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Uncertainty in geometry of fibre preforms
manufactured with Automated Dry Fibre
Placement and its effects on permeability
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Abstract

Resin transfer moulding is one of several processes available for manufacturing fibre-reinforced composites from dry

fibre reinforcement. Recently, dry reinforcements made with Automated Dry Fibre Placement have been introduced into

the aerospace industry. Typically, the permeability of the reinforcement is assumed to be constant throughout the dry

preform geometry, whereas in reality, it possesses inevitable uncertainty due to variability in geometry. This uncertainty

propagates to the uncertainty of the mould filling and the fill time, one of the important variables in resin injection.

It makes characterisation of the permeability and its variability an important task for design of the resin transfer moulding

process. In this study, variability of the geometry of a reinforcement manufactured using Automated Dry Fibre Placement

is studied. Permeability of the manufactured preforms is measured experimentally and compared to stochastic simula-

tions based on an analytical model and a stochastic geometry model. The simulations showed that difference between

the actual geometry and the designed geometry can result in 50% reduction of the permeability. The stochastic geometry

model predicts results within 20% of the experimental values.
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Introduction

Automated methods of fibre deposition are in high
demand by the composites industry owing to their abil-
ity to reduce waste and increase deposition rate when
compared to hand lay-up.1 Automated Fibre Placement
(AFP) and Automated Dry Fibre Placement (ADFP)
are designed to place several narrow fibre tows (prepreg
slit tapes or dry fibre slit tapes with a binder) simultan-
eously by applying heat to the tows and consolidating
them with a roller.1 An inherent feature of AFP and
ADFP preforms is the presence of gaps and overlaps
between the tows. Gaps and overlaps can be considered
to be defects as they introduce resin-rich or fibre-rich
areas and can lead to reduction of mechanical
properties of the composite.2 In some preforms, gaps
are deliberately introduced to avoid overlaps, which are
caused by variable tow width, defects in ADFP process
or tow steering. The programmed gaps can also be
used to control permeability and resin infusion

as implemented in production of wings and wingbox
of MS-21 aircraft.3 However, presence of variability
in the ADFP lay-up and gap widths in particular,
which is clearly visible in a sample lay-up shown in
Figure 1, results in uncertainty in the permeability
of the preform. This uncertainty in the permeability is
known to propagate into variability of the fill time as
well as to be the source of the defects such as dry spots
or incomplete impregnation.4,5 For preforms manufac-
tured with ADFP, no data are available on the variabil-
ity of either the preform geometry or the permeability.
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This article presents the first detailed study of an ADFP
preform geometry with a particular focus on variability
of gap width and associated variability of permeability.

The key objective of resin injection is to achieve the
complete impregnation of a preform with no dry spots
within the target time.4 Costly ‘trial and error’ proced-
ures can be avoided and the scrap rate can be reduced by
employing numerical simulations for the optimisation
of the filling time, pattern and design of resin injection
strategies, i.e. position of vents and gates. However,
practical experience of composite manufacturing
shows that the time to fill the preform and outcomes
of resin injection can be variable even for a single geom-
etry and injection strategy, owing to uncertainty of the
preform and the process. The uncertainty of permeabil-
ity can be attributed to the imperfect lay-up, race-track-
ing, variability within the preform and human errors.6

While all of these sources of variability remain relevant
for composite manufacturing, this article focuses on
variability of preform permeability owing to geomet-
rical variability. The variability of geometry of a non-
crimp fabric7 and various woven textiles8–15 has been
studied by means of image analysis. Most of those stu-
dies attempted to describe the amplitude and the correl-
ation length of the variability. Experimental data from
those studies were used in the models of textile
reinforcements with variability in the geometry and
used for prediction of probability of draping outcomes,8

distribution of mechanical properties12 and permeabil-
ity.7,16–20 In particular, it was demonstrated that the
mould fill time can be several times longer than the fill
time in the deterministic case.18

The geometry of a dry reinforcement can be
described by a model where tow position, tow width
and other details are described by a set of random vari-
ables, which may be mutually independent or can be
correlated. Both uncorrelated and correlated models of
the geometry variability have been used to predict dis-
tribution of permeability of dry reinforcements.7,17–21

The uncorrelated model of the geometry used

by Wong et al.19 predicted the coefficient of variation
(CoV, the ratio of the standard deviation to the mean
value expressed as a percentage) of permeability to be
3%, which is lower than the variability observed in
experiments. However, for the case of a non-crimp
fabric, it was shown that the correlation length of the
yarn path has a significant effect on the average perme-
ability as well as its variability.7 It was shown that the
average permeability can be significantly different from
the permeability of an idealised reinforcement. Similar
conclusions were drawn by Park and Tretyakov20 for
the 2D flow through reinforcement with variability in
permeability. In addition, it was shown that the shape
of the correlation function also has an effect on the fill
time and its variance. It can be concluded that charac-
terisation of the geometry of a reinforcement is required
before permeability can be reliably predicted. The
detailed characterisations of textile reinforcements,
including correlation lengths, can be found in the lit-
erature.8–12,14 However, no such data are available for
ADFP preforms which are inherently different from
woven reinforcements.

