25 research outputs found

    A Glial Variant of the Vesicular Monoamine Transporter Is Required To Store Histamine in the Drosophila Visual System

    Get PDF
    Unlike other monoamine neurotransmitters, the mechanism by which the brain's histamine content is regulated remains unclear. In mammals, vesicular monoamine transporters (VMATs) are expressed exclusively in neurons and mediate the storage of histamine and other monoamines. We have studied the visual system of Drosophila melanogaster in which histamine is the primary neurotransmitter released from photoreceptor cells. We report here that a novel mRNA splice variant of Drosophila VMAT (DVMAT-B) is expressed not in neurons but rather in a small subset of glia in the lamina of the fly's optic lobe. Histamine contents are reduced by mutation of dVMAT, but can be partially restored by specifically expressing DVMAT-B in glia. Our results suggest a novel role for a monoamine transporter in glia that may be relevant to histamine homeostasis in other systems

    Measurement of W± and Z-boson production cross sections in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    See paper for full list of authors - 17 pages plus author list + cover pages (34 pages total), 5 figures, 3 tables, submitted to Phys. Lett. B, All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2015-03/International audienceMeasurements of the W±±νW^{\pm} \rightarrow \ell^{\pm} \nu and Z+Z \rightarrow \ell^+ \ell^- production cross sections (where ±=e±,μ±\ell^{\pm}=e^{\pm},\mu^{\pm}) in proton-proton collisions at s=13\sqrt{s}=13 TeV are presented using data recorded by the ATLAS experiment at the Large Hadron Collider, corresponding to a total integrated luminosity of 81 pb1^{-1}. The total inclusive W±W^{\pm}-boson production cross sections times the single-lepton-flavour branching ratios are σW+tot=11.78±0.02(stat)±0.32(sys)±0.59(lumi)\sigma_{W^+}^{tot}= 11.78 \pm 0.02 (stat) \pm 0.32 (sys) \pm 0.59 (lumi) nb and σWtot=8.75±0.02(stat)±0.24(sys)±0.44(lumi)\sigma_{W^-}^{tot} = 8.75 \pm 0.02 (stat) \pm 0.24 (sys) \pm 0.44 (lumi) nb for W+W^+ and WW^-, respectively. The total inclusive ZZ-boson production cross section times leptonic branching ratio, within the invariant mass window 66<m<11666 < m_{\ell\ell} < 116 GeV, is σZtot=1.97±0.01(stat)±0.04(sys)±0.10(lumi)\sigma_{Z}^{tot} = 1.97 \pm 0.01 (stat) \pm 0.04 (sys) \pm 0.10 (lumi) nb. The W+W^+, WW^-, and ZZ-boson production cross sections and cross-section ratios within a fiducial region defined by the detector acceptance are also measured. The cross-section ratios benefit from significant cancellation of experimental uncertainties, resulting in σW+fid/σWfid=1.295±0.003(stat)±0.010(sys)\sigma_{W^+}^{fid}/\sigma_{W^-}^{fid} = 1.295 \pm 0.003 (stat) \pm 0.010 (sys) and σW±fid/σZfid=10.31±0.04(stat)±0.20(sys)\sigma_{W^{\pm}}^{fid}/\sigma_{Z}^{fid} = 10.31 \pm 0.04 (stat) \pm 0.20 (sys). Theoretical predictions, based on calculations accurate to next-to-next-to-leading order for quantum chromodynamics and next-to-leading order for electroweak processes and which employ different parton distribution function sets, are compared to these measurements

    Measurement of the angular coefficients in Z-boson events using electron and muon pairs from data taken at √s=8 TeV with the ATLAS detector

    Get PDF
    The angular distributions of Drell-Yan charged lepton pairs in the vicinity of the Z-boson mass peak probe the underlying QCD dynamics of Z-boson production. This paper presents a measurement of the complete set of angular coefficients A0−7 describing these distributions in the Z-boson Collins-Soper frame. The data analysed correspond to 20.3 fb−1 of pp collisions at s√=8s=8 TeV, collected by the ATLAS detector at the CERN LHC. The measurements are compared to the most precise fixed-order calculations currently available (O(α2s))(O(αs2)) and with theoretical predictions embedded in Monte Carlo generators. The measurements are precise enough to probe QCD corrections beyond the formal accuracy of these calculations and to provide discrimination between different parton-shower models. A significant deviation from the (O(α2s))(O(αs2)) predictions is observed for A0 − A2. Evidence is found for non-zero A5,6,7, consistent with expectations

    Search for new particles in events with one lepton and missing transverse momentum in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a search for new particles in events with one lepton (electron or muon) and missing transverse momentum using 20.3 fb−¹ of proton-proton collision data at √s=8 TeV recorded by the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. A W′ with Sequential Standard Model couplings is excluded at the 95% confidence level for masses up to 3.24 TeV. Excited chiral bosons (W*) with equivalent coupling strengths are excluded for masses up to 3.21 TeV. In the framework of an effective field theory limits are also set on the dark matter-nucleon scattering cross-section as well as the mass scale M* of the unknown mediating interaction for dark matter pair production in association with a leptonically decaying W

