370 research outputs found

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations

    Search for W′→tb→qqbb decays in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search for a massive W′ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The dataset was taken at a centre-of-mass energy of √s=8 TeV and corresponds to 20.3 fb−1 of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass W′ bosons in the range 1.5–3.0 TeV. b-tagging is used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95 % confidence level are set on the W′→tb cross section times branching ratio ranging from 0.16pb to 0.33pb for left-handed W′ bosons, and ranging from 0.10pb to 0.21pb for W′ bosons with purely right-handed couplings. Upper limits at 95 % confidence level are set on the W′-boson coupling to tb as a function of the W′ mass using an effective field theory approach, which is independent of details of particular models predicting a W′boson

    Identification and pathogenicity of Macrophomina species collected from weeds in melon fields in Northeastern Brazil

    Full text link
    "This is the peer reviewed version of the following article: Negreiros, AMP, Sales Júnior, R, León, M, et al. Identification and pathogenicity of Macrophomina species collected from weeds in melon fields in Northeastern Brazil. J Phytopathol. 2019; 167: 326 337. , which has been published in final form at https://doi.org/10.1111/jph.12801. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] In this work, a collection of 94 Macrophomina isolates obtained from roots of two weed species, Trianthema portulacastrum and Boerhavia diffusa, collected during surveys conducted during 2015 and 2016 in melon production fields in Northeastern Brazil, were characterized by using molecular techniques. Phylogenetic analysis of the EF1-alpha gene allowed the identification of 32 isolates as M. phaseolina and 62 isolates as M. pseudophaseolina. Results of a pathogenicity test performed on melon seedlings of the cv. "Gladial" revealed that all M. phaseolina isolates inoculated were able to cause disease to melon seedlings, but only some M. pseudophaseolina isolates were able to infect them. This study represents the first report of M. pseudophaseolina in both T. portulacastrum and B. diffusa weeds, which are prevalent in the main Brazilian melon producing and exporting regions. Information about the biology and epidemiology of M. pseudophaseolina is scarce because of its recent description; thus, further research is needed for a better understanding of this fungus as a potentially emerging pathogen of melon and other crops.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brazil (CAPES); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Negreiros, AMP.; Sales Junior, R.; León Santana, M.; de Assis Melo N.J.; Michereff, S.; de Queiroz Ambrósio M.M.; De Sousa Medeiros, H.... (2019). Identification and pathogenicity of Macrophomina species collected from weeds in melon fields in Northeastern Brazil. Journal of Phytopathology. 167(6):326-337. https://doi.org/10.1111/jph.12801S3263371676Agustí-Brisach, C., Gramaje, D., León, M., García-Jiménez, J., & Armengol, J. (2011). Evaluation of Vineyard Weeds as Potential Hosts of Black-Foot and Petri Disease Pathogens. Plant Disease, 95(7), 803-810. doi:10.1094/pdis-12-10-0888A. C. Alfenas R. Mafia G. Métodos em fitopatologia 2016 Ed. UFV Universidade Federal de Viçosa Viçosa Brasil 516Ambrósio, M. M. Q., Dantas, A. C. A., Martínez-Perez, E., Medeiros, A. C., Nunes, G. H. S., & Picó, M. B. (2015). Screening a variable germplasm collection of Cucumis melo L. for seedling resistance to Macrophomina phaseolina. Euphytica, 206(2), 287-300. doi:10.1007/s10681-015-1452-xAnuário Anuário ‐ Anuário Brasileiro da Fruticultura 2018 2018 Ed. Gazeta Santa Cruz Santa Cruz do Sul Brazil 88Baird, R. E., & Brock, J. H. (1999). First Report of Macrophomina phaseolina on Cotton (Gossypium hirsutum) in Georgia. Plant Disease, 83(5), 487-487. doi:10.1094/pdis.1999.83.5.487bBaird, R. E., Watson, C. E., & Scruggs, M. (2003). Relative Longevity of Macrophomina phaseolina and Associated Mycobiota on Residual Soybean Roots in Soil. Plant Disease, 87(5), 563-566. doi:10.1094/pdis.2003.87.5.563Carbone, I., & Kohn, L. M. (1999). A Method for Designing Primer Sets for Speciation Studies in Filamentous Ascomycetes. Mycologia, 91(3), 553. doi:10.2307/3761358Chaves, A. L. R., Braun, M. R., Eiras, M., Colariccio, A., & Galleti, S. R. (2003). Erigeron bonariensis: hospedeira alternativa do Lettuce mosaic virus no Brasil. Fitopatologia Brasileira, 28(3), 307-311. doi:10.1590/s0100-41582003000300014Claudino, M. R., & Soares, D. J. (2014). Pathogenicity and aggressiveness of Macrophomina phaseolina isolates to castor (Ricinus communis). Tropical Plant Pathology, 39(6), 453-456. doi:10.1590/s1982-56762014000600006Cohen, R., Omari, N., Porat, A., & Edelstein, M. (2012). Management of Macrophomina wilt in melons using grafting or fungicide soil application: Pathological, horticultural and economical aspects. Crop Protection, 35, 58-63. doi:10.1016/j.cropro.2011.12.015FAOSTAT(2018). FAO statistical databases food and agriculture organization of the United Nations.http://www.fao.org/faostat/en/#home.Farr D. F. &Rossman A. Y.