1,841 research outputs found

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    CLOUD: an atmospheric research facility at CERN

    Get PDF
    This report is the second of two addenda to the CLOUD proposal at CERN (physics/0104048), which aims to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical mechanism. The document places CLOUD in the framework of a CERN facility for atmospheric research, and provides further details on the particle beam requirements

    Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    A study of the link between cosmic rays and clouds with a cloud chamber at the CERN PS

    Get PDF
    Recent satellite data have revealed a surprising correlation between galactic cosmic ray (GCR) intensity and the fraction of the Earth covered by clouds. If this correlation were to be established by a causal mechanism, it could provide a crucial step in understanding the long-sought mechanism connecting solar and climate variability. The Earth's climate seems to be remarkably sensitive to solar activity, but variations of the Sun's electromagnetic radiation appear to be too small to account for the observed climate variability. However, since the GCR intensity is strongly modulated by the solar wind, a GCR-cloud link may provide a sufficient amplifying mechanism. Moreover if this connection were to be confirmed, it could have profound consequences for our understanding of the solar contributions to the current global warming. The CLOUD (Cosmics Leaving OUtdoor Droplets) project proposes to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical mechanism. CLOUD plans to perform detailed laboratory measurements in a particle beam at CERN, where all the parameters can be precisely controlled and measured. The beam will pass through an expansion cloud chamber and a reactor chamber where the atmosphere is to be duplicated by moist air charged with selected aerosols and trace condensable vapours. An array of external detectors and mass spectrometers is used to analyse the physical and chemical characteristics of the aerosols and trace gases during beam exposure. Where beam effects are found, the experiment will seek to evaluate their significance in the atmosphere by incorporating them into aerosol and cloud models.Recent satellite data have revealed a surprising correlation between galactic cosmic ray (GCR) intensity and the fraction of the Earth covered by clouds. If this correlation were to be established by a causal mechanism, it could provide a crucial step in understanding the long-sought mechanism connecting solar and climate variability. The Earth's climate seems to be remarkably sensitive to solar activity, but variations of the Sun's electromagnetic radiation appear to be too small to account for the observed climate variability. However, since the GCR intensity is strongly modulated by the solar wind, a GCR-cloud link may provide a sufficient amplifying mechanism. Moreover if this connection were to be confirmed, it could have profound consequences for our understanding of the solar contributions to the current global warming. The CLOUD (Cosmics Leaving OUtdoor Droplets) project proposes to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical mechanism. CLOUD plans to perform detailed laboratory measurements in a particle beam at CERN, where all the parameters can be precisely controlled and measured. The beam will pass through an expansion cloud chamber and a reactor chamber where the atmosphere is to be duplicated by moist air charged with selected aerosols and trace condensable vapours. An array of external detectors and mass spectrometers is used to analyse the physical and chemical characteristics of the aerosols and trace gases during beam exposure. Where beam effects are found, the experiment will seek to evaluate their significance in the atmosphere by incorporating them into aerosol and cloud models

    КОМПЛЕКС ДЛЯ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ СУБМИКРОННОЙ ТОПОЛОГИИ КРЕМНИЕВЫХ ПЛАСТИН ПРИ ПРОИЗВОДСТВЕ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

    Get PDF
    The advantages of using an atomic force microscopy in manufacturing of submicron integrated circuits are described. The possibilities of characterizing the surface morphology and the etching profile for silicon substrate and bus lines, estimation of the periodicity and size of bus lines, geometrical stability for elementary bus line are shown. Methods of optical and atomic force microcopies are combined in one diagnostic unit. Scanning  probe  microscope  (SPM  200)  is  designed  and  produced.  Complex  SPM  200  realizes  nondestructive control of microelectronics elements made on silicon wafers up to 200 mm in diameter and it is introduced by JSC «Integral» for the purpose of operational control, metrology and acceptance of the final product.Описаны преимущества использования атомно-силовой микроскопии для контроля технологических процессов при изготовлении интегральных микросхем субмикроэлектроники. Показана возможность визуализации морфологии поверхностей и профиля травления, оценки периодичности гребенок шин, определения стабильности размеров для одной шины. Выполнены работы по совмещению оптической и атомно-силовой микроскопии, разработан и изготовлен сканирующий зондовый микроскоп. Комплекс внедрен для промышленного неразрушающего контроля субмикроэлектроники, выполненной на кремниевых  пластинах диаметром  до  200 мм, с целью осуществления  операционного контроля, метрологических измерений и приемки качества готовой продукции

    Measurements of long-range azimuthal anisotropies and associated Fourier coefficients for pp collisions at √s=5.02 and 13 TeV and p+Pb collisions at √sNN=5.02 TeV with the ATLAS detector

    Get PDF
    ATLAS measurements of two-particle correlations are presented for √s=5.02 and 13 TeV ppcollisions and for √sNN=5.02 TeV p+Pb collisions at the LHC. The correlation functions are measured as a function of relative azimuthal angle Δϕ, and pseudorapidity separation Δη, using charged particles detected within the pseudorapidity interval |η|2, is studied using a template fitting procedure to remove a “back-to-back” contribution to the correlation function that primarily arises from hard-scattering processes. In addition to the elliptic, cos (2Δϕ), modulation observed in a previous measurement, the pp correlation functions exhibit significant cos (3Δϕ) and cos (4Δϕ) modulation. The Fourier coefficients vn, n associated with the cos (nΔϕ) modulation of the correlation functions for n=2–4 are measured as a function of charged-particle multiplicity and charged-particle transverse momentum. The Fourier coefficients are observed to be compatible with cos (nϕ) modulation of per-event single-particle azimuthal angle distributions. The single-particle Fourier coefficients vn are measured as a function of charged-particle multiplicity, and charged-particle transverse momentum for n=2–4. The integrated luminosities used in this analysis are, 64nb−1 for the √s=13 TeV pp data, 170 nb−1 for the √ s = 5.02 TeV pp data, and 28 nb−1 for the √sNN = 5.02 TeV p+Pb data
    corecore