    A search for tt̄ resonances using lepton-plus-jets events in proton-proton collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb−¹ of proton-proton collision data collected at a centre-of-mass energy of √s=8 TeV. The lepton-plus-jets final state is used, where the top pair decays to W+bW−b̄, with one W boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow Z′ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour Z′ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with Γ/m = 15% decaying to tt̄. These range from 4.8 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV

    Search for charged Higgs bosons through the violation of lepton universality in t¯t events using pp collision data at ps = 7 TeV with the ATLAS experiment

    Get PDF
    In several extensions of the Standard Model, the top quark can decay into a bottom quark and a light charged Higgs boson H+, t → bH+, in addition to the Standard Model decay t → bW. Since W bosons decay to the three lepton generations equally, while H+ may predominantly decay into τν, charged Higgs bosons can be searched for using the violation of lepton universality in top quark decays. The analysis in this paper is based on 4.6 fb−1 of proton-proton collision data at √s = 7 TeV collected by the ATLAS experiment at the Large Hadron Collider. Signatures containing leptons (e or μ) and/or a hadronically decaying τ (τhad) are used. Event yield ratios between e+τhad and e+μ, as well as between μ+τhad and μ+e, final states are measured in the data and compared to predictions from simulations. This ratio-based method reduces the impact of systematic uncertainties in the analysis. No significant deviation from the Standard Model predictions is observed. With the assumption that the branching fraction B(H+ → τν) is 100%, upper limits in the range 3.2%–4.4% can be placed on the branching fraction B(t → bH+) for charged Higgs boson masses mH+ in the range 90–140GeV. After combination with results from a search for charged Higgs bosons in t¯t decays using the τhad+jets final state, upper limits on B(t → bH+) can be set in the range 0.8%–3.4%, for mH+ in the range 90–160GeV

    Measurement of the Z/γ* boson transverse momentum distribution in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the Z/γ* boson transverse momentum spectrum using ATLAS proton-proton collision data at a centre-of-mass energy of √s=7 TeV at the LHC. The measurement is performed in the Z/γ* → e+e− and Z/γ* → μ+μ− channels, using data corresponding to an integrated luminosity of 4.7 fb−¹. Normalized differential cross sections as a function of the Z/γ* boson transverse momentum are measured for transverse momenta up to 800 GeV. The measurement is performed inclusively for Z/γ* rapidities up to 2.4, as well as in three rapidity bins. The channel results are combined, compared to perturbative and resummed QCD calculations and used to constrain the parton shower parameters of Monte Carlo generators

    Measurement of the tt¯ production cross-section using eμ events with b-tagged jets in pp collisions at √s=7 and 8 TeV with the ATLAS detector

    Get PDF
    The inclusive top quark pair (tt¯) production cross-section σtt¯ has been measured in proton–proton collisions at √s=7 TeV and √s=8 TeV with the ATLAS experiment at the LHC, using tt¯ events with an opposite-charge eμ pair in the final state. The measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb−1 and the 2012 8 TeV dataset of 20.3 fb−1. The numbers of events with exactly one and exactly two b-tagged jets were counted and used to simultaneously determine σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section was measured to be: σtt¯=182.9±3.1±4.2±3.6±3.3 pb (s=7 TeV)and σtt¯=242.4±1.7±5.5±7.5±4.2 pb (s=8 TeV), where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corresponding to the experimental acceptance of the leptons are also reported, together with the ratio of cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were used to determine the top quark pole mass via the dependence of the theoretically predicted cross-section on mtpole giving a result of mtpole=172.9−2.6+2.5 GeV. By looking for an excess of tt¯ production with respect to the QCD prediction, the results were also used to place limits on the pair-production of supersymmetric top squarks t~1 with masses close to the top quark mass, decaying via t~1→tχ~10 to predominantly right-handed top quarks and a light neutralino χ~10, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95 % confidence level

    Measurement of the charge asymmetry in highly boosted top-quark pair production in √s=8 TeV pp collision data collected by the ATLAS experiment

    Get PDF
    In the pp→tt process the angular distributions of top and anti-top quarks are expected to present a subtle difference, which could be enhanced by processes not included in the Standard Model. This Letter presents a measurement of the charge asymmetry in events where the top-quark pair is produced with a large invariant mass. The analysis is performed on 20.3 fb-1 of pp collision data at √s=8TeV collected by the ATLAS experiment at the LHC, using reconstruction techniques specifically designed for the decay topology of highly boosted top quarks. The charge asymmetry in a fiducial region with large invariant mass of the top-quark pair (mtt>0.75 TeV) and an absolute rapidity difference of the top and anti-top quark candidates within -2<|yt|-|yt|<2 is measured to be 4.2±3.2%, in agreement with the Standard Model prediction at next-to-leading order. A differential measurement in three tt- mass bins is also presented
    corecore