2,679 research outputs found

    The colour-magnitude relation of Globular Clusters in Centaurus and Hydra - Constraints on star cluster self-enrichment with a link to massive Milky Way GCs

    Full text link
    We investigate the colour-magnitude relation of metal-poor globular clusters, the 'blue tilt', in the Hydra and Centaurus galaxy clusters and constrain the primordial conditions for star cluster self-enrichment. We analyse U,I photometry for about 2500 globular clusters in the central regions of Hydra and Centaurus, based on FORS1@VLT data. We convert the measured colour-magnitude relations into mass-metallicity space and obtain a scaling of Z \propto M^{0.27 \pm 0.05} for Centaurus GCs and Z \propto M^{0.40 \pm 0.06} for Hydra GCs, consistent with results in other environments. We find that the GC mass-metallicity relation already sets in at present-day masses of a few 10^5 solar masses and is well established in the luminosity range of massive MW clusters like omega Centauri. We compare the mass-metallicity relation with predictions from the star cluster self-enrichment model by Bailin & Harris (2009). For this we include effects of dynamical and stellar evolution and a physically well motivated primordial mass-radius scaling. The self-enrichment model reproduces the observed relations well for average primordial half-light radii r_h ~ 1-1.5 pc, star formation efficiencies f_* ~ 0.3-0.4, and pre-enrichment levels of [Fe/H] ~ -1.7 dex. Within the self-enrichment scenario, the observed blue tilt implies a correlation between GC mass and width of the stellar metallicity distribution. We find that this implied correlation matches the trend of width with GC mass measured in Galactic GCs, including extreme cases like omega Cen and M54. We conclude that 1. A primordial star cluster mass-radius relation provides a significant improvement to the self-enrichment model fits. 2. Broadenend metallicity distributions as found in some massive MW globular clusters may have arisen naturally from self-enrichment processes, without the need of a dwarf galaxy progenitor.Comment: 15 pages, 13 figures. Language edited version of paper accepted for publication in Astronomy & Astrophysics. Colour-composite in Figure 1 reduced in resolutio

    Study of bound states in 12Be through low-energy 11Be(d,p)-transfer reactions

    Get PDF
    The bound states of 12Be have been studied through a 11Be(d,p)12Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of 11Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium array was used to detect gamma rays from the excited states in 12Be. The gamma-ray detection enabled a clear identification of the four known bound states in 12Be, and each of the states has been studied individually. Differential cross sections over a large angular range have been extracted. Spectroscopic factors for each of the states have been determined from DWBA calculations and have been compared to previous experimental and theoretical results

    Conservative and disruptive modes of adolescent change in human brain functional connectivity

    Get PDF
    Adolescent changes in human brain function are not entirely understood. Here, we used multiecho functional MRI (fMRI) to measure developmental change in functional connectivity (FC) of resting-state oscillations between pairs of 330 cortical regions and 16 subcortical regions in 298 healthy adolescents scanned 520 times. Participants were aged 14 to 26 y and were scanned on 1 to 3 occasions at least 6 mo apart. We found 2 distinct modes of age-related change in FC: “conservative” and “disruptive.” Conservative development was characteristic of primary cortex, which was strongly connected at 14 y and became even more connected in the period from 14 to 26 y. Disruptive development was characteristic of association cortex and subcortical regions, where connectivity was remodeled: connections that were weak at 14 y became stronger during adolescence, and connections that were strong at 14 y became weaker. These modes of development were quantified using the maturational index (MI), estimated as Spearman’s correlation between edgewise baseline FC (at 14 y, FC14) and adolescent change in FC (ΔFC14−26), at each region. Disruptive systems (with negative MI) were activated by social cognition and autobiographical memory tasks in prior fMRI data and significantly colocated with prior maps of aerobic glycolysis (AG), AG-related gene expression, postnatal cortical surface expansion, and adolescent shrinkage of cortical thickness. The presence of these 2 modes of development was robust to numerous sensitivity analyses. We conclude that human brain organization is disrupted during adolescence by remodeling of FC between association cortical and subcortical areas

    Low-energy Coulomb excitation of 62^{62}Fe and 62^{62}Mn following in-beam decay of 62^{62}Mn

    Get PDF
    Sub-barrier Coulomb-excitation was performed on a mixed beam of 62^{62}Mn and 62^{62}Fe, following in-trap β\beta^{-} decay of 62^{62}Mn at REX-ISOLDE, CERN. The trapping and charge breeding times were varied in order to alter the composition of the beam, which was measured by means of an ionisation chamber at the zero-angle position of the Miniball array. A new transition was observed at 418~keV, which has been tentatively associated to a (2+,3+)1g.s.+(2^{+},3^{+})\rightarrow1^{+}_{g.s.} transition. This fixes the relative positions of the β\beta-decaying 4+4^{+} and 1+1^{+} states in 62^{62}Mn for the first time. Population of the 21+2^{+}_{1} state was observed in 62^{62}Fe and the cross-section determined by normalisation to the 109^{109}Ag target excitation, confirming the B(E2)B(E2) value measured in recoil-distance lifetime experiments.Comment: 9 pages, 10 figure

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore