0.23D
8d %
Z 8
V4 V4
P x Y<—T T X

(a) (b) (€)

23



Figure 2. The (xl,xz,x3) coordinate system attached to each cylinder. Dad l(force per unit length)
distributions responsible for bending are indicdigdr, and a, .

Figure 3. (a) Undeformed (black) and deformed (red) cemterbf the cylinder with segments and nodes
(the dots in the middle of each segment); (b) mapkents on an undeformed cylinder, the alternatied)
and blue color indicates the segments; (c) mar&entgon a deformed cylinder.
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Figure 4. Cylinder with ¢/d = 4 and o = 0.5 settling in a closed box. Three time instantsdgcated.
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Figure 5. Time series of the Reynolds number of a settlifignder (top) and its deflection (bottom) with
Aw defined in the text. Cylinder with/d =4 and stiffness parameter as indicated.
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Figure 6 The plateau settling Reynolds numb@®e,)_ and deflection(Aw)_ as a function ofl/o.
Comparing different resolutions for the number efrmentsn, and the number of lattice cells per diameter
d. The dashed line in the lower panel is to indidae extent of linearity.
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Figure 7. Clamped cylinder bending in micro channel flowp teflection versus bending parameter
(defined in the text). Comparison between expertaleresults due Wexler et al [16] and simulationsas
resolutions as indicated. The inset is a side wéwhe simulation related to the filled symbol witblors
representing velocity magnitude in the mid planiee Tincertainty in the experimental data — as it
one of the symbols — is due to a 30% uncertaintydang’s modulus.
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Figure 8. Initial location of cylinders after having settledeft: ¢/d =4 and o =15; right ¢/d =6 and
o =50.

Figure 9. Time series of the average vertical location & tenters of the particles (top) and average
deformation of the particles (bottom). Particldfstéiss and aspect ratio as indicated. Loss of idatausing
a gap in results for the cag¥d =4& o =150, as well as the casé/d =6& o =50 not starting from

tN=0.
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Figure 10. Impressions of particle suspension along with eigjanagnitude contours in the mid-plane. The
top row shows the evolution of the system wifll =4 and o =5.0 from start-up at momentN =14.4
(a), 30.0 (b) and 130 (c). Bottom row, snapshot®tbker systems after reaching quasi steady stdfe. (
¢/d=4 ando =15.0; (e) ¢/d =4 and o =50.0; (f) ¢/d =6 andc =50.0.
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Figure 11. Time-averaged solids volume fraction after steatife has been reached as a function of the
vertical location in the tank. Four cases withd =4, one case with//d = 6. Stiffness parametes as
indicated.
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Figure 12. Top: probability distribution function (pdf) of picle deformationAw/d for various stiffness
coefficients o . Bottom: average distribution of particle deforroatas a function of the vertical location.
Cylinders with ¢/d =4 and one case withf/d =6, time-averaging over 25 revolutions after dynamic

steady state has been reached.
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Figure 13. Time series — after a dynamic steady state has te@aehed — of the torque (translated in a power
number Po, see text) required to revolve the imepellith contributions from fluid and solids as iocgtied
for simulations witho =5 and 50.
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Figure 14. Time-averaged power number Po as a functioar dbr ¢/d =4 (open symbols) and/d =6
(closed symbols). Total power is the sum of fluaver and solids power.
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Tables

Table 1. Definitions and settings of dimensionless numbers

Expression Value or range Description

Ar = (y-1)gd®/v’ 4.15 Archimedes number

Re= NDZ/V 87 Impeller Reynolds number
Re,=ud/v dependent variableg  Settling Reynolds number
Re, =UW/v ~0.1 Micro channel Reynolds number
Y=p,/p 1.25 Density ratio

0= NZDZ/(g(y—l)d) 9.08 Shields number

El 0.5- 50 (settling)
0= Gravity-based flexibility number
p(7 1> od 5 — 150 (mixing)
nVv . e
<¢> = Hsz 0.15 Overall solids volume fraction in mixing tank
J (2d
=7 = 10% - 10" Flow-based flexibility number
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Table 2: Collisional force equations and parameter seitiigd;, all parameters in lattice units: unit of ¢gh

is the grid spacing\, unit if time is the time step\t, unit of mass is the average mass pér (cubic)
lattice cell.

—A i) :
normal elastic forcé? R =k(6, 6)| X |<‘n n‘> if §<6, and|é,[|<A; F} =0 otherwis
i
k=5.0; 6, =0.50; A =0.50
- T I I R e
normal lubrication forcé& Fi =k S Y Au" if § <6, and|é,|<A; F! =0 otherwis
d
k"=5.0; 6, =1.0; 6, =0.20
tangential lubrication force® | F; =k i 5 )\ Au if 6" <&, and|s,|<A; F =0 otherwis
d
k' =0.50

4the force on marker poinwith normaln; due to marker poirjton a different particle with normal; at
normal distancé and tangential distanag

°the force on poinit due to poinj on a different particle due to the relative velpai normal direction
between the two pointau”; § =§ if § >, ands =6, if§ <o,

¢ the force on pointdue to poinf on a different particle due to the relative vetpan tangential direction
between the two point&u’

9 definition of the normal and lateral distangesind 0, between two adjacent marker points; figure

ranrintad frnm [R]

A
(nz_n1)
|n2_n1|
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