100 research outputs found

    Lung adenocarcinoma originates from retrovirus infection of proliferating type 2 pneumocytes during pulmonary post-natal development or tissue repair

    Get PDF
    Jaagsiekte sheep retrovirus (JSRV) is a unique oncogenic virus with distinctive biological properties. JSRV is the only virus causing a naturally occurring lung cancer (ovine pulmonary adenocarcinoma, OPA) and possessing a major structural protein that functions as a dominant oncoprotein. Lung cancer is the major cause of death among cancer patients. OPA can be an extremely useful animal model in order to identify the cells originating lung adenocarcinoma and to study the early events of pulmonary carcinogenesis. In this study, we demonstrated that lung adenocarcinoma in sheep originates from infection and transformation of proliferating type 2 pneumocytes (termed here lung alveolar proliferating cells, LAPCs). We excluded that OPA originates from a bronchioalveolar stem cell, or from mature post-mitotic type 2 pneumocytes or from either proliferating or non-proliferating Clara cells. We show that young animals possess abundant LAPCs and are highly susceptible to JSRV infection and transformation. On the contrary, healthy adult sheep, which are normally resistant to experimental OPA induction, exhibit a relatively low number of LAPCs and are resistant to JSRV infection of the respiratory epithelium. Importantly, induction of lung injury increased dramatically the number of LAPCs in adult sheep and rendered these animals fully susceptible to JSRV infection and transformation. Furthermore, we show that JSRV preferentially infects actively dividing cell in vitro. Overall, our study provides unique insights into pulmonary biology and carcinogenesis and suggests that JSRV and its host have reached an evolutionary equilibrium in which productive infection (and transformation) can occur only in cells that are scarce for most of the lifespan of the sheep. Our data also indicate that, at least in this model, inflammation can predispose to retroviral infection and cancer

    Applied public health research - falling through the cracks?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a degree of dissonance between the types of evaluative research required by organisations providing or commissioning health care, those recommended by organisations developing evidence-based guidance, and those which research funding bodies are prepared to support.</p> <p>Methods</p> <p>We present a case study of efforts to establish a pragmatic but robust evaluation of local exercise referral schemes. We considered the epidemiological, ethical and practical advantages and disadvantages of a number of study designs and applied for research funding based on an uncontrolled design, outlining the difficulties of carrying out a randomised controlled trial to evaluate an existing service.</p> <p>Results</p> <p>Our proposal was praised for its relevance and clear patient outcomes, but the application was twice rejected because both funders and reviewers insisted on a randomised controlled trial design, which we had found to be impractical, unacceptable to service users and potentially unethical.</p> <p>Conclusion</p> <p>The case study highlights continuing challenges for applied public health research in the current funding climate.</p

    Lessons learned from the AFLY5 RCT process evaluation: Implications for the design of physical activity and nutrition interventions in schools Health behavior, health promotion and society

    Get PDF
    © 2015 Jago et al. Background: Systematic reviews have highlighted that school-based diet and physical activity (PA) interventions have had limited effects. This study used qualitative methods to examine how the effectiveness of future primary (elementary) school diet and PA interventions could be improved. Methods: Data are from the Active For Life Year 5 (AFLY5) study, which was a cluster randomised trial conducted in 60 UK primary schools. Year 5 (8-9 years of age) pupils in the 30 intervention schools received a 12-month intervention. At the end of the intervention period, interviews were conducted with: 28 Year 5 teachers (including 8 teachers from control schools); 10 Headteachers (6 control); 31 parents (15 control). Focus groups were conducted with 70 year 5 pupils (34 control). Topics included how the AFLY5 intervention could have been improved and how school-based diet and PA interventions should optimally be delivered. All interviews and focus groups were transcribed and thematically analysed across participant groups. Results: Analysis yielded four themes. Child engagement: Data suggested that programme success is likely to be enhanced if children feel that they have a sense of autonomy over their own behaviour and if the activities are practical. School: Finding a project champion within the school would enhance intervention effectiveness. Embedding diet and physical activity content across the curriculum and encouraging teachers to role model good diet and physical activity behaviours were seen as important. Parents and community: Encouraging parents and community members into the school was deemed likely to enhance the connection between schools, families and communities, and "create a buzz" that was likely to enhance behaviour change. Government/Policy: Data suggested that there was a need to adequately resource health promotion activity in schools and to increase the infrastructure to facilitate diet and physical activity knowledge and practice. Discussion and Conclusions: Future primary school diet and PA programmes should find ways to increase child engagement in the programme content, identify programme champions, encourage teachers to work as role models, engage parents and embed diet and PA behaviour change across the curriculum. However, this will require adequate funding and cost-effectiveness will need to be established. Trial registration: ISRCTN5013374

    Water isotopes in desiccating lichens

    Get PDF
    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition

    AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington's disease.