This work presents statistical characterisation
of ADFP cross-ply preforms including acquisition of
meso-scale geometry, experimental characterisation of
permeability and stochastic modelling of the permeabil-
ity. The article aims to understand the relationship
between the variability of the meso-scale geometry
and the permeability of the preform. ‘Characterisation
of ADFP preform’ section presents manufacturing and
data acquisition methodologies, the statistical descrip-
tion of the ADFP geometry and permeability experi-
ments. Since the geometry of the ADFP preform is
relatively simple when compared to a woven preform,
the problem reduces to characterisation of the flow
channels, or gaps, between the tapes. This assumption
is used in ‘Permeability modelling’ section where an
analytical permeability model of a deterministic
ADFP geometry, based on the available models,22–24

is described. The model simplifies the problem of the

Figure 1. Programmed and unintended gaps in ADFP preform.

ADFP: Automated Dry Fibre Placement.
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flow through the ADFP preform, utilising the concept of
parallel-series connections. This permeability model is
then used in ‘Variability modelling’ section as the basis
for Monte Carlo simulations of permeability of ADFP
preforms with geometry variability using the statistical
geometry descriptions from ‘Characterisation of ADFP
preform’ section. In ‘Discussion’ section, modelling
results from ‘Variability modelling’ section are
compared with the results of permeability experiments,
limitations of the considered model are discussed and
special attention paid to practical aspects of the design
of ADFP preforms. Conclusions are given in the final
section.

Characterisation of ADFP preform

Materials and experimental programme

The material used in this study was dry 24K carbon
fibre tows with areal weight 194 g/m2, width 6.35mm
and nominal thickness 0.25mm. The tows are coated
on one side with a proprietary thermoplastic binder.
This material was used to produce two fibre preforms
as described in ‘Experimental setup’ section. The man-
ufactured preforms were characterised by moulding
several small samples and taking micrographs of their
cross-sections. The preforms were also characterised
during the manufacturing process by taking optical
images of every layer (‘Optical characterisation of pre-
form geometry’ section) and analysing its statistical
properties (‘Statistical properties of preform geometry’
section). Finally, the permeability of the preforms was
measured as well (‘Experimental characterisation of in-
plane permeability’ section).

Experimental setup

Two identical dry fibre ADFP preforms were manufac-
tured using a Coriolis AFP machine using the dry tows
described before. The machine was set to lay down
straight tapes of eight tows each of 1-m length and
with a programmed gap of 1mm between tapes to
avoid possible overlaps. The tapes, when laid parallel,
formed layers which formed a preform. A cross-ply
design of 16 layers (0�/90�)8 was chosen for ease of
manufacturing, characterisation and modelling. Each
layer had a regular shift of 3.5 tow widths relative to
the previous layer of the same direction as shown in
Figure 2. Thermoplastic binder on tows was melted
using a laser system mounted on the lay-up head and
tows were consolidated with 200N force applied via a
soft roller. The laser power was set to 800W which gave
a surface temperature of around 200�C at lay-up speed
of 0.8m/s and around 320�C at lay-up speed of 0.4m/s.
The first layer of each preform was laid down at a speed

of 0.4m/s to ensure good tack and conformance
between the tapes and substrate. All other layers were
laid down at 0.8m/s (except layers 2, 3 and 4 in Preform
1, which were laid down at 0.6m/s). The effect of the
lay-up speed is not studied in this article. The size of the
two preforms was 1� 1m which ensures that a suffi-
ciently large part of the lay-up is free from edge effects.

Optical characterisation of preform geometry

Samples from Preform 1 were infused with Prime 20 LV
resin using resin transfer moulding (RTM), cast into
polyester resin and prepared for optical microscopy.
Distinctive programmed gaps, small gaps between
tows within tapes and an unintended overlap of tows
can be seen in Figure 2. Note that the programmed gap
has a height lower than the tow thickness due to com-
paction of the material into the gap. The gap height was
measured at the minimum distance between the tows in
the gap and the average of the 25 measurements
resulted in an average gap height of 0.16mm. A scatter
plot of the gap height against gap width as measured on
the micrographs is shown in Figure 3. It can be seen
that there is a tendency for wider gaps to have lower
gap height but some of the narrow gaps also exhibited
low gap height. It can also be noted that the variance of
the gap height seems to be larger for narrow gaps. The
absence of more detailed data makes it difficult to
assume an adequate mathematical model for the gap
height.

Characterisation of geometry of fibre reinforcement
can be performed using various methods such as optical
imaging. A detailed image of each layer of both pre-
forms was acquired by pausing the AFP machine,
mounting a 24 MPix DSLR camera on a robotic arm
and taking 84 images covering the entire area of the
1� 1m preform with some overlaps. Resolution of
raw images was around 35 mm per pixel. The first
image of each sequence included an image of a coord-
inate marker (checkboard pattern fixed at the lay-up
table during all experiments) and the calibration
target with checkboard pattern. After images of the
layer surface were acquired, the AFP lay-up process
was continued until the next layer was finished.

