19 research outputs found

    Diabetic Retinopathy in Newly Diagnosed Subjects With Type 2 Diabetes Mellitus: Contribution of β-Cell Function

    Get PDF
    Purpose: The association of hyperglycemia and diabetic retinopathy (DR) in established type 2 diabetes mellitus (T2DM) subjects is well accepted. However, the association between β-cell responsiveness and insulin sensitivity leading to fasting and postprandial hyperglycemia with DR in newly diagnosed treatment-naïve T2DM subjects remain unreported. Methods: A total of 544 newly diagnosed treatment-naïve T2DM subjects were screened for DR (digital photography) and underwent a standardized meal tolerance test. Serial plasma glucose and insulin levels were measured, and fasting (M0) and postprandial β-cell responsiveness calculated Calculating Pancreatic Response Program along with homeostasis model assessment-β cell function (HOMA-B) and HOMA-Insulin Sensitivity. A subgroup of 201 subjects also underwent a frequently sampled IV glucose tolerance test and the acute insulin response to glucose, insulin sensitivity, and glucose effectiveness (SG) estimated (MINMOD model). Results: A total of 16.5% (90) subjects had DR at diagnosis. Subjects with DR had significantly reduced M0, HOMA-B and SG leading to higher fasting and postprandial (2 hour) glucose and significantly lower fasting and postprandial (2 hour) insulin. Factors independently associated with DR in multivariate logistic regression analysis were M0, HOMA-B, and SG with fasting and postprandial (2 hour) glucose and insulin. There was no statistical difference in glycated hemoglobin, systolic blood pressure, acute insulin response to glucose, and insulin sensitivity between those with or without DR. Principal Conclusions: In this cohort of newly diagnosed T2DM subjects, DR is associated with reduced β-cell responsiveness, resulting from β-cell failure rather than insulin resistance, leading to fasting and postprandial hyperglycemia and hypoinsulinemi

    A novel ESR2 frameshift mutation predisposes to medullary thyroid carcinoma and causes inappropriate RET expression

    Get PDF

    A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells

    Get PDF
    Protein lysine methyltransferases G9a and GLP modulate the transcriptional repression of a variety of genes via dimethylation of Lys9 on histone H3 (H3K9me2) as well as dimethylation of non-histone targets. Here we report the discovery of UNC0638, an inhibitor of G9a and GLP with excellent potency and selectivity over a wide range of epigenetic and non-epigenetic targets. UNC0638 treatment of a variety of cell lines resulted in lower global H3K9me2 levels, equivalent to levels observed for small hairpin RNA knockdown of G9a and GLP with the functional potency of UNC0638 being well separated from its toxicity. UNC0638 markedly reduced the clonogenicity of MCF7 cells, reduced the abundance of H3K9me2 marks at promoters of known G9a-regulated endogenous genes and disproportionately affected several genomic loci encoding microRNAs. In mouse embryonic stem cells, UNC0638 reactivated G9a-silenced genes and a retroviral reporter gene in a concentration-dependent manner without promoting differentiation

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    A novel community driven software for functional enrichment analysis of extracellular vesicles data.

    Get PDF
    Bioinformatics tools are imperative for the in depth analysis of heterogeneous high-throughput data. Most of the software tools are developed by specific laboratories or groups or companies wherein they are designed to perform the required analysis for the group. However, such software tools may fail to capture "what the community needs in a tool". Here, we describe a novel community-driven approach to build a comprehensive functional enrichment analysis tool. Using the existing FunRich tool as a template, we invited researchers to request additional features and/or changes. Remarkably, with the enthusiastic participation of the community, we were able to implement 90% of the requested features. FunRich enables plugin for extracellular vesicles wherein users can download and analyse data from Vesiclepedia database. By involving researchers early through community needs software development, we believe that comprehensive analysis tools can be developed in various scientific disciplines

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Shaping the growth behaviour of biofilms initiated from bacterial aggregates

    Get PDF
    Bacterial biofilms are usually assumed to originate from individual cells deposited on a surface. However, many biofilm-forming bacteria tend to aggregate in the planktonic phase so that it is possible that many natural and infectious biofilms originate wholly or partially from pre-formed cell aggregates. Here, we use agent-based computer simulations to investigate the role of pre-formed aggregates in biofilm development. Focusing on the initial shape the aggregate forms on the surface, we find that the degree of spreading of an aggregate on a surface can play an important role in determining its eventual fate during biofilm development. Specifically, initially spread aggregates perform better when competition with surrounding unaggregated bacterial cells is low, while initially rounded aggregates perform better when competition with surrounding unaggregated cells is high. These contrasting outcomes are governed by a trade-off between aggregate surface area and height. Our results provide new insight into biofilm formation and development, and reveal new factors that may be at play in the social evolution of biofilm communities

    Кераміка «terra sigillata» з с. Зимне на Волині

    Get PDF
    Стаття присвячена публікації чотирьох керамічних посудин типу «terra sigillata», знайдених на дні р. Луги у с. Зимне Володимир-Волинського району Волинської області. Попередній аналіз цих знахідок дозволяє віднести їх до Понтійського центру виробництва такого посуду. Вірогідним шляхом потрапляння цієї колекції на Волинь була готська експансія у Північне Причорномор’я

    Diabetic retinopathy in newly diagnosed subjects with type 2 diabetes mellitus: contribution of β-Cell function

    No full text
    Purpose: The association of hyperglycemia and diabetic retinopathy (DR) in established type 2 diabetes mellitus (T2DM) subjects is well accepted. However, the association between β-cell responsiveness and insulin sensitivity leading to fasting and postprandial hyperglycemia with DR in newly diagnosed treatment-naïve T2DM subjects remain unreported. Methods: A total of 544 newly diagnosed treatment-naïve T2DM subjects were screened for DR (digital photography) and underwent a standardized meal tolerance test. Serial plasma glucose and insulin levels were measured, and fasting (M0) and postprandial β-cell responsiveness calculated Calculating Pancreatic Response Program along with homeostasis model assessment-β cell function (HOMA-B) and HOMA-Insulin Sensitivity. A subgroup of 201 subjects also underwent a frequently sampled IV glucose tolerance test and the acute insulin response to glucose, insulin sensitivity, and glucose effectiveness (SG) estimated (MINMOD model). Results: A total of 16.5% (90) subjects had DR at diagnosis. Subjects with DR had significantly reduced M0, HOMA-B and SG leading to higher fasting and postprandial (2 hour) glucose and significantly lower fasting and postprandial (2 hour) insulin. Factors independently associated with DR in multivariate logistic regression analysis were M0, HOMA-B, and SG with fasting and postprandial (2 hour) glucose and insulin. There was no statistical difference in glycated hemoglobin, systolic blood pressure, acute insulin response to glucose, and insulin sensitivity between those with or without DR. Principal Conclusions: In this cohort of newly diagnosed T2DM subjects, DR is associated with reduced β-cell responsiveness, resulting from β-cell failure rather than insulin resistance, leading to fasting and postprandial hyperglycemia and hypoinsulinemi
    corecore