    Get PDF
    Huntington's disease (HD) is a fatal progressive neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene. To date, there is no treatment to halt or reverse the course of HD. Lowering of either total or only the mutant HTT expression is expected to have therapeutic benefit. This can be achieved by engineered micro (mi)RNAs targeting HTT transcripts and delivered by an adeno-associated viral (AAV) vector. We have previously showed a miHTT construct to induce total HTT knock-down in Hu128/21 HD mice, while miSNP50T and miSNP67T constructs induced allele-selective HTT knock-down in vitro. In the current preclinical study, the mechanistic efficacy and gene specificity of these selected constructs delivered by an AAV serotype 5 (AAV5) vector was addressed using an acute HD rat model. Our data demonstrated suppression of mutant HTT messenger RNA, which almost completely prevented mutant HTT aggregate formation, and ultimately resulted in suppression of DARPP-32-associated neuronal dysfunction. The AAV5-miHTT construct was found to be the most efficient, although AAV5-miSNP50T demonstrated the anticipated mutant HTT allele selectivity and no passenger strand expression. Ultimately, AAV5-delivered-miRNA-mediated HTT lowering did not cause activation of microglia or astrocytes suggesting no immune response to the AAV5 vector or therapeutic precursor sequences. These preclinical results suggest that using gene therapy to knock-down HTT may provide important therapeutic benefit for HD patients and raised no safety concerns, which supports our ongoing efforts for the development of an RNA interference-based gene therapy product for HD

    Large-scale, prospective, observational studies in patients with psoriasis and psoriatic arthritis: A systematic and critical review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Observational studies, if conducted appropriately, play an important role in the decision-making process providing invaluable information on effectiveness, patient-reported outcomes and costs in a real-world environment. We conducted a systematic review of large-scale, prospective, cohort studies with the aim of (a) summarising design characteristics, the interventions or aspects of the disease studied and the outcomes measured and (b) investigating methodological quality.</p> <p>Methods</p> <p>We included prospective, cohort studies which included at least 100 adults with psoriasis or psoriatic arthritis. Studies were identified through searches in electronic databases (Pubmed, Medline, Cochrane library, Centre for Reviews and Dissemination). Information on study characteristics were extracted and tabulated and quality assessment, using a checklist of 18 questions, was conducted.</p> <p>Results</p> <p>Thirty five papers covering 16 cohorts met the inclusion criteria. There were ten treatment-related studies, only two of which provided a comparison between treatments, and six non-treatment studies which examined a number of characteristics of the disease including mortality, morbidity, cost of illness and health-related quality of life. All studies included a clinical outcome measure and 11 included patient-reported outcomes, however only two studies reported information on patient utilities and two on costs. The quality of the assessed studies varied widely. Studies did well on a number of quality assessment questions including having clear objectives, documenting selection criteria, providing a representative sample, defining interventions/characteristics under study, defining and using appropriate outcomes, describing results clearly and using appropriate statistical tests. The quality assessment criteria least adhered to involved questions regarding sample size calculations, describing potential selection bias, defining and adjusting for confounders and losses to follow-up, and defining and describing a comparison group.</p> <p>Conclusion</p> <p>The review highlights the need for well designed prospective observational studies on the effectiveness, patient-reported outcomes and economic impact of treatment regimes for patients with psoriasis and psoriatic arthritis in a real-world environment.</p

    HEATR2 Plays a Conserved Role in Assembly of the Ciliary Motile Apparatus

    Get PDF
    Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved

    Natural products in modern life science

    Get PDF
    With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure–activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific questions in Nature can be of value to increase the attraction for young students in modern life science
    • 

    corecore