Characterisation of the geometry of textile reinforce-
ment preforms has been performed using various meth-
ods, e.g. microcomputed tomography (micro-CT) for
smaller samples when high precision is needed15 and
optical imaging for large samples.11 Development of
the high-rate deposition processes such as AFP/
ADFP require faster inspection techniques for online
evaluation of the layup quality, e.g. laser profilometers
and video-optical methods.25 However, an optical ima-
ging technique was selected as neither profilometers nor
video-optical measurements provide greater precision
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and might require longer calibration. The images of the
preform were used to extract exact positions of the tape
edges in order to measure the gaps between them. Raw
camera images were processed using a range of MatLab

tools. The processing algorithm for images of each
layer was as follows:

1. Remove lens distortion from all images;26

2. Calibrate images in each layer into a plane parallel
to the tool surface using the calibration target and
calculate the scale of each layer;

3. Find exact image overlaps, i.e. relative shifts using
Fourier correlation of images;

4. Perform edge detection algorithms11,12 on each
image separately to extract tape edges;

5. Combine detected tape edges together using infor-
mation from Step 3.

An example of the image and automatic detection of
the gap edges is shown in Figure 4. The contrast
between tows belonging to current and previous
layers was achieved by placing a powerful source of
light perpendicular to the fibre direction in the current
layer. However, binder veil, which is used for tow

Figure 2. Typical cross-section of RTM sample in the 0� direction (top); an example of overlap between two tows in vacuum bagged

sample (bottom).

RTM: resin transfer moulding.
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Figure 3. Scatter plot of gap width against gap height.
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coating, reflects light in every direction, so adjacent
tows blend together on the images. Therefore, precise
detection of the edges between adjacent tows was not
possible. Owing to the use of the directed light sources,
the images had significant non-uniformity of bright-
ness, which resulted in systematic variation of the gap
width measurement. The regions obscured by system-
atic errors or susceptible to large errors were discarded,
still leaving a large set of data for the analysis.

Statistical properties of preform geometry

It was noted in ‘Introduction’ section that the perme-
ability of a preform is affected mainly by the width of
the channels within the preform as it affects porosity,
which is related to permeability as described by the
Kozeny-Carman model.27 The gap width registered
within the ADFP preform represents the cumulative
variability of the tow width, unintended gaps between
tows and imprecision of the lay-up. Two representative
layers from each of the two ADFP preforms are
considered. Layers of the preforms are referenced as
PkLl-m, where k is the preform number (1 or 2), l is
the layer number (1 or 3) and m is a subset (corresponds
to a column of images) within the layer. A diagram of
the images and subset positions is shown in Figure 5.
The data set for each layer consists of seven subsets
with measurements of width of 17 gaps with 80-mm
length each.

The mean and standard deviation of gap widths
within two of the subsets of set P1L1, together with
standard errors, are given in Figure 6. Note that the
asymmetric confidence intervals of standard deviations
are a consequence of the fact that, for an independent
sample of size n, n� 1ð Þs2=�2 follows a chi-squared dis-
tribution with n�1 degrees of freedom, which is not
symmetric. Here s2 and �2 are the sample and popula-
tion variances, respectively. The mean gap width in the
first and last subsets exhibits a decreasing trend, which
can be attributed to a systematic error in image analysis

(see discussion in ‘Experimental setup’ section) or edge
effects. Consequently, the first and last subsets are
excluded from further analysis and the overall average
gap width and standard deviation are given without
them in Figure 7. The width of the 95% confidence
interval for the mean gap width is close to 0.035mm
(1 pixel on the image), i.e. the error is comparable to the
resolution of the image. In addition, a straight line par-
allel to the x-axis can be put within the confidence inter-
val. Thus, it is plausible to assume that the variability of
gap width is weakly stationary, i.e. it has a constant
mean value and standard deviation over the entire
length of the tape.

Probability distributions of the gap width distribu-
tions in the data sets are shown in Figures 8 and 9,
together with normal and lognormal fits for which par-
ameters are given in Tables 1 and 2, respectively. The
Shapiro–Wilk test28 did not reject (at the 5% signifi-
cance level) the hypotheses of the data being from these
distributions for most of the data sets. From these two

Figure 4. Example of the gap edge detection using automatic image analysis system.

Figure 5. Scheme of the images and subset of images for

characterisation of preform geometry.
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distributions, the lognormal distribution was selected
for the description of the gap width since, by contrast
with the normal distribution, lognormal random vari-
ables take only positive values.

Representative autocorrelation functions (correl-
ation along the length) of gap widths after removing
the linear trend, using the MatLab function ‘detrend’,
are shown in Figure 10, along with the average

Figure 6. Gap widths in set P1L1 (shaded areas corresponds to 95% confidence interval).

