684 research outputs found
Atomic X-ray Spectroscopy of Accreting Black Holes
Current astrophysical research suggests that the most persistently luminous
objects in the Universe are powered by the flow of matter through accretion
disks onto black holes. Accretion disk systems are observed to emit copious
radiation across the electromagnetic spectrum, each energy band providing
access to rather distinct regimes of physical conditions and geometric scale.
X-ray emission probes the innermost regions of the accretion disk, where
relativistic effects prevail. While this has been known for decades, it also
has been acknowledged that inferring physical conditions in the relativistic
regime from the behavior of the X-ray continuum is problematic and not
satisfactorily constraining. With the discovery in the 1990s of iron X-ray
lines bearing signatures of relativistic distortion came the hope that such
emission would more firmly constrain models of disk accretion near black holes,
as well as provide observational criteria by which to test general relativity
in the strong field limit. Here we provide an introduction to this phenomenon.
While the presentation is intended to be primarily tutorial in nature, we aim
also to acquaint the reader with trends in current research. To achieve these
ends, we present the basic applications of general relativity that pertain to
X-ray spectroscopic observations of black hole accretion disk systems, focusing
on the Schwarzschild and Kerr solutions to the Einstein field equations. To
this we add treatments of the fundamental concepts associated with the
theoretical and modeling aspects of accretion disks, as well as relevant topics
from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian
Journal of Physics, in pres
Genome-wide association study of kidney function decline in individuals of European descent.
Genome-wide association studies (GWASs) have identified multiple loci associated with cross-sectional eGFR, but a systematic genetic analysis of kidney function decline over time is missing. Here we conducted a GWAS meta-analysis among 63,558 participants of European descent, initially from 16 cohorts with serial kidney function measurements within the CKDGen Consortium, followed by independent replication among additional participants from 13 cohorts. In stage 1 GWAS meta-analysis, single-nucleotide polymorphisms (SNPs) at MEOX2, GALNT11, IL1RAP, NPPA, HPCAL1, and CDH23 showed the strongest associations for at least one trait, in addition to the known UMOD locus, which showed genome-wide significance with an annual change in eGFR. In stage 2 meta-analysis, the significant association at UMOD was replicated. Associations at GALNT11 with Rapid Decline (annual eGFR decline of 3 ml/min per 1.73 m(2) or more), and CDH23 with eGFR change among those with CKD showed significant suggestive evidence of replication. Combined stage 1 and 2 meta-analyses showed significance for UMOD, GALNT11, and CDH23. Morpholino knockdowns of galnt11 and cdh23 in zebrafish embryos each had signs of severe edema 72 h after gentamicin treatment compared with controls, but no gross morphological renal abnormalities before gentamicin administration. Thus, our results suggest a role in the deterioration of kidney function for the loci GALNT11 and CDH23, and show that the UMOD locus is significantly associated with kidney function decline.Kidney International advance online publication, 10 December 2014; doi:10.1038/ki.2014.361
Reconstructing the Antarctic ice-sheet shape at the Last Glacial Maximum using ice-core data
The Antarctic ice sheet (AIS) is the Earth’s largest store of frozen water; understanding how it changed in the past allows us to improve projections of how it, and sea levels, may change. Here, we use previous AIS reconstructions, water isotope ratios from ice cores, and simulator predictions of the relationship between the ice-sheet shape and isotope ratios to create a model of the AIS at the Last Glacial Maximum. We develop a prior distribution that captures expert opinion about the AIS, generate a designed ensemble of potential shapes, run these through the climate model HadCM3, and train a Gaussian process emulator of the link between ice-sheet shape and isotope ratios. To make the analysis computationally tractable, we develop a preferential principal component method that allows us to reduce the dimension of the problem in a way that accounts for the differing importance we place in reconstructions, allowing us to create a basis that reflects prior uncertainty. We use Markov chain Monte Carlo to sample from the posterior distribution, finding shapes for which HadCM3 predicts isotope ratios closely matching observations from ice cores. The posterior distribution allows us to quantify the uncertainty in the reconstructed shape, a feature missing in other analyses
Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search
Peer reviewe
Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks
Peer reviewe
Observations of fog‐aerosol interactions over central Greenland
Supercooled fogs can have an important radiative impact at the surface of the Greenland Ice Sheet, but they are difficult to detect and our understanding of the factors that control their lifetime and radiative properties is limited by a lack of observations. This study demonstrates that spectrally resolved measurements of downwelling longwave radiation can be used to generate retrievals of fog microphysical properties (phase and particle effective radius) when the fog visible optical depth is greater than ∼0.25. For 12 cases of fog under otherwise clear skies between June and September 2019 at Summit Station in central Greenland, nine cases were mixed-phase. The mean ice particle (optically-equivalent sphere) effective radius was 24.0 ± 7.8 µm, and the mean liquid droplet effective radius was 14.0 ± 2.7 µm. These results, combined with measurements of aerosol particle number concentrations, provide evidence supporting the hypotheses that (a) low surface aerosol particle number concentrations can limit fog liquid water path, (b) fog can act to increase near-surface aerosol particle number concentrations through enhanced mixing, and (c) multiple fog events in quiescent periods gradually deplete near-surface aerosol particle number concentrations
Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV
Peer reviewe
Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV
Peer reviewe
Vaccine-induced, but not natural immunity, against the Streptococcal inhibitor of complement protects against invasive disease
Highly pathogenic emm1 Streptococcus pyogenes strains secrete the multidomain Streptococcal inhibitor of complement (SIC) that binds and inactivates components of the innate immune response. We aimed to determine if naturally occurring or vaccine-induced antibodies to SIC are protective against invasive S. pyogenes infection. Immunisation with full-length SIC protected mice against systemic bacterial dissemination following intranasal or intramuscular infection with emm1 S. pyogenes. Vaccine-induced rabbit anti-SIC antibodies, but not naturally occurring human anti-SIC antibodies, enhanced bacterial clearance in an ex vivo whole-blood assay. SIC vaccination of both mice and rabbits resulted in antibody recognition of all domains of SIC, whereas naturally occurring human anti-SIC antibodies recognised the proline-rich region of SIC only. We, therefore, propose a model whereby natural infection with S. pyogenes generates non-protective antibodies against the proline-rich region of SIC, while vaccination with full-length SIC permits the development of protective antibodies against all SIC domains
Kiyang-yang, a West-African Postwar Idiom of Distress
In 1984, a healing cult for young barren women in southern Guinea Bissau developed into a movement, Kiyang-yang, that shook society to its foundations and had national repercussions. “Idiom of distress” is used here as a heuristic tool to understand how Kiyang-yang was able to link war and post-war-related traumatic stress and suffering on both individual and group levels. An individual experience born from a traumatic origin may be generalized into an idiom that diverse sectors of society could embrace for a range of related reasons. We argue that, for an idiom to be understood and appropriated by others, there has to be resonance at the level of symbolic language and shared experiences as well as at the level of the culturally mediated contingent emotions it communicates. We also argue that through its symbolic references to structural causes of suffering, an idiom of distress entails a danger for those in power. It can continue to exist only if its etiology is not exposed or the social suffering it articulates is not eliminated. We finally argue that idioms of distress are not to be understood as discrete diagnostic categories or as monodimensional expressions of “trauma” that can be addressed
- …
