2,865 research outputs found

    Scintigraphic assessment of bone status at one year following hip resurfacing : comparison of two surgical approaches using SPECT-CT scan

    Get PDF
    Objectives: To study the vascularity and bone metabolism of the femoral head/neck following hip resurfacing arthroplasty, and to use these results to compare the posterior and the trochanteric-flip approaches. Methods: In our previous work, we reported changes to intra-operative blood flow during hip resurfacing arthroplasty comparing two surgical approaches. In this study, we report the vascularity and the metabolic bone function in the proximal femur in these same patients at one year after the surgery. Vascularity and bone function was assessed using scintigraphic techniques. Of the 13 patients who agreed to take part, eight had their arthroplasty through a posterior approach and five through a trochanteric-flip approach. Results: One year after surgery, we found no difference in the vascularity (vascular phase) and metabolic bone function (delayed phase) at the junction of the femoral head/neck between the two groups of patients. Higher radiopharmaceutical uptake was found in the region of the greater trochanter in the trochanteric-flip group, related to the healing osteotomy. Conclusions: Our findings using scintigraphic techniques suggest that the greater intra-operative reduction in blood flow to the junction of the femoral head/neck, which is seen with the posterior approach compared with trochanteric flip, does not result in any difference in vascularity or metabolic bone function one year after surgery

    Ultra High Energy Cosmology with POLARBEAR

    Full text link
    Observations of the temperature anisotropy of the Cosmic Microwave Background (CMB) lend support to an inflationary origin of the universe, yet no direct evidence verifying inflation exists. Many current experiments are focussing on the CMB's polarization anisotropy, specifically its curl component (called "B-mode" polarization), which remains undetected. The inflationary paradigm predicts the existence of a primordial gravitational wave background that imprints a unique B-mode signature on the CMB's polarization at large angular scales. The CMB B-mode signal also encodes gravitational lensing information at smaller angular scales, bearing the imprint of cosmological large scale structures (LSS) which in turn may elucidate the properties of cosmological neutrinos. The quest for detection of these signals; each of which is orders of magnitude smaller than the CMB temperature anisotropy signal, has motivated the development of background-limited detectors with precise control of systematic effects. The POLARBEAR experiment is designed to perform a deep search for the signature of gravitational waves from inflation and to characterize lensing of the CMB by LSS. POLARBEAR is a 3.5 meter ground-based telescope with 3.8 arcminute angular resolution at 150 GHz. At the heart of the POLARBEAR receiver is an array featuring 1274 antenna-coupled superconducting transition edge sensor (TES) bolometers cooled to 0.25 Kelvin. POLARBEAR is designed to reach a tensor-to-scalar ratio of 0.025 after two years of observation -- more than an order of magnitude improvement over the current best results, which would test physics at energies near the GUT scale. POLARBEAR had an engineering run in the Inyo Mountains of Eastern California in 2010 and will begin observations in the Atacama Desert in Chile in 2011.Comment: 8 pages, 6 figures, DPF 2011 conference proceeding

    The bolometric focal plane array of the Polarbear CMB experiment

    Full text link
    The Polarbear Cosmic Microwave Background (CMB) polarization experiment is currently observing from the Atacama Desert in Northern Chile. It will characterize the expected B-mode polarization due to gravitational lensing of the CMB, and search for the possible B-mode signature of inflationary gravitational waves. Its 250 mK focal plane detector array consists of 1,274 polarization-sensitive antenna-coupled bolometers, each with an associated lithographed band-defining filter. Each detector's planar antenna structure is coupled to the telescope's optical system through a contacting dielectric lenslet, an architecture unique in current CMB experiments. We present the initial characterization of this focal plane

    Reweighting a parton shower using a neural network: the final-state case

    Get PDF
    The use of QCD calculations that include the resummation of soft-collinear logarithms via parton-shower algorithms is currently not possible in PDF fits due to the high computational cost of evaluating observables for each variation of the PDFs. Unfortunately the interpolation methods that are otherwise applied to overcome this issue are not readily generalised to all-order parton-shower contributions. Instead, we propose an approximation based on training a neural network to predict the effect of varying the input parameters of a parton shower on the cross section in a given observable bin, interpolating between the variations of a training data set. This first publication focuses on providing a proof-of-principle for the method, by varying the shower dependence on αS\alpha_\text{S} for both a simplified shower model and a complete shower implementation for three different observables, the leading emission scale, the number of emissions and the Thrust event shape. The extension to the PDF dependence of the initial-state shower evolution that is needed for the application to PDF fits is left to a forthcoming publication.Comment: additional references added in introductio

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
    corecore