2,354 research outputs found

    The Cool-Core Bias in X-ray Galaxy Cluster Samples I: Method And Application To HIFLUGCS

    Full text link
    When selecting flux-limited cluster samples, the detection efficiency of X-ray instruments is not the same for centrally-peaked and flat objects, which introduces a bias in flux-limited cluster samples. We quantify this effect in the case of a well-known cluster sample, HIFLUGCS. We simulate a population of X-ray clusters with various surface-brightness profiles, and use the instrumental characteristics of the ROSAT All-Sky Survey (RASS) to select flux-limited samples similar to the HIFLUGCS sample and predict the expected bias. For comparison, we also estimate observationally the bias in the HIFLUGCS sample using XMM-Newton and ROSAT data. We find that the selection of X-ray cluster samples is significantly biased (29\sim29%) in favor of the peaked, Cool-Core (CC) objects, with respect to Non-Cool-Core (NCC) systems. Interestingly, we find that the bias affects the low-mass, nearby objects (groups, poor clusters) much more than the more luminous objects (i.e massive clusters). We also note a moderate increase of the bias for the more distant systems. Observationally, we propose to select the objects according to their flux in a well-defined physical range excluding the cores, 0.2r500r5000.2r_{500}-r_{500}, to get rid of the bias. From the fluxes in this range, we reject 13 clusters out of the 64 in the HIFLUGCS sample, none of which appears to be NCC. As a result, we estimate that less than half (35-37%) of the galaxy clusters in the local Universe are strong CC. In the paradigm where the CC objects trace relaxed clusters as opposed to unrelaxed, merging objects, this implies that to the present day the majority of the objects are not in a relaxed state. From this result, we estimate a rate of heating events of 1/3\sim1/3 Gyr1^{-1} per dark-matter halo.Comment: 16 pages, 9 figures, accepted for publication in A&

    Towards a Holistic View of the Heating and Cooling of the Intracluster Medium

    Full text link
    (Abridged) X-ray clusters are conventionally divided into two classes: "cool core" (CC) clusters and "non-cool core" (NCC) clusters. Yet relatively little attention has been given to the origins of this dichotomy and, in particular, to the energetics and thermal histories of the two classes. We develop a model for the entropy profiles of clusters starting from the configuration established by gravitational shock heating and radiative cooling. At large radii, gravitational heating accounts for the observed profiles and their scalings well. However, at small and intermediate radii, radiative cooling and gravitational heating cannot be combined to explain the observed profiles of either type of cluster. The inferred entropy profiles of NCC clusters require that material is preheated prior to cluster collapse in order to explain the absence of low entropy (cool) material in these systems. We show that a similar modification is also required in CC clusters in order to match their properties at intermediate radii. In CC clusters, this modification is unstable, and an additional process is required to prevent cooling below a temperature of a few keV. We show that this can be achieved by adding a self-consistent AGN feedback loop in which the lowest-entropy, most rapidly cooling material is heated so that it rises buoyantly to mix with material at larger radii. The resulting model does not require fine tuning and is in excellent agreement with a wide variety of observational data. Some of the other implications of this model are briefly discussed.Comment: 27 pages, 13 figures, MNRAS accepted. Discussion of cluster heating energetics extended, results unchange

    The gas distribution in the outer regions of galaxy clusters

    Full text link
    We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r200 and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond \sim r500. Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or treating gas clumping are in better agreement with the observed gas distribution. We report for the first time the high-confidence detection of a systematic difference between cool-core and non-cool core clusters beyond \sim 0.3r200, which we explain by a different distribution of the gas in the two classes. Beyond \sim r500, galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. [Abridged]Comment: The data for the average profiles and individual clusters can be downloaded at: http://www.isdc.unige.ch/~deckert/newsite/The_Planck_ROSAT_project.htm

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    Self-similar scaling and evolution in the galaxy cluster X-ray Luminosity-Temperature relation

    Full text link
    We investigate the form and evolution of the X-ray luminosity-temperature (LT) relation of a sample of 114 galaxy clusters observed with Chandra at 0.1<z<1.3. The clusters were divided into subsamples based on their X-ray morphology or whether they host strong cool cores. We find that when the core regions are excluded, the most relaxed clusters (or those with the strongest cool cores) follow an LT relation with a slope that agrees well with simple self-similar expectations. This is supported by an analysis of the gas density profiles of the systems, which shows self-similar behaviour of the gas profiles of the relaxed clusters outside the core regions. By comparing our data with clusters in the REXCESS sample, which extends to lower masses, we find evidence that the self-similar behaviour of even the most relaxed clusters breaks at around 3.5keV. By contrast, the LT slopes of the subsamples of unrelaxed systems (or those without strong cool cores) are significantly steeper than the self-similar model, with lower mass systems appearing less luminous and higher mass systems appearing more luminous than the self-similar relation. We argue that these results are consistent with a model of non-gravitational energy input in clusters that combines central heating with entropy enhancements from merger shocks. Such enhancements could extend the impact of central energy input to larger radii in unrelaxed clusters, as suggested by our data. We also examine the evolution of the LT relation, and find that while the data appear inconsistent with simple self-similar evolution, the differences can be plausibly explained by selection bias, and thus we find no reason to rule out self-similar evolution. We show that the fraction of cool core clusters in our (non-representative) sample decreases at z>0.5 and discuss the effect of this on measurements of the evolution in the LT relation.Comment: 21 pages, 15 figures. Submitted to MNRAS. Comments welcom

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Measurement of the top pair production cross section in 8 TeV proton-proton collisions using kinematic information in the lepton plus jets final state with ATLAS

    Get PDF
    A measurement is presented of the ttˉt\bar{t} inclusive production cross-section in pppp collisions at a center-of-mass energy of s=8\sqrt{s}=8 TeV using data collected by the ATLAS detector at the CERN Large Hadron Collider. The measurement was performed in the lepton+jets final state using a data set corresponding to an integrated luminosity of 20.3 fb1^{-1}. The cross-section was obtained using a likelihood discriminant fit and bb-jet identification was used to improve the signal-to-background ratio. The inclusive ttˉt\bar{t} production cross-section was measured to be 260±1(stat.)23+22(syst.)±8(lumi.)±4(beam)260\pm 1{\textrm{(stat.)}} ^{+22}_{-23} {\textrm{(syst.)}}\pm 8{\textrm{(lumi.)}}\pm 4{\mathrm{(beam)}} pb assuming a top-quark mass of 172.5 GeV, in good agreement with the theoretical prediction of 25315+13253^{+13}_{-15} pb. The ttˉ(e,μ)+jetst\bar{t}\to (e,\mu)+{\mathrm{jets}} production cross-section in the fiducial region determined by the detector acceptance is also reported.Comment: Published version, 19 pages plus author list (35 pages total), 3 figures, 2 tables, all figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2013-06

    Measurement of the charge asymmetry in dileptonic Decays of top quark pairs in pp collisions at √ s = 7 TeV using the ATLAS detector

    Get PDF
    A measurement of the top-antitop (tt) charge asymmetry is presented using data corresponding to an integrated luminosity of 4.6 fb −1 of LHC pp collisions at a centre- of-mass energy of 7 TeV collected by the ATLAS detector. Events with two charged leptons, at least two jets and large missing transverse momentum are selected. Two observables are studied: A tt/C, based on the reconstructed tt final state. The asymmetries are measured to be A ll/C = 0.024 +/- 0.015 (stat.) +/- 0.009 (syst.) Att/C = 0.021 +/- 0.025 (stat.) +/- 0.017 (syst.) The measured values are in agreement with the Standard Model predictions
    corecore