Figure 7. Average gap width, standard deviation of gap width (shaded areas corresponds to 99% confidence interval), ‘all sets’

consist of subsets P1L1-2–P1L1-6, P1L3-2–P1L3-6, P2L1-2–P2L1-6, P2L3-2–P2L3-6.
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autocorrelation and its error bounds. The average auto-
correlation function exhibits some oscillations and is
negative in some regions. Instead of exponential
approximation, as was performed in other stu-
dies,8,9,11,12 the autocorrelation function was analysed
using the power spectral density of the detrended series
and extracting frequencies corresponding to its peaks.29

The detrending was required to avoid zero frequency
which appears due to either decreasing or increasing
trends in the measured gap widths. The power spectral
density of the gap width from the data sets is given in
Figure 10. This function has several peaks which cor-
respond to frequencies present in the measured gap
widths. The most powerful peak corresponds to a wave-
length of 40.7mm, and the next major frequency has a
wavelength of 16.3mm. Other peaks correspond to
shorter wavelengths and have lower power. The longest

autocorrelation length of 40.7mm corresponds to the
lower end of the range of correlation lengths reported
for textile composites, 30–120mm,8,14 and is likely to be
related to behaviour of the dry tows as elastic beams,
which respond to perturbations. Furthermore, this can
be related to the spring back effect owing to the dry
tows being uncoiled from a spool onto a flat surface.
Visual examination of the ADFP preforms suggests
that the second representative wavelength of 16.3mm
corresponds to waviness of the tow edges, which is
probably related to tow slitting.

The average autocorrelation function also indicates
the appropriate size of representative volume element
(RVE), which should be used for the variability study.
It can be seen that the autocorrelation function reaches
a value near zero for a length greater than 60mm,
which means that there is no long-range correlation
of the gap widths. The value of 60mm was chosen as
the minimum size of RVE for subsequent studies.

Dependence of the gap width in the other direction,
i.e. between adjacent gaps, was also analysed. It was
expected that adjacent gap widths would be strongly
correlated because a large gap between two tapes
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Figure 9. Histogram of gap width in the data sets (lognormal

distribution fitted).
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distribution fitted).
Table 2. Results of the Shapiro–Wilk test assuming lognormal

distribution, significance level 5% (only section at x¼ 10.5 mm

and x¼ 72 mm were used for the tests of experimental

distribution).

Set �a �a

Null hypothesis

(Shapiro–Wilk

test)

p-value

(Shapiro–Wilk

test)

P1L1 �0.21 0.21 Not rejected 0.07

P1L3 �0.09 0.22 Not rejected 0.14

P2L1 �0.28 0.18 Not rejected 0.17

P2L3 �0.17 0.20 Not rejected 0.18

All sets �0.25 0.22 Rejected 0.04

aThese values correspond to the mean and std.dev. from Table 1

Table 1. Results of the Shapiro–Wilk test assuming normal

distribution, significance level 5% (only section at x¼ 10.5 mm

and x¼ 72 mm were used for the tests of experimental

distribution).

Set

Mean

(all data),

mm

Std.dev.

(all data),

mm

Null hypothesis

(Shapiro–Wilk

test)

p-value

(Shapiro–

Wilk test)

P1L1 0.83 0.18 Not rejected 0.07

P1L3 0.94 0.20 Not rejected 0.62

P2L1 0.77 0.14 Not rejected 0.19

P2L3 0.86 0.17 Rejected 0.04

All sets 0.80 0.18 Rejected <0.01
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might result in the next gap being smaller. However, a
runs test,30 which tests the hypothesis that values from
a sequence are independent, on the gap widths showed
that the independence hypothesis cannot be rejected at
the 5% significance level for any of the data sets,
making it is plausible to assume that adjacent gaps
are independent.

Experimental characterisation of in-plane
permeability

Permeability of the preforms, described in
‘Experimental setup’ section, was measured using an
experimental setup, which simulates linear flow in a
preform during RTM as proposed in Vernet et al.31

with a sample size of 290� 115mm (Figure 11). The
size of the samples required for the testing and the
desirability of obtaining as many samples as possible
from a square preform were among the reasons for
choosing a rectilinear flow testing rig instead of a cir-
cular flow rig as the latter requires larger samples.
Specimens were cut in two orthogonal directions coin-
ciding with the fibre orientations, which were assumed
to be the principal flow directions owing to the simple
geometry of the preform. The rig was fitted with two
pressure sensors, one at the gate and another at the
vent. Specimens were placed into the cavity of 3.2mm
depth, closed with a transparent mould top, made of
25-mm Perspex sheet, and injected with synthetic Trent
oil at a constant pressure and temperature 18� 1�C.
The fluid viscosity � is 0.115 Pa�s at 18�C. The pressure
at each sensor was recorded during the entire experi-
ment. The arrival time was defined as the instant when
pressure at the second sensor exceeded the pressure
threshold Pthr¼ 0.05 bar. The permeability of the

reinforcement with porosity, ’, was then calculated
assuming ideal linear Darcy’s flow using the arrival
time, t, and injection pressure, P

Kexp ¼
�’L2

2Pt
ð1Þ

where the flow length, L � 1þ Pthr=Pð ÞLsensor, is the
distance from the injection gate to the second pressure
sensor, Lsensor, corrected with respect of the pressure
threshold Pthr as described in Matveev et al.32

Permeability measurements using a rectilinear injec-
tion tool are prone to being affected by race tracking
along the sides of the tool. Therefore, a transparent
mould top was used in order to observe the experiments
using a video camera enabling experiments exhibiting
race tracking to be discarded. The nominal fibre volume
fraction was calculated as �A �N=ð� � tÞ, where �A is the
areal density of the tows, N¼ 16 is the number of layers
in the preform, �¼ 1800 kg/m3 is the density of carbon

Figure 10. Autocorrelation (detrending applied), shaded area shows 95% confidence interval (left); power spectral density of gap

widths (right).