(2018). Fungal Databases. National Fungus Collections ARS USDA: U.S.https://nt.ars-grin.gov/fungaldatabases/.Fuhlbohm, M. J., Ryley, M. J., & Aitken, E. A. B. (2012). New weed hosts of Macrophomina phaseolina in Australia. Australasian Plant Disease Notes, 7(1), 193-195. doi:10.1007/s13314-012-0082-6Funnell-Harris, D. L., O’Neill, P. M., Sattler, S. E., & Yerka, M. K. (2016). Response of Sweet Sorghum Lines to Stalk Pathogens Fusarium thapsinum and Macrophomina phaseolina. Plant Disease, 100(5), 896-903. doi:10.1094/pdis-09-15-1050-reIBGE(2018). Instituto Brasileiro de Geografia e Estatística.https://sidra.ibge.gov.br/home/pms/brasil.Jacob, C. J., Krarup, C., Díaz, G. A., & Latorre, B. A. (2013). A Severe Outbreak of Charcoal Rot in Cantaloupe Melon Caused by Macrophomina phaseolina in Chile. Plant Disease, 97(1), 141-141. doi:10.1094/pdis-06-12-0588-pdnKumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870-1874. doi:10.1093/molbev/msw054Machado, A. R., Pinho, D. B., & Pereira, O. L. (2014). Phylogeny, identification and pathogenicity of the Botryosphaeriaceae associated with collar and root rot of the biofuel plant Jatropha curcas in Brazil, with a description of new species of Lasiodiplodia. Fungal Diversity, 67(1), 231-247. doi:10.1007/s13225-013-0274-1Machado, A. R., Pinho, D. B., Soares, D. J., Gomes, A. A. M., & Pereira, O. L. (2018). Bayesian analyses of five gene regions reveal a new phylogenetic species of Macrophomina associated with charcoal rot on oilseed crops in Brazil. European Journal of Plant Pathology, 153(1), 89-100. doi:10.1007/s10658-018-1545-1Medeiros, A. C., Melo, D. R. M. de, Ambrósio, M. M. de Q., Nunes, G. H. de S., & Costa, J. M. da. (2015). Métodos de inoculação de Rhizoctonia solani e Macrophomina phaseolina em meloeiro (Cucumis melo). Summa Phytopathologica, 41(4), 281-286. doi:10.1590/0100-5405/2083Miller M. A. Pfeiffer W. &Schwartz T.(2012). The CIPRES science gateway: enabling high‐impact science for phylogenetics researchers with limited resources. In: Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the extreme to the campus and beyond (pp.39).Chicago IL.Mir, Z. R., Singh, P. K., Zaidi, P. H., Vinayan, M. T., Sharma, S. S., Krishna, M. K., … Nair, S. K. (2018). Genetic analysis of resistance to post flowering stalk rot in tropical germplasm of maize ( Zea mays L.). Crop Protection, 106, 42-49. doi:10.1016/j.cropro.2017.12.004Mbaye, N., Mame, P. S., Ndiaga, C., & Ibrahima, N. (2015). Is the recently described Macrophomina pseudophaseolina pathogenically different from Macrophomina phaseolina? African Journal of Microbiology Research, 9(45), 2232-2238. doi:10.5897/ajmr2015.7742Nylander J. A. A.(2004). MrModeltest V2. Program Distributed by the Author: Evolutionary Biology Centre Uppsala University Sweden.Reuveni, R., Krikun, J., Nachmias, A., & Shlevin, E. (1982). The role ofMacrophomina phaseolina in a collapse of melon plants in Israel. Phytoparasitica, 10(1), 51-56. doi:10.1007/bf02981892Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., … Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61(3), 539-542. doi:10.1093/sysbio/sys029Rusuku, G., Buruchara, R. A., Gatabazi, M., & Pastor-Corrales, M. A. (1997). Occurrence and Distribution in Rwanda of Soilborne Fungi Pathogenic to the Common Bean. Plant Disease, 81(5), 445-449. doi:10.1094/pdis.1997.81.5.445Sales Junior, R., Oliveira, O. F. de, Medeiros, É. V. de, Guimarães, I. M., Correia, K. C., & Michereff, S. J. (2012). Ervas daninhas como hospedeiras alternativas de patógenos causadores do colapso do meloeiro. Revista Ciência Agronômica, 43(1), 195-198. doi:10.1590/s1806-66902012000100024Short, G. E. (1980). Survival ofMacrophomina phaseolinain Soil and in Residue of Soybean. Phytopathology, 70(1), 13. doi:10.1094/phyto-70-13Francisco, de A. S. e S., & Carlos, A. V. de A. (2016). The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, 11(39), 3733-3740. doi:10.5897/ajar2016.11522Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. doi:10.1093/bioinformatics/btu033Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. doi:10.1093/nar/22.22.4673Wrather, J. A., Anderson, T. R., Arsyad, D. M., Gai, J., Ploper, L. D., Porta-Puglia, A., … Yorinori, J. T. (1997). Soybean Disease Loss Estimates for the Top 10 Soybean Producing Countries in 1994. Plant Disease, 81(1), 107-110. doi:10.1094/pdis.1997.81.1.107Wrather, J. A., Anderson, T. R., Arsyad, D. M., Tan, Y., Ploper, L. D., Porta-Puglia, A., … Yorinori, J. T. (2001). Soybean disease loss estimates for the top ten soybean-producing counries in 1998. Canadian Journal of Plant Pathology, 23(2), 115-121. doi:10.1080/0706066010950691

