Observations of the temperature anisotropy of the Cosmic Microwave Background
(CMB) lend support to an inflationary origin of the universe, yet no direct
evidence verifying inflation exists. Many current experiments are focussing on
the CMB's polarization anisotropy, specifically its curl component (called
"B-mode" polarization), which remains undetected. The inflationary paradigm
predicts the existence of a primordial gravitational wave background that
imprints a unique B-mode signature on the CMB's polarization at large angular
scales. The CMB B-mode signal also encodes gravitational lensing information at
smaller angular scales, bearing the imprint of cosmological large scale
structures (LSS) which in turn may elucidate the properties of cosmological
neutrinos. The quest for detection of these signals; each of which is orders of
magnitude smaller than the CMB temperature anisotropy signal, has motivated the
development of background-limited detectors with precise control of systematic
effects. The POLARBEAR experiment is designed to perform a deep search for the
signature of gravitational waves from inflation and to characterize lensing of
the CMB by LSS. POLARBEAR is a 3.5 meter ground-based telescope with 3.8
arcminute angular resolution at 150 GHz. At the heart of the POLARBEAR receiver
is an array featuring 1274 antenna-coupled superconducting transition edge
sensor (TES) bolometers cooled to 0.25 Kelvin. POLARBEAR is designed to reach a
tensor-to-scalar ratio of 0.025 after two years of observation -- more than an
order of magnitude improvement over the current best results, which would test
physics at energies near the GUT scale. POLARBEAR had an engineering run in the
Inyo Mountains of Eastern California in 2010 and will begin observations in the
Atacama Desert in Chile in 2011.Comment: 8 pages, 6 figures, DPF 2011 conference proceeding