Figure 11. Scheme of the experimental rig.
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fibre and t is the thickness of the preform. Then, for the
preform consisting of 16 layers and compacted to a
thickness of 3.2mm the nominal fibre volume fraction
was predicted to be equal to 54%. Measured permeabil-
ity values for a nominal fibre volume fraction of 54%
are given in Table 3. The sample distribution of the
permeabilities is given in Figure 12. The hypothesis
that the distribution follows a lognormal distribution

was not rejected by the Shapiro–Wilk test at the 5%
significance level for any of the data sets.

Examples of the flow patterns, observed in the pre-
form and recorded using a video camera, are shown in
Figure 13. As expected, the flow in the gaps was faster
than the flow in the tapes, which greatly distorts
the flow front. However, the gaps did not act as race-
tracking channels owing to the complexity of the geom-
etry of preform where the gaps are placed in the
staggered pattern and form a network of the channels.
This network of the channels homogenises the flow and
as a result creates a more uniform flow front than in the
case of pure race-tracking.

The distorted flow front observed in the experiments
also introduces error in the permeability measurements.
In the present experimental setup, the arrival time is
measured by a single pressure sensor placed at the
centreline of the tool close to the vent. Therefore, the
positions of gaps in the bottom layer affect the regis-
tered arrival time, e.g. by triggering early arrival when
the entire mould is not yet filled, resulting in overesti-
mation of the permeability. These overestimated values
contribute to the right tail of the distribution shown in
Figure 13. The effect of the flow front unevenness can
be reduced by performing the saturated flow experi-
ments by measuring the flow rate after the porous
medium is fully saturated. It is expected that this
would reduce the error and also yield permeability
values slightly higher than those measured with the pre-
sent setup.

The other source of uncertainty in the experiments is
related to the potential deformation of the mould top.
The effect of this uncertainty was kept to a minimum by
using a low injection pressure. It was estimated that
deflection of the mould top was up to 0.15mm accord-
ing to the plate theory,33 resulting in a fibre volume
fraction change of 3%.

Figure 13. Flow patterns in ADFP preform.

ADFP: Automated Dry Fibre Placement.

Figure 12. Distribution of measured permeability, lognormal fit

in red.

Table 3. Results of permeability measurements.

Entire domain

Number of

samples

Permeability

(std.dev.), 10�11 m2

Direction 1
Panel 1 13 1.46 (0.11)

Panel 2 6 1.79 (0.21)

Direction 2
Panel 1 9 1.44 (0.19)

Panel 2 3 2.16 (1.02)

Matveev et al. 9



Permeability modelling

A fibre preform during resin injection is often assumed
to behave as a saturated porous medium and flow
through it is described by Darcy’s law. Most of the
approaches for permeability prediction7,19,23,24 are
based on the multi-scale homogenisation procedure,
which assumes separation of the scales to simplify the
modelling of the flow, e.g. flow in a unidirectional (UD)
fibre bundle (micro-scale) is considered separately from
the meso-scale flow and then homogenised. Then the
homogenised permeability of the micro-scale fibre bun-
dles is implemented intro the meso-scale model.
Homogenisation approaches have proved their effective-
ness and accuracy for various reinforcements. For exam-
ple, analytical homogenisation of flow was applied to
predict the permeability of UD multi-layer preforms,22

plain weaves23 and multi-layer triaxial braid.24 All
approaches divided the geometry of reinforcements
into elementary volumes and channels, which are then
reconnected assuming series and/or parallel flow. The
same approach is chosen here given the simple meso-
scale geometry of the ADFP preform. In this case, the
geometry at the meso-scale is viewed as a layered struc-
ture with each layer consisting of homogeneous tapes
with rectangular gaps between them. The homogenisa-
tion procedure for the saturated permeability of the pre-
form becomes viable because of the distributed nature of
the gaps, which create a more uniform flow as discussed
in ‘Statistical properties of preform geometry’ section. It
should be noted that this approach of modelling a
layered structure neglects the through-thickness fluid
exchange by the adjacent layers. This assumption is
based on the consideration that individual layers are
relatively thin and the flow front in a layer with lower
permeability is levelled out by two adjacent layers each
with a higher permeability. In addition, the design of the
ADFP preform contains a limited number of gaps and
the remainder of the preform consists of densely packed
fibres, which makes difference between the local perme-
abilities of adjacent layers relatively insignificant.

The homogenisation procedure for the ADFP pre-
form is shown schematically in Figure 14. The hom-
ogenisation starts by defining the permeabilities of its
simplest sub-structures: tows and gaps. Permeability of
tows (i.e. dry fibre bundles) are homogenised using the
Gebart formulae34 for direction along, Ky,k, and trans-
verse to fibres, Ky,?