    Search for vectorlike B quarks in events with one isolated lepton, missing transverse momentum, and jets at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search has been performed for pair production of heavy vectorlike down-type (B) quarks. The analysis explores the lepton-plus-jets final state, characterized by events with one isolated charged lepton (electron or muon), significant missing transverse momentum, and multiple jets. One or more jets are required to be tagged as arising from b quarks, and at least one pair of jets must be tagged as arising from the hadronic decay of an electroweak boson. The analysis uses the full data sample of pp collisions recorded in 2012 by the ATLAS detector at the LHC, operating at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb −1 . No significant excess of events is observed above the expected background. Limits are set on vectorlike B production, as a function of the B branching ratios, assuming the allowable decay modes are B → Wt/Zb/Hb. In the chiral limit with a branching ratio of 100% for the decay B → Wt, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 810 GeV (760 GeV). In the case where the vectorlike B quark has branching ratio values corresponding to those of an SU(2) singlet state, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 640 GeV (505 GeV). The same analysis, when used to investigate pair production of a colored, charge 5/3 exotic fermion T 5/3 , with subsequent decay T 5/3 → Wt, sets an observed (expected) 95% C.L. lower limit on the T 5/3 mass of 840 GeV (780 GeV)

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A circular economy framework for seafood waste valorisation to meet challenges and opportunities for intensive production and sustainability

    Get PDF
    There is a growing concern among societies and consumers over food security and the sustainability of food production systems. For seafood, it has been highly advocated as a healthy food source and its sustainability credentials. However, the increasing global demand for seafood and the need to supply the quantities are creating sustainability issues, e.g., the importation of plant and marine proteins for aquafeed production. Consequently, there is a necessary need to analyse the supply chain and life cycle of these systems to determine their sustainability merits and how to enhance them. The circular economy (CE) aims to reduce processing by-product underutilisation, increase the rate of reuse, and reduce pressure on natural resources and systems. For seafood, there are large quantities of biomass that are being lost through bycatch/discards, waste from aquaculture (e.g., sludge and wastewater), and by-products generated through processing (e.g., trimmings and offal). These can all be valorised for the generation of feeds, value-added products, or further food production. This review will focus on seafood by-products generated during the processing into consumer products, and the current methods that could be used to manage or treat these waste streams. The review presents a stepwise framework that outlines valorisation opportunities for seafood by-products. This framework can enable producers, operators, regulators, and investors to integrate with the principles of the CE with the consideration of achieving economic viability. The challenges of seafood loss due to climate change and emerging recycling strategies will also need to be considered and integrated into the valorisation pathways. Communication, education, and engagement with stakeholders are key to transitioning to a circular economy. Where increase awareness and acceptance will create drivers and demand for seafood by-product valorisation. Overall, the impact of such a circular production system will potentially lead to higher production efficiency, reduce demand for natural resources, and greater seafood production. All of which addresses many of the United Nation's Sustainable Development Goals by contributing towards future food security and sustainability.This work was supported by the EAPA_576/2018 NEPTUNUS project. The authors would like to acknowledge the financial support of Interreg Atlantic Area. A.H.L Wan was co-funded under the HYDROfish project (2019–2022) which was funded under the Disruptive Technologies Innovation Fund (DTIF), established under Project Ireland 2040, run by the Department of Enterprise Trade and Employment with administrative support from Enterprise Ireland. His opinions expressed are his own. The authors would also like to thank Matt Bell for his editorial assistance

    A search for prompt lepton-jets in pp collisions at root s=8 TeV with the ATLAS detector

    Get PDF
    A search is presented for a new, light boson with a mass of about 1 GeV and decaying promptly to jets of collimated electrons and/or muons (lepton-jets). The analysis is performed with 20.3 fb−1 of data collected by the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a centre-of-mass energy of 8 TeV. Events are required to contain at least two lepton-jets. This study finds no statistically significant deviation from predictions of the Standard Model and places 95% confidence-level upper limits on the contribution of new phenomena beyond the SM, incuding SUSY-portal and Higgs-portal models, on the number of events with lepton-jets.We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEADSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ. S, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom

    Search for the production of single vector-like and excited quarks in the Wt final state in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search for vector-like quarks and excited quarks in events containing a top quark and a W boson in the final state is reported here. The search is based on 20.3 fb−1 of proton-proton collision data taken at the LHC at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector. Events with one or two leptons, and one, two or three jets are selected with the additional requirement that at least one jet contains a b-quark. Single-lepton events are also required to contain at least one large-radius jet from the hadronic decay of a high-pTW boson or a top quark. No significant excess over the expected background is observed and upper limits on the cross-section times branching ratio for different vector-like quark and excited-quark model masses are derived. For the excited-quark production and decay to Wt with unit couplings, quarks with masses below 1500 GeV are excluded and coupling-dependent limits are set

    Measurement of jet charge in dijet events from √s = 8  TeV pp collisions with the ATLAS detector

    Get PDF
    The momentum-weighted sum of the charges of tracks associated to a jet is sensitive to the charge of the initiating quark or gluon. This paper presents a measurement of the distribution of momentum-weighted sums, called jet charge, in dijet events using 20.3 fb−¹ of data recorded with the ATLAS detector at √s = 8 TeV in pp collisions at the LHC. The jet charge distribution is unfolded to remove distortions from detector effects and the resulting particle-level distribution is compared with several models. The pT dependence of the jet charge distribution average and standard deviation are compared to predictions obtained with several leading-order and next-to-leading-order parton distribution functions. The data are also compared to different Monte Carlo simulations of QCD dijet production using various settings of the free parameters within these models. The chosen value of the strong coupling constant used to calculate gluon radiation is found to have a significant impact on the predicted jet charge. There is evidence for a pT dependence of the jet charge distribution for a given jet flavor. In agreement with perturbative QCD predictions, the data show that the average jet charge of quark-initiated jets decreases in magnitude as the energy of the jet increases

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
    corecore