Ktow,k ¼
8R2

53

1� Vf

� �3
V2

f

ð2Þ

Ktow,? ¼
16

9�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6

Vf:max

Vf
� 1

� �2:5
s

ð3Þ

where R is the fibre radius, Vf is the fibre volume frac-
tion within the tow and Vf:max is the maximum fibre
volume fraction in hexagonal packing.

The permeability of a gap along its length, Kgap, is
given by a series35

Kgap ¼
b2

12
1�

192

�5
b

a

X1
i¼1

tanh ð2i�1Þ�a
2b

� �
ð2i� 1Þ5

0
@

1
A ð4Þ

where a and b are the dimensions of the cross-section of
the gap. The infinite series (4) was truncated to 10
terms, which gave errors of less than 1%.

The permeability of a single layer along the
fibre direction can be calculated using a weighted aver-
aging approach,24 assuming parallel flow in the gaps
and tows

Klayer,k ¼ �Kgap þ ð1� �ÞKtow,k ð5Þ

where � is the volume fraction of the gaps in the
preform.

Assuming that flow across the gaps makes a negli-
gible contribution to the total flow, the transverse per-
meability of a single layer can be calculated using
weighted averaging

1

Klayer,?
¼

1� �ð Þ

Ktow,?
þ

�

Kgap
�

1� �ð Þ

Ktow,?
ð6Þ

Using the derived values of the permeability along
and across the fibres, the permeability tensor of a layer,
Klayer, in the reference frame aligned with the fibre
orientation can be given as

Klayer ¼
Klayer,k 0

0 Klayer,?

� �
ð7Þ

The flow in a multi-layer preform is represented as a
number of parallel flows through the layers. Then the

Figure 14. Homogenisation approach.
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overall in-plane permeability of the preform can be
written as

Kin ¼
XN
i¼1

ti
T
Rð�iÞ � K

ðiÞ
layer � R

Tð�iÞ ð8Þ

where K
ðiÞ
layer is permeability of i-th layer calculated

using equations (2) to (6), ti is the thickness of i-th
layer, T is the overall thickness, R is rotation matrix
and �i is the orientation of i-th layer in a chosen refer-
ence coordinate system.

The proposed model for saturated in-plane perme-
ability was validated by fluid dynamics simulation
performed in ANSYS CFX using a model for a
steady-state flow in four orthogonal gaps (i.e. four-
layer preform) shown in Figure 15. The analytical
in-plane model yielded results within 10% of the
numerical model for all the considered cases as shown
in Figure 15. The closest agreement was achieved for
the models with low porosities, when the approxima-
tion of the gaps as slender non-interacting channels is
most reasonable.

Saturated permeability of the preform was calcu-
lated using the presented approach and two preform
models, referred as ‘designed’ and ‘averaged’, with the
parameters given in Table 4. The first preform model
corresponded to the nominal preform geometry with
the programmed value of the gap width. The second
preform model accounted for the reduction of the gap
width and height and used their averaged values as
described in ‘Characterisation of ADFP preform’ sec-
tion. The fibre radius in equation (2) was equal to
3.5� 10�6 m. The fibre volume fraction within a tow
in equations (2) and (3) was set to 0.7. However, the
effect of this parameter on the total permeability is not
significant (permeability changes by 3% when the par-
ameter changed by 15%). The ‘designed’ preform
model predicted a permeability of 2.81� 10�11m2,

which is twice the permeability measured from the
real preform (as described in ‘Statistical properties of
preform geometry’ section). The ‘average’ preform
model yielded a permeability value of 1.81� 10�11

m2, which is 16% higher than the mean measured
value and within the 99% confidence interval for all
of the experimental measurements, except for
Direction 1, Preform 1.

The permeability model with the more precise geom-
etry of the ADFP preform, which accounts for the
reduction of the gap width and height, predicts perme-
ability which is in good agreement with the experimen-
tal results but does not provide any information on the
variability of the permeability. In the next section, the
preform model with variability of the gap width is
described.

Variability modelling

The gap widths and correlation properties measured,
described in ‘Optical characterisation of preform geom-
etry’ section, can be implemented into a preform model
with randomly variable gaps. Prior to the use of the
experimental data described in ‘Optical characterisa-
tion of preform geometry’ section, several assumptions
need to be made. It should be noted that the width of
the gaps was measured during the lay-up stage, which is
then followed by a compaction before RTM. The com-
paction can introduce variations to the measured geom-
etry, e.g. it is known that the compaction of 3D woven

Figure 15. Model of four orthogonal gaps (left); comparison of theoretical and numerical predictions of in-plane permeability of a

four-layer orthogonal preform (right).

Table 4. Geometrical parameters of the permeability model.

Designed Averaged

Gap width (mm) 1.0 0.8

Gap height (mm) 0.2 0.16

Gap volume fraction 0.02 0.0155
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textile reinforcement can distort gap measurements sig-
nificantly.36 However, in the case of preforms manufac-
tured by ADFP, prior to the lay-up each tape is already
compacted to a high fibre volume fraction and then
further compacted by a roller during the lay-up stage.
This, together with the binder activated during the lay-
up stage, creates a preform which is denser, and much
more rigid and stable, than conventional dry reinforce-
ments. Research on consolidation of prepregs and pre-
preg AFP tapes has shown that the tapes with low
thickness to width ratio do not exhibit squeezing flow
and do not fill the gaps.37 These considerations allow us
to assume that the tows are not significantly disturbed
during the compaction phase. The other possible
change of the geometry is lateral expansion of the com-
pacted tows. However, the overall change of thickness
during compaction was no more than 5% and this pro-
cess is expected to increase of the fibre volume fraction
within the tows rather than cause lateral expansion.
These arguments make it possible to assume that the
width of the gap measured on a dry non-compacted
preform is still applicable to the compacted preform
during the RTM stage.

The permeability of the preform with randomly vari-
able gaps can be calculated by extending the model
presented in ‘Permeability modelling’ section. Each
variable channel in the model is assumed to consist of
many sections, each having its own constant channel
width and height. These sections are then assumed to
be connected in series and the total permeability of a
gap is given by

Kgap ¼
XN
i¼1

1

Kgapðai, bÞ

 !�1
ð9Þ

where ai is the width of the gap in the i-th section and N
is the total number of sections.

The model of the ADFP prefrom geometry with
variable gaps is based on the assumptions that a gap
width along the fibre direction, x, is modelled as a sta-
tionary lognormal random function, aðxÞ, having cor-
relation function cðxÞ given by the average
autocorrelation function in Figure 10. All the adjacent
gaps in a preform are assumed to be independent from
each other. Realisations of the random gaps were simu-
lated as follows. First, a gap is divided into N sections,
whose centre-points are regularly spaced and given by
a vector xif g. Then, the correlation matrix C is com-
posed using the correlation function cðxÞ, so that
Cij ¼ c xi � xj

		 		� �
. Finally, a vector of gap widths,

a ¼ aif g, where ai ¼ aðxiÞ, is sampled at points xif g as
shown below

a ¼ exp �JN,1 þ �
2UR

� �
ð10Þ

Here � and � are the sample mean and standard
deviation from Table 2, JN,1 is an N� 1 vector of
ones, U is the upper triangle matrix found from the
Cholesky decomposition UUT ¼ C and R is a vector
of independent normally distributed random variables
each having zero mean and unit variance. Note that the
trend discussed in ‘Optical characterisation of preform
geometry’ section is neglected.

The model of the ADFP preform was sampled using
the parameters measured in ‘Characterisation of ADFP
preform’ section and employed for permeability simu-
lations using the Monte Carlo method. First, the effect
of the number of sections N on the permeability was
assessed. As expected, the Monte Carlo simulations
showed that for the small N, the permeability has
high standard deviation, which converges to a constant
value with increase of N. The converged values of the
mean and standard deviation at the total length of
63mm (N¼ 360, distance between the sampling point
was kept constant and equal to 0.175 mm) were found
to be 1.35� 10�11 m2 and 0.05� 10�11 m2, respectively
(Table 5). The permeabilities are given in Table 5. The
simulated distribution of the permeability is shown in
Figure 16. In contrast to the deterministic model
(‘Permeability modelling’ section) which overestimated
the permeability, the variability model predicted the
permeability to be 14% lower than the experimental
values. Comparison between the models is discussed
in the following section.

Discussion

The detailed image analysis of the geometry of manu-
factured ADFP preforms resulted in several findings.
The average gap width is 20% lower than the designed
value and its CoV is up to 25%. Micro-imaging of
RTM samples of the ADFP panels showed that the
gap height is lower than the layer thickness owing to

Figure 16. Simulated distribution of permeability for RVE

length of 63 mm.

RVE: representative volume element.
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compaction effects. Sources of the variation of the gap
width include precision of the lay-up, variability in tow
width, presence of unintended gaps between tows and
possible measurement errors which stem from the ima-
ging and image analysis. The total of the measurement
error is estimated to be within 1–2 pixels on the original
image (0.035–0.07mm) and is several times lower than
amplitude of the measured variations. With edge defects
from tow cutting excluded, the gap width was weakly
stationary within the resolution of the images. The gap
width could be represented by either a normal or a log-
normal distribution as the corresponding statistical
hypotheses were not rejected. The lognormal distribu-
tion was chosen because gap width cannot take negative
values. The correlation function of gap widths obtained
from the data was found to be different from the correl-
ation functions of the woven textiles presented in other
studies.9,11,14 In particular, several oscillations are
clearly visible in the present correlation function, indi-
cating the presence of several meso-scale variabilities.
The largest wavelength, 40.7mm, of the corresponding
power spectral density was close to the correlation
length found in textile reinforcements with tight weav-
ing. The following mechanistic explanation can be pro-
posed. Variability in the textiles is more likely to be
introduced by the weaving process, i.e. shuttle move-
ments. Variability in the ADFP preforms is introduced
by either vibrations of the robotic arm, spring back effect
of the uncoiled tows or variability of the material, i.e.
non-straight tows or variability of the towwidth. In both
cases, longer correlation lengths can be related to mech-
anical constraints – yarns in tight weaving are restricted
from movement by other yarns (by both friction and
compression mechanisms) and tows in an ADFP pre-
form are restricted from movement by the binder. The
second wavelength in the correlation function for the
ADFP preform is related to the wavy edges of the
tows (which are produced by slitting wide tapes).

The stochastic modelling and permeability experi-
ments yielded mean values of permeability, which are
14% lower that the experimental mean value and
within its 99% confidence interval. This, however, does
not apply to the standard deviation of the permeability,
which was found to be two to five times lower than the
experimental standard deviation. Distributions of the
permeability measured from the samples and predicted
with the stochastic model were also significantly differ-
ent. The experimental distribution is close to a lognor-
mal distribution and has a right tail with several high
values of permeability. However, the simulated distribu-
tion of permeability was almost symmetric (though a
right tail was present). These discrepancies stem from
several assumptions in both modelling and experiments.

The stochastic model of the ADFP preform included
only variability of the gap width, while the gap height

is also variable and its effect is quite important as can
be seen from comparison of the models of as-designed
and averaged geometries. The measurements obtained
from the micrographs showed that there is a weak cor-
relation between the gap width and gap height but no
mathematical model can be assumed at present.
Possible underestimation of the gap height, as well as
absence of unintended gaps between the tows, explain
the absence of high values of permeability in the simu-
lated distribution (Figure 16). In order to address these
issues, further improvements to the model are planned
for the future.

As for possible experimental errors, the ADFP pre-
form could have non-uniform thickness and hence fibre
volume fraction. The lower thickness could result in
additional artificial flow paths. Furthermore, the per-
meability rig was intended to replicate linear flow in the
closed RTM tool with constant cavity depth while the
top mould could have deflection of up to 0.15mm as
discussed in ‘Optical characterisation of preform geom-
etry’ section. Both of these factors can be a source of
high permeability values observed in experiments.
Another possible source of error, the race-tracking
effect, was ruled out by discarding relevant samples
after observing the flow front through the transparent
top of the mould. This observation revealed the error in
the permeability measurements owing to the flow front
distortion and sensor position. It is of interest for future
research to estimate the measurement error and reduce
its significance. Finally, the differences between the
modelling and experiments include the model assump-
tion of in-plane flow with no coupling between the
layers and the saturated flow while the experiments
were performed for unsaturated media. The shape of
the flow front for multi-layer preforms and accuracy of
the presented homogenisation procedure were shown to
be dependent on the ratio of through-thickness and in-
plane permeability.38 However, it is expected that the
difference between the permeabilities in this preform is
of an order of magnitude everywhere except for the
programmed gaps, which should not result in more
than 10% difference between the presented model and
more refined models.

The experimental data presented in this article are
more applicable than merely to this single design of a
preform. The variability of the gap width is invariant of
the programmed gap width, because the tapes are
placed individually, one by one. Therefore, it is possible
to estimate the effect of variability on preforms with an
arbitrary gap width and, importantly, to use the width
of the gap as a tool to mitigate the effects of its own
variability. For example, consider a preform with
a programmed gap width of 2mm whose variability is
identical to the one measured in ‘Characterisation of
ADFP preform’ section. Repeating the procedures
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described in ‘Variability modelling’ section, reveals that
the permeability of the preform with variability is only
12% lower than that of the as-designed preform with
ideal geometry. However, increase of the gap width
should be carefully considered as it can lead to the
higher distortion of the flow front similar to race-track-
ing, which can reduce the robustness of the process.
The outlined idea is an important step towards fully
engineered materials, which combine both design for
performance and for manufacturing approaches.

Conclusions

For the first time, the geometry of the ADFP preforms
was studied in detail by means of image analysis. The
average gap width was 20% lower than the designed
gap width (0.8mm instead of 1.0mm) and the CoV of
the gap width was up to 25%. Therefore, the use of the
as-designed geometry for modelling purposes is
unacceptable.

Experimentally measured permeability was found to
be marginally more than half the predicted permeability
of the designed preform. Permeability of the ADFP
preforms was found to have a lognormal distribution
with CoV of up to 15%. The permeability predicted
using the averaged geometry parameters and the aver-
age permeability predicted with stochastic models were
within one standard deviation of the experimental
results and within 20% of their mean values.
Predicted CoV of the permeability was found to be
only 3.5%. The presented data on geometry of the
ADFP preform and its permeability can be used for
resin injection simulations to predict the mould filling
time and flow patterns. Such simulations are of interest
for future studies.

The model presented includes only one type of vari-
ability, the width of the programmed gaps between the
tows, while in practice, the height of the channel is also
variable and other sources of variability are present.
Furthermore, the flow through the preform was homo-
genised using assumptions of series and parallel flow.
There is therefore scope for further study of the ADFP
geometry by detailed numerical simulations of mould
filling. This work demonstrates the importance of con-
sidering the real geometry of the fibre preform. It shows
that even small deviations from the designed geometry

can result in large deviations of the permeability. At the
same time, this gives opportunity to mitigate the vari-
ability by changing the programmed gap width as out-
lined above.
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